# **Bell-shaped functions**

### Mateusz Kwaśnicki

Wrocław University of Science and Technology, Poland mateusz.kwasnicki@pwr.edu.pl

Karlovasi, July 19, 2019

Introduction

# A function f is bell-shaped if

- $f \rightarrow 0$  at  $\pm \infty$ ,
- $f^{(n)}$  has n zeroes n = 0, 1, 2, ...

Introduction

A function f is bell-shaped if

- f o 0 at  $\pm \infty$ ,
- $f^{(n)}$  has n zeroes n = 0, 1, 2, ...

### Remark

If  $f \to 0$  at  $\pm \infty$ , then  $f^{(n)}$  has no less that n zeroes.

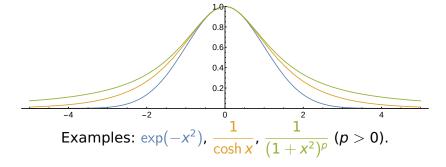
Introduction

A function f is bell-shaped if

- f o 0 at  $\pm \infty$ ,
- $f^{(n)}$  has n zeroes n = 0, 1, 2, ...

### Remark

If  $f \to 0$  at  $\pm \infty$ , then  $f^{(n)}$  has no less that n zeroes.



0

Describe the class of bell-shaped functions.

#### Problem Problem

Introduction

Describe the class of bell-shaped functions.

### Talk based on:



A new class of bell-shaped functions Trans. AMS, in press



MK, T. Simon

Characterisation of the class of bell-shaped functions

Introduction

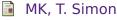
Describe the class of bell-shaped functions.

### Talk based on:



A new class of bell-shaped functions

Trans. AMS, in press



Characterisation of the class of bell-shaped functions

I learned about the bell-shape from Thomas Simon.

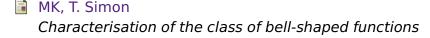
Introduction

Describe the class of bell-shaped functions.

### Talk based on:



A new class of bell-shaped functions Trans. AMS, in press



I learned about the bell-shape from Thomas Simon.

Alexandre Eremenko listed important references at MathOverflow.

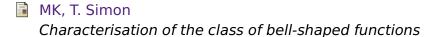
Introduction

Describe the class of bell-shaped functions.

### Talk based on:



A new class of bell-shaped functions Trans. AMS, in press



I learned about the bell-shape from Thomas Simon.

Alexandre Eremenko listed important references at MathOverflow.

Thank you, Thomas!

# Simpler Problem

Describe functions f such that  $f^{(n)}$  have no zeroes.

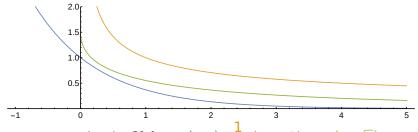
### Simpler Problem

Describe functions f such that  $f^{(n)}$  have no zeroes.

#### Definition

A function f is completely monotone ( $\mathfrak{CM}$ )

if 
$$(-1)f^{(n)} \ge 0$$
 for  $n = 0, 1, 2, ...$ 



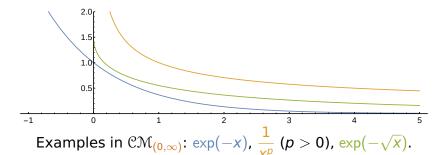
Examples in  $\mathbb{CM}$ :  $\exp(-x)$ ,  $\frac{1}{x^p}$  (p > 0),  $\exp(-\sqrt{x})$ .

### Simpler Problem

Describe functions f such that  $f^{(n)}$  have no zeroes.

#### Definition

A function f is completely monotone on D ( $\mathcal{CM}_D$ ) if  $(-1)f^{(n)}\geqslant 0$  in D for  $n=0,1,2,\ldots$ 



A function f is absolutely monotone on D ( $\mathcal{AM}_D$ ) if  $f^{(n)} \geqslant 0$  in D for n = 0, 1, 2, ...

#### Fact

f(x) is  $\mathcal{CM} \iff f(-x)$  is  $\mathcal{AM}$ .

A function f is absolutely monotone on D ( $\mathcal{AM}_D$ ) if  $f^{(n)} \geqslant 0$  in D for n = 0, 1, 2, ...

#### Fact

$$f(x)$$
 is  $\mathbb{CM} \iff f(-x)$  is  $\mathcal{AM}$ .

#### **Fact**

$$f^{(n)}$$
 have no zeroes  $\iff \pm f \in \mathcal{AM}$  or  $\pm f \in \mathcal{CM}$ .

A function f is absolutely monotone on D ( $\mathcal{AM}_D$ ) if  $f^{(n)} \geqslant 0$  in D for n = 0, 1, 2, ...

#### Fact

$$f(x)$$
 is  $\mathbb{CM} \iff f(-x)$  is  $\mathcal{AM}$ .

#### **Fact**

$$f^{(n)}$$
 have no zeroes  $\iff \pm f \in \mathcal{AM} \text{ or } \pm f \in \mathcal{CM}.$ 

### Theorem (Bernstein, 1928)

$$f \in \mathcal{CM}_{(0,\infty)} \iff f(x) = \int_{[0,\infty)} e^{-sx} \mu(dx).$$

There are no bell-shaped functions in a finite interval.

There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930–48)

Pólya frequency functions, if smooth, are bell-shaped.

There are no bell-shaped functions in a finite interval.

# Theorem (Schoenberg, 1930–48)

Pólya frequency functions, if smooth, are bell-shaped.

# <del>Theorem</del> (Gawronski, 1984)

Stable densities are bell-shaped...

There are no bell-shaped functions in a finite interval.

# Theorem (Schoenberg, 1930–48)

Pólya frequency functions, if smooth, are bell-shaped.

# Theorem (Gawronski, 1984)

Stable densities are bell-shaped if  $\alpha=2,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\ldots$ 

There are no bell-shaped functions in a finite interval.

# Theorem (Schoenberg, 1930-48)

Pólya frequency functions, if smooth, are bell-shaped.

### Theorem (Gawronski, 1984)

Stable densities are bell-shaped if  $\alpha=2,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots$ 

### Theorem (Simon, 2015)

Positive stable densities are bell-shaped.

There are no bell-shaped functions in a finite interval.

# Theorem (Schoenberg, 1930–48)

Pólya frequency functions, if smooth, are bell-shaped.

### Theorem (Gawronski, 1984)

Stable densities are bell-shaped if  $\alpha=2,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots$ 

### Theorem (Simon, 2015)

Positive stable densities are bell-shaped.

# Theorem (Jedidi-Simon, 2015)

1-D diffusion hitting time densities are bell-shaped.

A function f has at least n sign changes  $(\mathcal{V}(f) \geqslant n)$  if

$$f(x_0), f(x_1), f(x_2), \dots, f(x_n)$$
 have alternating signs

for some  $x_0 < x_1 < x_2 < ... < x_k$ .

A function f has at least n sign changes  $(\mathcal{V}(f) \geqslant n)$  if

$$f(x_0), f(x_1), f(x_2), \dots, f(x_n)$$
 have alternating signs

for some  $x_0 < x_1 < x_2 < ... < x_k$ .

#### Definition

A probability density function f is a variation diminishing kernel if

$$\mathcal{V}(f*g) \leqslant \mathcal{V}(g)$$

for every bounded g.

A function f is a Pólya frequency function ( $\mathcal{PFF}$ ) if it is a convolution of a Gaussian and countably many densities of centred  $\pm$ exponential distributions.

A function f is a Pólya frequency function (PFF) if it is a convolution of a Gaussian and countably many densities of centred  $\pm$ exponential distributions.

 $\delta_0$  allowed!

A function f is a Pólya frequency function ( $\mathcal{PFF}$ ) if it is a convolution of a Gaussian and countably many densities of centred  $\pm$ exponential distributions.

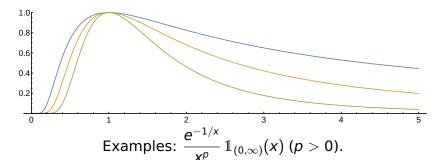
 $\delta_0$  allowed!

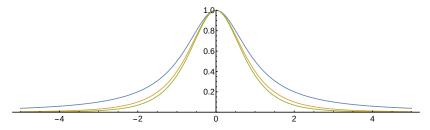
# Theorem (Schoemberg, 1930-48)

 $f \in \mathcal{PFF} \iff f$  is a variation diminishing kernel.

A smooth function  $f \ge 0$  is bell-shaped ( $\mathfrak{BS}$ ) if

- f o 0 at  $\pm \infty$ ,
- $V(f^{(n)}) = n \text{ for } n = 0, 1, 2, ...$

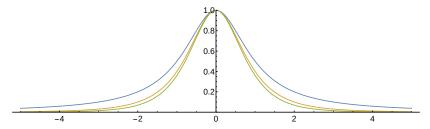




$$f(x) = \frac{1}{1+x^2}$$

• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$

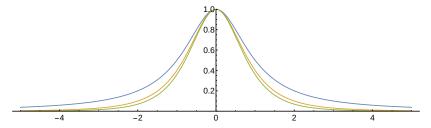
• 
$$f(x) = \frac{1}{1+x^2}$$
  
•  $g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$   
•  $h(x) = \frac{1}{1+x^2} \frac{1}{4+x^2} \frac{1}{9+x^2}$ 



• 
$$f(x) = \frac{1}{1+x^2}$$
 is bell-shaped;

• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$

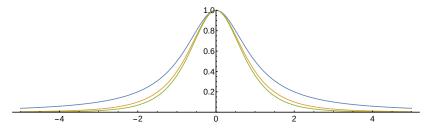
• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$
  
•  $h(x) = \frac{1}{1+x^2} \frac{1}{4+x^2} \frac{1}{9+x^2}$ 



• 
$$f(x) = \frac{1}{1+x^2}$$
 is bell-shaped;

• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$
 is bell-shaped;

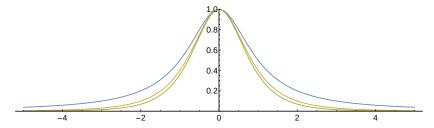
• 
$$h(x) = \frac{1}{1+x^2} \frac{1}{4+x^2} \frac{1}{9+x^2}$$



• 
$$f(x) = \frac{1}{1+x^2}$$
 is bell-shaped;

• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$
 is bell-shaped;

• 
$$h(x) = \frac{1}{1+x^2} \frac{1}{4+x^2} \frac{1}{9+x^2}$$
 is not bell-shaped



• 
$$f(x) = \frac{1}{1+x^2}$$
 is bell-shaped;

• 
$$g(x) = \frac{1}{1+x^2} \frac{1}{4+x^2}$$
 is bell-shaped;

• 
$$h(x) = \frac{1}{1+x^2} \frac{1}{4+x^2} \frac{1}{9+x^2}$$
 is not bell-shaped:

$$\mathcal{V}(h^{(n)}) = n \text{ for } n = 0, 1, 2, \dots, 56, \text{ but } \mathcal{V}(h^{(57)}) = 61.$$

A function or a measure  $f \geqslant 0$  is weakly bell-shaped ( $\overline{\mathcal{BS}}$ ) if f \* g is bell-shaped for any Gaussian g.

#### **Fact**

$$\mathcal{BS} = \overline{\mathcal{BS}} \cap \mathcal{C}^{\infty}$$
.

A function or a measure  $f \geqslant 0$  is weakly bell-shaped ( $\overline{\mathcal{BS}}$ ) if f \* g is bell-shaped for any Gaussian g.

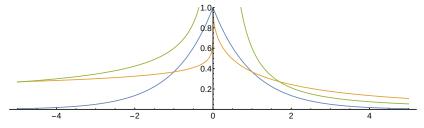
### **Fact**

$$\mathcal{BS} = \overline{\mathcal{BS}} \cap \mathcal{C}^{\infty}$$
.

$$g\in \operatorname{\mathcal{PFF}}$$

A function f is  $\mathcal{AM}$ -then- $\mathcal{CM}$  ( $\mathcal{AM}$ - $\mathcal{CM}$ ) if

- $f \in \mathcal{AM}_{(-\infty,0)}$  and  $f \in \mathcal{CM}_{(0,\infty)}$ ,
- $f \to 0$  at  $\pm \infty$ .

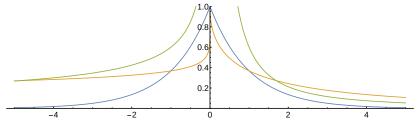


Sample  $\mathcal{AM}\text{-}\mathcal{CM}$  functions.

A function f is AM-then-CM (AM-CM) if

- $f \in \mathcal{AM}_{(-\infty,0)}$  and  $f \in \mathcal{CM}_{(0,\infty)}$ ,
- $f \to 0$  at  $\pm \infty$ .

atom at 0 allowed!



Sample  $\mathcal{AM}\text{-}\mathcal{CM}$  functions.

 $\mathcal{AM}\text{-}\mathcal{CM}\subseteq\overline{\mathcal{BS}}$ 

 $\mathcal{AM}$ - $\mathcal{CM} \subseteq \overline{\mathcal{BS}}$ 

Corollary (K, 2019)

 $\mathcal{AM}\text{-}\mathcal{CM}*\mathcal{PFF}\subset\overline{\mathcal{BS}}$ 

$$\mathcal{AM}\text{-}\mathcal{CM}\subseteq\overline{\mathcal{BS}}$$

Corollary (K, 2019)

$$\mathcal{AM}$$
- $\mathcal{CM} * \mathcal{PFF} \subseteq \overline{\mathcal{BS}}$ 

The class AM-CM \* PFF includes:

all previously known bell-shaped functions;

$$AM$$
- $CM \subseteq \overline{BS}$ 

# Corollary (K, 2019)

$$\mathcal{AM}$$
- $\mathcal{CM} * \mathcal{PFF} \subseteq \overline{\mathcal{BS}}$ 

The class AM-CM \* PFF includes:

- all previously known bell-shaped functions;
- stable distributions,

$$AM$$
- $CM \subseteq \overline{BS}$ 

# Corollary (K, 2019)

$$\mathcal{AM}$$
- $\mathcal{CM} * \mathcal{PFF} \subseteq \overline{\mathcal{BS}}$ 

#### The class AM-CM \* PFF includes:

- all previously known bell-shaped functions;
- stable distributions,
- extended generalised gamma convolutions ( $\mathcal{EGGC}$ ).

#### Definition (de Finetti, 1929)

A probability density function f is infinitely divisible ( $\mathfrak{ID}$ ) if it is the p.d.f. of  $X_1$  for some Lévy process  $(X_t)$ .

A probability density function f is infinitely divisible ( $\mathfrak{ID}$ ) if it is the p.d.f. of  $X_1$  for some Lévy process  $(X_t)$ .

# Theorem (Lévy, 1937; Khintchine, 1938)

A Lévy process  $(X_t)$  is completely characterised by the Gaussian coefficients a and b, and the Lévy measure  $\nu$ .

#### Definition (de Finetti, 1929)

A probability density function f is infinitely divisible ( $\mathfrak{ID}$ ) if it is the p.d.f. of  $X_1$  for some Lévy process  $(X_t)$ .

# Theorem (Lévy, 1937; Khintchine, 1938)

A Lévy process  $(X_t)$  is completely characterised by the Gaussian coefficients a and b, and the Lévy measure  $\nu$ .

## Definition (Rogers, 1983)

A Lévy process  $(X_t)$  has completlely monotone jumps if  $\nu$  has an  $\mathcal{AM}\text{-}\mathcal{CM}$  density function.

> Examples: stable Lévy processes, 'complete' subordinate Brownian motions.

Bell-shape Infinite divisibility 000000000

#### **Notation**

 $\mathfrak{ID}_{\mathcal{AM}\text{-}\mathcal{CM}} = \{\text{p.d.f.'s of } X_1 \text{ for L\'evy processes } (X_t) \}$ with completely monotone jumps \}.

#### Notation

$$\mathfrak{ID}_{\mathcal{AM} ext{-}\mathfrak{CM}} = \{ \mathsf{p.d.f.'s} \ \mathsf{of} \ X_1 \ \mathsf{for} \ \mathsf{L\'{e}vy} \ \mathsf{processes} \ (X_t) \}$$
 with completely monotone jumps $\}.$ 

#### **Notation**

 $f_{a,b,\mu}\in \mathfrak{ID}$  with Gaussian coefficients a, b, and the Lévy measure:

$$u(dz) = egin{cases} \left( \int_{(0,\infty)} \mathrm{e}^{-sz} \mu(ds) \right) dz & ext{on } (0,\infty), \ \left( -\int_{(-\infty,0)} \mathrm{e}^{-sz} \mu(ds) \right) dz & ext{on } (0,\infty), \end{cases}$$

Here  $\mu \geqslant 0$  on  $(0, \infty)$  and  $\mu \leqslant 0$  on  $(-\infty, 0)$ .

Fact

$$\mathfrak{ID}_{\mathcal{AM}\text{-}\mathfrak{CM}}=\{\mathbf{f}_{\mathsf{a},\mathsf{b},\mu}\}.$$

Fact

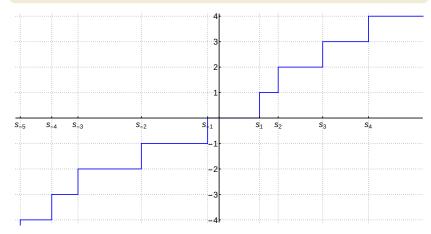
$$\mathfrak{ID}_{\mathcal{AM}\text{-}\mathfrak{CM}}=\{f_{\mathsf{a},\mathsf{b},\mu}\}.$$

#### **Fact**

The measure  $\mu$  is the boundary value of the imaginary part of the analytic extension to  $\{\operatorname{Re}\xi>0\}$  of the characteristic exponent:  $-\log\hat{f}_{a,b,\mu}$ .

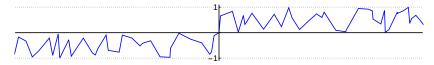
(This is why we prefer to have  $\mu \leq 0$  on  $(-\infty, 0)$ .)

$$\mathfrak{PFF} = \{ f_{a,b,\mu} : \mu(ds) = \varphi(s)ds, \varphi : \mathbb{R} \to \mathbb{Z} \text{ increasing} \}.$$



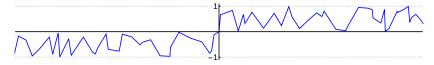
Sample  $\varphi$ .

$$\mathcal{AM}$$
- $\mathcal{CM} = \{ f_{0,0,\mu} : \mu(ds) = \varphi(s)ds, \ \varphi : \mathbb{R} \to [-1,1] \}.$ 



Sample  $\varphi$ .

$$\mathcal{AM}$$
- $\mathcal{CM} = \{ f_{0,0,\mu} : \mu(ds) = \varphi(s)ds, \ \varphi : \mathbb{R} \to [-1,1] \}.$ 

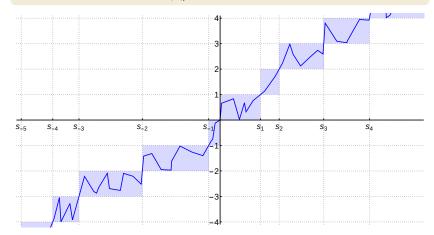


Sample  $\varphi$ .

#### **Fact**

$$f_{a_1,b_1,\mu_1} * f_{a_2,b_2,\mu_2} = f_{a_1+a_2,b_1+b_2,\mu_1+\mu_2}.$$

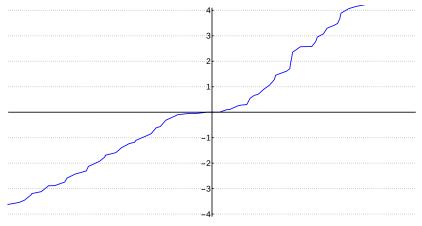
$$\mathcal{AM}$$
- $\mathcal{CM} * \mathcal{PFF} = \{ f_{a,b,\mu} : \mu(ds) = \varphi(s)ds, \varphi \text{ as below} \}.$ 



Sample  $\varphi$ .

# Definition

$$\mathcal{EGGC} = \{f_{a,b,\mu} : \mu(ds) = \varphi(s)ds, \varphi \text{ increasing}\}.$$



Sample  $\varphi$ .

# Summary

 $\{\mathsf{stable}\}\subseteq \mathcal{EGGC}\subseteq (\mathcal{AM}\text{-}\mathcal{CM}*\mathcal{PFF})\subseteq\overline{\mathcal{BS}}.$ 

## Summary

Introduction

$$\{\mathsf{stable}\}\subseteq \mathsf{EGGC} \ {\buildrel \subseteq} \ (\mathcal{AM}\text{-}\mathcal{CM}*\mathcal{PFF}) \ {\buildrel \subseteq} \ \overline{\mathcal{BS}}.$$

#### Theorem (K, Simon, 2019+)

$$(AM-CM*PFF) = \overline{BS}.$$

A complete surprise to me!

# Corollary

If  $f \in \overline{BS}$  is a p.d.f., then  $f \in \mathcal{ID}_{AM-CM}$ .

# Corollary

If  $f \in \overline{BS}$  is a p.d.f., then  $f \in \mathfrak{ID}_{AM-CM}$ .

#### Corollary

Every  $f \in \overline{\mathcal{BS}}$  is real-analytic in  $\mathbb{R} \setminus \{b\}$  for some b (and it extends to an analytic function in  $\mathbb{C} \setminus (i\mathbb{R} + b)$ ).

# Corollary

If  $f \in \overline{\mathbb{BS}}$  is a p.d.f., then  $f \in \mathfrak{ID}_{AM-\mathfrak{CM}}$ .

#### Corollary

Every  $f \in \overline{\mathcal{BS}}$  is real-analytic in  $\mathbb{R} \setminus \{b\}$  for some b (and it extends to an analytic function in  $\mathbb{C} \setminus (i\mathbb{R} + b)$ ).

## Corollary

 $\{(X_t) \text{ L\'evy} : X_t \in \overline{\mathbb{BS}} \text{ for } t > 0\} = \{(X_t) \text{ L\'evy} : X_1 \in \mathcal{EGGC}\}.$ 

Introduction

#### Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$  is a p.d.f., then

$$\lim_{n\to\infty}\frac{1}{n}\{\text{zeroes of }f^{(n)}\}=\{1/s_k:k\in\mathbb{Z}\setminus\{0\}\}.$$

#### Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$  is a p.d.f., then

$$\lim_{n\to\infty}\frac{1}{n}\{\text{zeroes of }f^{(n)}\}=\{1/s_k:k\in\mathbb{Z}\setminus\{0\}\}.$$

## Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$ , then

$$f + pf' \in \mathbb{BS} \iff p \in \{1/s_k : k \in \mathbb{Z} \setminus \{0\}\} \cup \{0\}.$$

### Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$  is a p.d.f., then

$$\lim_{n\to\infty}\frac{1}{n}\{\text{zeroes of }f^{(n)}\}=\{1/s_k:k\in\mathbb{Z}\setminus\{0\}\}.$$

# Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$ , then

$$f + pf' \in \mathcal{BS} \iff p \in \{1/s_k : k \in \mathbb{Z} \setminus \{0\}\} \cup \{0\}.$$

minor cheating

#### Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$  is a p.d.f., then

$$\lim_{n\to\infty}\frac{1}{n}\{\text{zeroes of }f^{(n)}\}=\{1/s_k:k\in\mathbb{Z}\setminus\{0\}\}.$$

# Proposition (K, Simon, 2019+)

If  $f \in \mathcal{BS}$ , then

$$f + pf' \in \mathcal{BS} \iff p \in \{1/s_k : k \in \mathbb{Z} \setminus \{0\}\} \cup \{0\}.$$

minor cheating

## Corollary

$$\frac{1-2px+x^2}{(1+x^2)^2}\in \mathbb{BS}\iff p=0 \text{ or } p=\frac{1}{\pi k},\, k\in\mathbb{Z}\setminus\{0\}.$$