Boundary Harnack inequality for stable processes on the Sierpiński gasket

Mateusz Kwaśnicki mateusz.kwasnicki@pwr.wroc.pl

Institute of Mathematics and Computer Science Wrocław University of Technology

Based on:

• K. Kaleta, MK, Boundary Harnack inequality for α -harmonic functions on the Sierpiński gasket, preprint

•
$$(\beta_t)$$
 — diffusion process on SG

•
$$d_w = \frac{\log 5}{\log 2} \approx 2.322$$
 — walk dimension

•
$$(\beta_t)$$
 is d_w -stable

$$\left(2\beta_{t}\right) \stackrel{D}{=} \left(\beta_{2^{d_{w}}t}\right)$$

•
$$(\eta_t)$$
 — $\frac{\alpha}{d_w}$ -stable subordinator (increasing jump process, $\alpha \in (0, d_w)$)

•
$$(X_t) = (\beta_{\eta_t})$$
 — α -stable process $(2X_t) \stackrel{D}{=} (X_{2^{\alpha}t})$

$$(2^{\alpha}t)$$

 Δ — Kigami Laplacian on SG, infinitesimal generator of (β_t)

Limit of rescaled discrete Laplacians

$$\Delta_n f(x) = \frac{f(x_1) + f(x_2) + f(x_3) + f(x_4)}{4} - f(x)$$

- Δ Laplacian on SG, infinitesimal generator of (β_t) (local, self-adjoint, negative definite)

•
$$-(-\Delta)^{\alpha/d_w}$$
 — fractional Laplacian, inf. gen. of (X_t)

 $-(-\Delta)^{\alpha/d_w}f(x) = \lim_{t \to 0} \frac{\mathbf{E}^x f(X_t) - f(x)}{t}$

 $\nu(x,y)\,\mu(dy) = \lim_{t \to 0} \frac{\mathbf{P}^{\mathsf{x}}(X_t \in dy)}{t}$

 $= PV \int (f(y) - f(x)) \nu(x, y) \mu(dy)$

 $\approx C |x-y|^{-d-\alpha} \mu(dy)$

$$-(-\Delta)^{\alpha/d_w}$$
 — fractional Laplacian, inf. gen. of (X_t) (non-local, self-adjoint, negative definite)

- Δ Laplacian on SG, infinitesimal generator of (β_t)

•
$$\Delta^{lpha/d_w}$$
 — fractional Laplacian, inf. gen. of (X_t)

(non-local, self-adjoint, negative definite)

$$E \times f(X) = f(X)$$

(non-local, self-adjoint, negative definite)
$$\mathbf{F}^{x}f(X_{t}) = f(x)$$

 $\nu(x,y)\,\mu(dy) = \lim_{t \to 0} \frac{\mathbf{P}^{\mathsf{x}}(X_t \in dy)}{t}$

- $\Delta^{\alpha/d_w} f(x) = \lim_{t \to 0} \frac{\mathbf{E}^x f(X_t) f(x)}{t}$

 $= PV \int (f(y) - f(x)) \nu(x, y) \mu(dy)$

 $\approx C |x-y|^{-d-\alpha} \mu(dy)$

- (local, self-adjoint, negative definite)

$D \subseteq SG$ — open

Definition

A function $f: D \to [0, \infty)$ is said to be harmonic in D if

$$\Delta f(x) = 0 \qquad \text{for } x \in D$$

Equivalently,

$$f(x) = \mathbf{E}^{x} f(\beta(\tau_{B}))$$
 for $x \in B$, $\overline{B} \subseteq D$

 $(\tau_B$ — first exit time from B)

$D \subseteq SG$ — open

Definition

A function $f: \mathrm{SG} \to [0, \infty)$ is said to be α -harmonic in D if

$$\Delta^{\alpha/d_w} f(x) = 0$$
 for $x \in D$

Equivalently,

$$f(x) = \mathbf{E}^x f(X(\tau_B))$$
 for $x \in B$, $\overline{B} \subseteq D$

 $(\tau_B$ — first exit time from B)

Uniform boundary Harnack inequality (UBHI)

Let $\alpha < 1$

$$\frac{f(x)}{g(x)} \asymp C(\alpha) \frac{f(y)}{g(y)}$$
 for $x, y \in D \cap B\left(x_0, \frac{r}{2}\right)$

for all x_0, r, D and all f, g nonnegative, α -harmonic in D and vanishing in $B(x_0, r) \setminus D$.

Uniform boundary Harnack inequality (UBHI)

Let $\alpha < 1$

$$\frac{f(x)}{g(x)} \asymp C(\alpha) \frac{f(y)}{g(y)}$$
 for $x, y \in D \cap B\left(x_0, \frac{r}{2}\right)$

for all x_0, r, D and all f, g nonnegative, α -harmonic in D and vanishing in $B(x_0, r) \setminus D$.

UBHI in \mathbf{R}^d

K. Bogdan, T. Kulczycki, MK (2008)

Tools:

- cut-off function
- estimates on exit distribution from balls

Cut-off function

A function f such that

•
$$f(x) = 1$$
 for $x \in B(x_0, \frac{1}{2}r)$

•
$$f(x) = 0$$
 for $x \notin B(x_0, r)$

• $\Delta^{\alpha/d_w} f$ is bounded

Cut-off function

Splines on fractals (R.S. Strichartz, M. Usher)

Estimates on exit distribution from balls

(K. Bogdan, A. Stós, P. Sztonyk)

- Does (X_t) hit the boundary of $B(x_0, r)$ on exit?
 - $\partial B(x_0, r)$ is generically (d-1)-dimensional (product formula)
 - (d-1)-dimensional object is polar if lpha < 1
 - \bullet (X_t) never hits polar sets

Estimates on exit distribution from balls

(K. Bogdan, A. Stós, P. Sztonyk)

- Does (X_t) hit the boundary of $B(x_0, r)$ on exit?
 - $\partial B(x_0, r)$ is generically (d-1)-dimensional (product formula)
 - (d-1)-dimensional object is polar if $\alpha < 1$
 - \bullet (X_t) never hits polar sets
- Asymptotics of distribution density near boundary
 - Ikeda-Watanabe formula / Dynkin formula
 - ullet rough estimate of Green function for lpha < 1