Cauchy process on half-line

Mateusz Kwaśnicki

Institute of Mathematics and Computer Science Wrocław University of Technology
mateusz.kwasnicki@pwr.wroc.pl http://www.im.pwr.wroc.pl/~kwasnicki/
joint work with T. Kulczycki, J. Małecki and A. Stős

Linear water waves

Assumptions

- fluid is ideal (inviscid, incompressible, heavy)
- no surface tension
- oscillations are small
- motion is irrotational

Linear water waves

Assumptions

- fluid is ideal (inviscid, incompressible, heavy)
- no surface tension
- oscillations are small
- motion is irrotational

A non-linear wave (www.surftravelcompany.com/big-wave-pics/mavericks.jpg)

A more linear wave (art4linux.org/system/files/water-waves-1600.jpg)

Three-dimensional sloshing (1/2)

Velocity at time t is irrotational:

$$
\vec{v}_{t}(x, y, z)=\nabla u_{t}(x, y, z)
$$

u_{t} - velocity potential
The water is incompressible, so $\operatorname{div} \vec{v}_{t}=0$, or

$$
\Delta u_{t}=0 \quad \text { in the water. }
$$

Under the ice \vec{v}_{t} is tangent to the surface, so

$$
\frac{\partial}{\partial n} u_{t}=0
$$

On the free surface

$$
g \frac{\partial}{\partial n} u_{t}=\frac{\partial^{2}}{\partial t^{2}} u_{t} .
$$

Three-dimensional sloshing (2/2)

Harmonic oscilations:

$$
u_{t}(x, y, z)=u(x, y, z) \cos (\omega t) .
$$

Sloshing problem:

$$
\begin{aligned}
& \Delta u=0 \\
& \frac{\partial}{\partial n} u=0 \\
& \frac{\partial}{\partial n} u=\lambda u
\end{aligned}
$$

inside,
at the fixed boundary,
on the free surface,
with spectral parameter $\lambda=\frac{\omega^{2}}{g}$.
Various types of containers have been studied.

Two-dimensional sloshing

Two-dimensional sloshing problem:

$$
\begin{array}{ll}
\Delta u(x, y)=0 & \text { inside } \\
\frac{\partial}{\partial n} u(x, y)=0 & \text { at the fixed boundar } \\
\frac{\partial}{\partial n} u(x, y)=\lambda u(x, y) & \text { on the free surface. }
\end{array}
$$

This corresponds to 3-D oscillations not depending on z.
In half-plane with semi-infinite dock:

$$
\begin{array}{ll}
\Delta u(x, y)=0 & \text { for } x \in \mathbf{R}, y>0, \\
\frac{\partial}{\partial y} u(x, 0)=0 & \text { for } x \leq 0, \\
\frac{\partial}{\partial y} u(x, 0)=-\lambda u(x, y) & \text { for } x>0 .
\end{array}
$$

History in a nutshell

Sloshing problem was studied by:

Euler (1761),
Green (1838 and 1842),
Airy (1845),
Ostrogradsky (1862),
Kirchhoff (1879),
Macdonald (1894 and 1896),
Poincaré (1910),

Sloshing in half-plane with semi-infinite dock:
Friedrichs, Lewy (1947), Holford (1964).

See also: Chakrabarti, Mandal, Rupanwita Gayen, The dock problem revisited (2006)

Cauchy semigroup

If $u(x, y)$ is harmonic in $\{y \geq 0\}$, then

$$
u(x, y)=\frac{1}{\pi} \int \frac{y}{y^{2}+(x-z)^{2}} u(z, 0) d z
$$

Hence $u(\cdot, y)=P_{y} u(\cdot 0)$, where

$$
P_{y} f(x)=\frac{1}{\pi} \int \frac{y}{y^{2}+(x-z)^{2}} f(z) d z
$$

is the Cauchy semigroup (or Poisson semigroup).
Furthermore,

$$
\frac{\partial}{\partial n} u(\cdot, 0)=-\frac{\partial}{\partial y} u(\cdot, 0)=-\lim _{y \backslash 0} \frac{P_{y} u(\cdot, 0)-u(\cdot, 0)}{y}=-\mathcal{A} u(\cdot, 0)
$$

where

$$
\mathcal{A} f(x)=-\sqrt{-\frac{d^{2}}{d x^{2}}} f(x)=\frac{1}{\pi} \int \frac{f(z)-f(x)}{(z-x)^{2}} d z
$$

Two-dimensional sloshing revisited

Two-dimensional sloshing problem
 in half-plane with semi-infinite dock:

$$
\begin{array}{ll}
\Delta u(x, y)=0 & \text { for } x \in \mathbf{R}, y>0, \\
\frac{\partial}{\partial y} u(x, 0)=0 & \text { for } x \leq 0, \\
\frac{\partial}{\partial y} u(x, 0)=-\lambda u(x, y) & \text { for } x>0 .
\end{array}
$$

Equivalently: $u(x, y)=P_{y} \psi(x)$, where

$$
\begin{aligned}
& \mathcal{A} \psi(x)=0 \\
& \mathcal{A} \psi(x)=-\lambda \psi(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } x \leq 0, \\
& \text { for } x>0 .
\end{aligned}
$$

Cauchy process (1/2)

P_{t} are transition operators of the Cauchy process X_{t}.
\mathcal{A} is the infinitesimal generator of X_{t}.
X_{t} is the Lévy process with Lévy measure $\frac{1}{\pi} \frac{1}{x^{2}} d x$. (no Gaussian part, no drift)
X_{t} is the symmetric 1-stable process. (unique up to scaling)

Sample path of the Cauchy process

Cauchy process (2/2)

$$
\begin{aligned}
& \left(B_{1}(s), B_{2}(s)\right)-2-D \text { Brownian motion } \\
& \tau_{t}=\inf \left\{s: B_{1}(s) \geq t\right\} \\
& X_{t}=B_{2}\left(\tau_{t}\right)-\text { Cauchy process }
\end{aligned}
$$

Killed semigroup

$$
\text { Let } D=(0, \infty) \text {. }
$$

Define the first exit time:

$$
\tau_{D}=\inf \left\{t \geq 0: X_{t} \notin D\right\}
$$

Transition operators of the killed process:

$$
P_{t}^{D} f(x)=\mathbf{E}^{x}\left[f\left(X_{t}\right) ; t<\tau_{D}\right]
$$

Question

What are the eigenvalues/eigenfunctions of P_{t}^{D} ?
What is the spectral representation of P_{t}^{D} ?

The two problems

Sloshing problem - for a kind of reflected process:

$$
\begin{array}{ll|ll}
\Delta u(x, y)=0, & & \mathcal{A} \psi(x)=0 & \text { for } x \leq 0 \\
\frac{\partial}{\partial y} u(x, 0)=0 & \text { for } x \leq 0 . & \mathcal{A} \psi(x)=-\lambda \psi(x) & \text { for } x>0 . \\
\frac{\partial}{\partial y} u(x, 0)=-\lambda u(x, 0) & \text { for } x>0 & &
\end{array}
$$

Explicit solution - Friedrichs, Levy, 1947.

Eigenfunctions of P_{t}^{D} — for the killed process:

$$
\begin{array}{ll|ll}
\psi(x)=0 & \text { for } x \leq 0, & \Delta u(x, y)=0 & \\
\mathcal{A} \psi(x)=-\lambda \psi(x) & \text { for } x>0 . & u(x, 0)=0 & \text { for } x \leq 0 \\
& & \frac{\partial}{\partial y} u(x, 0)=-\lambda u(x, 0) & \text { for } x>0
\end{array}
$$

Explicit solution - TK+MK+JM+AS, 2009.

Main result (1/3)

Theorem (TK+MK+JM+AS)
The eigenfunctions of P_{t}^{D} are given by

$$
\begin{aligned}
& \psi_{\lambda}(x)=\sin \left(\lambda x+\frac{\pi}{8}\right)-r(\lambda x) \\
& r(x)=\frac{\sqrt{2}}{2 \pi} \int_{0}^{\infty} \frac{t}{1+t^{2}} \exp \left(-\frac{1}{\pi} \int_{0}^{\infty} \frac{\log (t+s)}{1+s^{2}} d s\right) e^{-t x} d t
\end{aligned}
$$

Graph of $\psi_{1}(x)$
Graph of $r(x)=\sin \left(x+\frac{\pi}{8}\right)-\psi_{1}(x)$

Main result (1/3)

$$
\mid D=(0, \infty)
$$

Theorem (TK+MK+JM+AS)

The eigenfunctions of P_{t}^{D} are given by

$$
\begin{aligned}
& \psi_{\lambda}(x)=\sin \left(\lambda x+\frac{\pi}{8}\right)-r(\lambda x) \\
& r(x)=\frac{\sqrt{2}}{2 \pi} \int_{0}^{\infty} \frac{t}{1+t^{2}} \exp \left(-\frac{1}{\pi} \int_{0}^{\infty} \frac{\log (t+s)}{1+s^{2}} d s\right) e^{-t x} d t
\end{aligned}
$$

Fact
The eigenfunctions of the semigroup \tilde{P}_{t}^{D} of killed Brownian motion in $(0, \infty)$ are given by

$$
\tilde{\psi}_{\lambda}(x)=\sin (\lambda x)
$$

Main result (2/3)

$$
\mid D=(0, \infty)
$$

Theorem (TK+MK+JM+AS)
Spectral representation of P_{t}^{D} is given by $\Pi: L^{2}(D) \rightarrow L^{2}((0, \infty))$

$$
\Pi f(\lambda)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \psi_{\lambda}(x) d x
$$

We have

$$
\begin{aligned}
& \Pi\left(P_{t}^{D} f\right)(\lambda)=e^{-\lambda t} \Pi f(\lambda) \\
& \|\Pi f\|_{2}=\|f\|_{2} \\
& \Pi(\Pi f)=f
\end{aligned}
$$

(Plancherel's theorem)
(inversion formula)
Fact
Spectral representation of \tilde{P}_{t}^{D} is given by the Fourier sine transform

$$
\begin{aligned}
& \tilde{\Pi} f(\lambda)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \tilde{\psi}_{\lambda}(x) d x . \\
& \tilde{\Pi}\left(\tilde{P}_{t}^{D} f\right)(\lambda)=e^{-\lambda^{2} t} \tilde{\Pi} f(\lambda), \\
& \|\tilde{\Pi} f\|_{2}=\|f\|_{2} \\
& \tilde{\Pi}(\tilde{\Pi} f)=f .
\end{aligned}
$$

(Plancherel's theorem)
(inversion formula)

Main result (3/3)

Let $p_{t}^{D}(x, y)$ be the kernel of P_{t}^{D}.
Theorem (TK+MK+JM+AS)

$$
\begin{aligned}
& p_{t}^{D}(x, y)=\frac{1}{\pi} \frac{t}{t^{2}+(x-y)^{2}}-\frac{1}{x y} \int_{0}^{t} \frac{f\left(\frac{s}{x}\right) f\left(\frac{t-s}{y}\right)}{\frac{s}{x}+\frac{t-s}{y}} d s \\
& \text { with } \quad f(s)=\frac{1}{\pi} \frac{s}{1+s^{2}} \exp \left(\frac{1}{\pi} \int_{0}^{\infty} \frac{\log (s+w)}{1+w^{2}} d w\right) . \\
& \mathbf{P}^{x}\left(\tau_{D} \in d t\right)=\frac{1}{\pi} \frac{x}{t^{2}+x^{2}} \exp \left(\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left(\frac{t}{x}+w\right)}{1+w^{2}} d w\right) d t .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& p_{t}^{D}(x, y)=\frac{2}{\pi} \int_{0}^{\infty} e^{-\lambda t} \psi_{\lambda}(x) \psi_{\lambda}(y) d \lambda \\
& \mathbf{P}^{x}\left(\tau_{D}>t\right)=\int_{D} p_{t}^{D}(x, y) d y
\end{aligned}
$$

Proof of spectral representation theorem

$$
\begin{aligned}
\Pi f(\lambda) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \psi_{\lambda}(x) d x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin \left(\lambda x+\frac{\pi}{8}\right) d x-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) r(\lambda x) d x
\end{aligned}
$$

- $\Pi: L^{2}(D) \rightarrow L^{2}(D)$ is bounded
(Hardy-Hilbert inequality);
- supp $f \cap$ supp $g=\varnothing$ implies $\langle\Pi f, \Pi g\rangle=0$
(eigenfunctions are orthogonal);
- $A \mapsto\left\langle\Pi 1_{A}, \Pi 1_{A}\right\rangle$ is a measure;
- it scales well, so it is Lebesgue, up to a constant;
- Π is unitary, up to a constant;
- the constant is one (by considering $\mathbf{1}_{(1,1+\varepsilon)}$).

Derivation of $\psi_{\lambda}(1 / 2)$

Problem:
(1) $\Delta u(x, y)=0$
(2) $\frac{\partial}{\partial y} u(x, 0)=0$
for $x \leq 0$,
(3) $\frac{\partial}{\partial n} u(x, 0)=-\lambda u(x, 0)$
for $x>0$;

- $e^{k \lambda x} \sin (k \lambda y)$ satsifies (1) and (2), $e^{k \lambda x} \sin (k \lambda y-\arctan k)$ satisfies (1) and (3),
$e^{-\lambda y} \sin (\lambda x+\vartheta)$ satisfies (1) and (3);
- try the following form of the solution

$$
\begin{array}{rlr}
u(x, y)= & \int_{0}^{\infty} w(k) e^{k \lambda x} \sin (k \lambda y) d k & \text { for } x \leq 0, y \geq 0 \\
u(x, y)= & e^{-\lambda y} \sin (\lambda x+\vartheta) & \text { for } x \leq 0, y \geq 0 \\
& -\int_{-\infty}^{0} w(k) e^{k \lambda x} \sin (k \lambda y-\arctan k) d k
\end{array}
$$

Derivation of $\psi_{\lambda}(2 / 2)$

- switch to complex functions: $u=\operatorname{Im} F$,

$$
\begin{array}{rlr}
F(x+i y)= & \int_{0}^{\infty} w(k) e^{k \lambda(x+i y)} d k & \text { for } x \leq 0, y \geq 0 \\
F(x+i y)= & e^{\lambda i(x+i y)+i \vartheta} \quad \text { for } x \leq 0, y \geq 0 \\
& -\int_{-\infty}^{0} w(k) e^{k \lambda(x+i y)-i \arctan k} d k
\end{array}
$$

- both formulas must agree on $x=0, y \geq 0$;
- for $y \geq 0$,

$$
\begin{aligned}
\int_{0}^{\infty} w(k) e^{i k \lambda y} d k= & e^{-\lambda y+i \vartheta} \\
& -\int_{-\infty}^{0} w(k) e^{i k \lambda y-i \arctan k} d k
\end{aligned}
$$

- $w(k) e^{i \arctan k-}$ has Fourier transform $e^{s+i \vartheta}$ for $s \leq 0$;
- $w(k)$ is real for all k;
- solve Riemann-Hilbert problem to get the formula for w;
- only for $\vartheta=\frac{\pi}{8}$ the solution u is bounded.

