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Linear water waves

Assumptions

fluid is ideal (inviscid, incompressible, heavy)

no surface tension

oscillations are small

motion is irrotational

A non-linear wave A more linear wave
(www.surftravelcompany.com/big-wave-pics/mavericks.jpg) (art4linux.org/system/files/water-waves-1600.jpg)
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Three-dimensional sloshing (1/2)

Velocity at time t is irrotational:

~vt (x , y , z) = ∇ut (x , y , z).

ut — velocity potential

The water is incompressible, so div~vt = 0, or

∆ut = 0 in the water.

Under the ice ~vt is tangent to the surface, so
∂
∂n ut = 0.

On the free surface

g ∂
∂n ut = ∂2

∂t2 ut .



Three-dimensional sloshing (2/2)

Harmonic oscilations:

ut (x , y , z) = u(x , y , z) cos(ωt).

Sloshing problem:

∆u = 0 inside,
∂
∂n u = 0 at the fixed boundary,
∂
∂n u = λu on the free surface,

with spectral parameter λ = ω2

g .

Various types of containers have been studied.



Two-dimensional sloshing

Two-dimensional sloshing problem:

∆u(x , y) = 0 inside,
∂
∂n u(x , y) = 0 at the fixed boundary,
∂
∂n u(x , y) = λu(x , y) on the free surface.

This corresponds to 3-D oscillations not depending on z.

In half-plane with semi-infinite dock:

∆u(x , y) = 0 for x ∈ R, y > 0,
∂
∂y u(x , 0) = 0 for x ≤ 0,
∂
∂y u(x , 0) = −λu(x , y) for x > 0.



History in a nutshell

Sloshing problem was studied by:

Euler (1761), Poisson (1816 and 1828),
Green (1838 and 1842), Kelland (1840–1844),
Airy (1845), Stokes (1846),
Ostrogradsky (1862), Rayleigh (1876 and 1899),
Kirchhoff (1879), Greenhill (1887),
Macdonald (1894 and 1896), Chrystal (1905 and 1906),
Poincaré (1910), Hadamard (1910 and 1916).

Sloshing in half-plane with semi-infinite dock:

Friedrichs, Lewy (1947), Holford (1964).

See also: Chakrabarti, Mandal, Rupanwita Gayen, The dock problem revisited (2006)



Cauchy semigroup

If u(x , y) is harmonic in {y ≥ 0}, then

u(x , y) = 1
π

∫
y

y2+(x−z)2 u(z, 0)dz.

Hence u(·, y) = Py u(·0), where

Py f (x) = 1
π

∫
y

y2+(x−z)2 f (z)dz

is the Cauchy semigroup (or Poisson semigroup).

Furthermore,

∂
∂n u(·, 0) = − ∂

∂y u(·, 0) = − lim
y↘0

Py u(·, 0)− u(·, 0)

y
= −Au(·, 0),

where

Af (x) = −
√
− d2

dx2 f (x) = 1
π

∫
f (z)−f (x)
(z−x)2 dz.



Two-dimensional sloshing revisited

Two-dimensional sloshing problem
in half-plane with semi-infinite dock:

∆u(x , y) = 0 for x ∈ R, y > 0,
∂
∂y u(x , 0) = 0 for x ≤ 0,
∂
∂y u(x , 0) = −λu(x , y) for x > 0.

Equivalently: u(x , y) = Pyψ(x), where

Aψ(x) = 0 for x ≤ 0,

Aψ(x) = −λψ(x) for x > 0.



Cauchy process (1/2)

Pt are transition operators of the Cauchy process Xt .
A is the infinitesimal generator of Xt .

Xt is the Lévy process with Lévy measure 1
π

1
x2 dx .

(no Gaussian part, no drift)

Xt is the symmetric
1-stable process.

(unique up to scaling)

Sample path of the Cauchy process



Cauchy process (2/2)(
B1(s), B2(s)

)
— 2-D Brownian motion

τt = inf {s : B1(s) ≥ t}
Xt = B2(τt ) — Cauchy process



Killed semigroup

Let D = (0,∞).

Define the first exit time:

τD = inf
{

t ≥ 0 : Xt /∈ D
}

.

Transition operators of the killed process:

PD
t f (x) = Ex[f (Xt ) ; t < τD

]
.

Question
What are the eigenvalues/eigenfunctions of PD

t ?

What is the spectral representation of PD
t ?



The two problems

Sloshing problem — for a kind of reflected process:

∆u(x , y) = 0, Aψ(x) = 0 for x ≤ 0,
∂
∂y u(x , 0) = 0 for x ≤ 0. Aψ(x) = −λψ(x) for x > 0.
∂
∂y u(x , 0) = −λu(x , 0) for x > 0

Explicit solution — Friedrichs, Levy, 1947.

Eigenfunctions of PD
t — for the killed process:

ψ(x) = 0 for x ≤ 0, ∆u(x , y) = 0
Aψ(x) = −λψ(x) for x > 0. u(x , 0) = 0 for x ≤ 0,

∂
∂y u(x , 0) = −λu(x , 0) for x > 0.

Explicit solution — TK+MK+JM+AS, 2009.

u(x , y) = Pyψ(x)



Main result (1/3)

Graph of r(x) = sin(x + π
8 )− ψ1(x)Graph of ψ1(x)

Theorem (TK+MK+JM+AS)

The eigenfunctions of PD
t are given by

ψλ(x) = sin(λx + π
8 )− r(λx),

r(x) =

√
2

2π

∫ ∞
0

t
1 + t2 exp

(
−1
π

∫ ∞
0

log(t + s)

1 + s2 ds
)

e−txdt .

D = (0,∞)



Main result (1/3)

Theorem (TK+MK+JM+AS)

The eigenfunctions of PD
t are given by

ψλ(x) = sin(λx + π
8 )− r(λx),

r(x) =

√
2

2π

∫ ∞
0

t
1 + t2 exp

(
−1
π

∫ ∞
0

log(t + s)

1 + s2 ds
)

e−txdt .

Fact

The eigenfunctions of the semigroup P̃D
t of killed Brownian motion in

(0,∞) are given by

ψ̃λ(x) = sin(λx).

D = (0,∞)



Main result (2/3)

Theorem (TK+MK+JM+AS)

Spectral representation of PD
t is given by Π : L2(D)→ L2((0,∞))

Πf (λ) =

√
2
π

∫ ∞
0

f (x)ψλ(x)dx .

We have

Π(PD
t f )(λ) = e−λt Πf (λ),

‖Πf‖2 = ‖f‖2, (Plancherel’s theorem)

Π(Πf ) = f . (inversion formula)

Fact
Spectral representation of P̃D

t is given by the Fourier sine transform

Π̃f (λ) =

√
2
π

∫ ∞
0

f (x)ψ̃λ(x)dx .

Π̃(P̃D
t f )(λ) = e−λ

2 t Π̃f (λ),

‖Π̃f‖2 = ‖f‖2, (Plancherel’s theorem)

Π̃(Π̃f ) = f . (inversion formula)

ψ̃λ(x) = sin(λx)

D = (0,∞)



Main result (3/3)
Let pD

t (x , y) be the kernel of PD
t .

Theorem (TK+MK+JM+AS)

pD
t (x , y) =

1
π

t
t2 + (x − y)2 −

1
xy

∫ t

0

f ( s
x )f ( t−s

y )
s
x + t−s

y

ds

with f (s) =
1
π

s
1 + s2 exp

(
1
π

∫ ∞
0

log(s + w)

1 + w2 dw
)

.

Px (τD ∈ dt) =
1
π

x
t2 + x2 exp

(
1
π

∫ ∞
0

log( t
x + w)

1 + w2 dw

)
dt .

Proof.
pD

t (x , y) =
2
π

∫ ∞
0

e−λtψλ(x)ψλ(y)dλ,

Px (τD > t) =

∫
D

pD
t (x , y)dy .

D = (0,∞)



Proof of spectral representation theorem

Πf (λ) =
√

2
π

∫ ∞
0

f (x)ψλ(x)dx

=
√

2
π

∫ ∞
0

f (x) sin(λx + π
8 )dx −

√
2
π

∫ ∞
0

f (x)r(λx)dx .

Π : L2(D)→ L2(D) is bounded
(Hardy-Hilbert inequality);

supp f ∩ supp g = ∅ implies 〈Πf , Πg〉 = 0
(eigenfunctions are orthogonal);

A 7→ 〈Π1A, Π1A〉 is a measure;

it scales well, so it is Lebesgue, up to a constant;

Π is unitary, up to a constant;

the constant is one
(by considering 1(1,1+ε)).



Derivation of ψλ (1/2)

Problem:

(1) ∆u(x , y) = 0

(2) ∂
∂y u(x , 0) = 0 for x ≤ 0,

(3) ∂
∂n u(x , 0) = −λu(x , 0) for x > 0;

ekλx sin(kλy) satsifies (1) and (2),
ekλx sin(kλy − arctan k) satisfies (1) and (3),
e−λy sin(λx + ϑ) satisfies (1) and (3);

try the following form of the solution

u(x , y) =
∫ ∞

0
w(k)ekλx sin(kλy)dk for x ≤ 0, y ≥ 0,

u(x , y) = e−λy sin(λx + ϑ) for x ≤ 0, y ≥ 0

−
∫ 0

−∞w(k)ekλx sin(kλy − arctan k)dk ;



Derivation of ψλ (2/2)

switch to complex functions: u = ImF ,

F (x + iy) =
∫ ∞

0
w(k)ekλ(x+iy)dk for x ≤ 0, y ≥ 0,

F (x + iy) = eλi(x+iy)+iϑ for x ≤ 0, y ≥ 0

−
∫ 0

−∞w(k)ekλ(x+iy)−i arctan k dk ;

both formulas must agree on x = 0, y ≥ 0;

for y ≥ 0,∫ ∞
0

w(k)eikλy dk = e−λy+iϑ

−
∫ 0

−∞w(k)eikλy−i arctan k dk ;

w(k)e i arctan k− has Fourier transform es+iϑ for s ≤ 0;

w(k) is real for all k ;

solve Riemann-Hilbert problem to get the formula for w ;

only for ϑ = π
8 the solution u is bounded.
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