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A function f is bell-shaped if

e f— 0 at xoo,
e f(") hasnzeroesn=0,1,2,...
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A function f is bell-shaped if

e f— 0 at xoo,
e f(") hasnzeroesn=0,1,2,...

If f — 0 at +o00, then f(" has no less that n zeroes.
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A function f is bell-shaped if
e f— 0at +oo,

e f(") hasnzeroesn=0,1,2,...

Remark

If f — 0 at +o00, then f(" has no less that n zeroes.

-4 -2 0 2 4

B (p > 0).

Examples: eXp(*XZ), , m
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Describe the class of bell-shaped functions.
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Problem
Describe the class of bell-shaped functions.

Talk based on:

[ MK
A new class of bell-shaped functions
Trans. AMS, in press

[ MK, T. Simon
Characterisation of the class of bell-shaped functions



Introduction Complete monotonicity History Pélya frequency functions Bell-shape Infinite divisibility
oe oo o 00 00000 0000000000

Problem
Describe the class of bell-shaped functions.

Talk based on:

[ MK
A new class of bell-shaped functions
Trans. AMS, in press

[ MK, T. Simon
Characterisation of the class of bell-shaped functions

| learned about the bell-shape from Thomas Simon.
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Describe the class of bell-shaped functions.

Talk based on:

[ MK
A new class of bell-shaped functions
Trans. AMS, in press

[ MK, T. Simon
Characterisation of the class of bell-shaped functions

| learned about the bell-shape from Thomas Simon.

Alexandre Eremenko listed important references
at MathOverflow.
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Describe the class of bell-shaped functions.

Talk based on:

[ MK
A new class of bell-shaped functions
Trans. AMS, in press

[ MK, T. Simon
Characterisation of the class of bell-shaped functions

| learned about the bell-shape from Thomas Simon.

Alexandre Eremenko listed important references
at MathOverflow.

Thank you, Thomas!
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Simpler Problem

Describe functions f such that f(") have no zeroes.
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Simpler Problem

Describe functions f such that f(") have no zeroes.
Definition
A function f is completely monotone (€M)

if (—1)f(" >0 forn=0,1,2,...

-1 0 1 2 3 4 5

Examples in CM: exp(—x), — (p > 0), exp(—+/x).
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Simpler Problem

Describe functions f such that f(") have no zeroes.
Definition
A function f is completely monotone on D (CM)p)

if (—~1)f(" >0inDforn=0,1,2,...

-1 0 1 2 3 4 5

Examples in €M, ) exp(—x), — (p > 0), exp(—/x).
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A function f is absolutely monotone on D (AMp)
if " >0inDforn=0,1,2,...

f(x) is CM < f(—x) is AM.
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A function f is absolutely monotone on D (AMp)
if " >0inDforn=0,1,2,...

Fact

f(x) is CM < f(—x) is AM.

Fact
f(™ have no zeroes < +f ¢ AM or +f € CM.
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A function f is absolutely monotone on D (AMp)
if " >0inDforn=0,1,2,...

f(x) is CM < f(—x) is AM.

f(™ have no zeroes < +f ¢ AM or +f € CM.

Theorem (Bernstein, 1928)

fe GM((),OO) <~ f(X f[o OO) dX)
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)

There are no bell-shaped functions in a finite interval.
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)

There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930-48)

Pélya frequency functions, if smooth, are bell-shaped.
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)

There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930-48)

Pélya frequency functions, if smooth, are bell-shaped.

Fheerer (Gawronski, 1984)

Stable densities are bell-shaped. ..
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)

There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930-48)

Pélya frequency functions, if smooth, are bell-shaped.

Theorem (Gawronski, 1984)

Stable densities are bell-shaped if « =2,1,2,2 2 2 ...

727§ ) 4
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)

There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930-48)

Pélya frequency functions, if smooth, are bell-shaped.

Theorem (Gawronski, 1984)

Stable densities are bell-shaped if « =2,1,2,2 2 2 ...

Theorem (Simon, 2015)

Positive stable densities are bell-shaped.
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Theorem (Hirschman, 1950; Schoenberg’s conjecture)
There are no bell-shaped functions in a finite interval.

Theorem (Schoenberg, 1930-48)
Pélya frequency functions, if smooth, are bell-shaped.

Theorem (Gawronski, 1984)

Stable densities are bell-shaped if « =2,1,2,2 2 2 ...

Theorem (Simon, 2015)

Positive stable densities are bell-shaped.

Theorem (Jedidi-Simon, 2015)

1-D diffusion hitting time densities are bell-shaped.
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A function f has at least n sign changes (V(f) > n) if
f(xo), f(x1),f(x2),...,f(x,) have alternating signs

forsome xp < X1 < Xy < ... < X.
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A function f has at least n sign changes (V(f) > n) if
f(xo), f(x1),f(x2),...,f(x,) have alternating signs

forsome xp < X1 < Xy < ... < X.

Definition

A probability density function f is a variation diminishing
kernel if

V(fxg) <V(9)
for every bounded g.
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Definition
A function f is a Pélya frequency function (PFF) if it is
a convolution of a Gaussian and countably many densi-

ties of centred +exponential distributions.
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[o]e] (o]e]

Definition
A function f is a Pélya frequency function (PFF) if it is
a convolution of a Gaussian.and countably many densi-

ties of centred +exponential distributions.

0o allowed!
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[o]e] (o]e]

Definition
A function f is a Pélya frequency function (PFF) if it is
a convolution of a Gaussian.and countably many densi-

ties of centred +exponential distributions.

0o allowed!

Theorem (Schoemberg, 1930-48)

f € PFF <= fis a variation diminishing kernel.



Introduction Complete monotonicity History Pélya frequency functions Bell-shape Infinite divisibility
(e]e] (o]e] [e] [e]e] @0000 0000000000

Definition
A smooth function f > 0 is bell-shaped (BS) if

e f— 0 at Loo,
e V(fM)=nforn=0,1,2,...

o

0 1 2 3 4

—-1/x
Lio,00)(X) (p > 0).

Examples:
XP
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—4 -2 0 2 4
Examples:
1
o f(xX)= ——
() 1+ x?
(x) 1 1
° =
J 1+x%4+x2
1 1 1

e h(x)

T 14X 4+x2 9+ X2
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Examples:
1
f(x) = —— is bell-shaped;
* fx) 1+ x2 P
(x) 1 1
° =
J 1+x%4+x2
1 1 1

e h(x)

T 14X 4+x2 9+ X2
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Bell-shape
0@000

Infinite divisibility
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4 -2 0 2

Examples:
1

f(x) = —— is bell-shaped;

* fx) 1+X2| P
1

e g(x) = 152 a5 2 is bell-shaped;
1 1 1

o h(x) =

1+x24+x29+x2
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—4 -2 0 2 4
Examples:
1
f(x) = —— is bell-shaped;
* fx) 1+ x? I P
1
e g(x) = 152 a5 2 is bell-shaped;
1 1
o h(x) = is not bell-shaped

1+x24+x29+x2
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Examples:

o f(x)= > is bell-shaped;

1

ll-sh

e g(x) = 12211 - is bell-shaped;

1 1
o h(x) = is not bell-shaped:

1+x24+x29+x2
V(hM) =nforn=0,1,2,...,56, but V(h®")) = 61.
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A function or a measure f > 0 is weakly bell-shaped (BS)
if f % g is bell-shaped for any Gaussian g.

BS = BS N C™.
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A function or a measure f > 0 is weakly bell-shaped (BS)
if f % g is bell-shaped for any Gaussian g.

BS = BS N C™.

g € PFF
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Definition
A function f is AM-then-CM (AM-CM) if

o f€E AM(—m,O) and f € GM(QOO).
e f— 0 at o0.

1.0,

0.6

0.4

0.2

-4 -2 0 2 4

Sample AM-CM functions.
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Definition

A function fWen-GM (AM-CM) if
o f € AM(_s,0) @and f € CM(o,c);
e f— 0 at Loo.

atom at 0 allowed!

1.0,

0.6

0.4

0.2

-4 -2 0 2 4

Sample AM-CM functions.
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Proposition (K, 2019)

AM-CM C BS
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Proposition (K, 2019)
AM-CM C BS

Corollary (K, 2019)
AM-CM * PFF C BS
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Proposition (K, 2019)
AM-CM C BS

Corollary (K, 2019)
AM-CM * PFF C BS

The class AM-CM x PFF includes:
e all previously known bell-shaped functions;
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Proposition (K, 2019)
AM-CM C BS

Corollary (K, 2019)
AM-CM * PFF C BS

The class AM-CM x PFF includes:
e all previously known bell-shaped functions;
e stable distributions,
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Proposition (K, 2019)
AM-CM C BS

Corollary (K, 2019)
AM-CM * PFF C BS

The class AM-CM x PFF includes:
e all previously known bell-shaped functions;
e stable distributions,
e extended generalised gamma convolutions (£GG0C).
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Definition (de Finetti, 1929)

A probability density function f is infinitely divisible (ID)
if it is the p.d.f. of X; for some Lévy process (X;).
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Definition (de Finetti, 1929)
A probability density function f is infinitely divisible (ID)
if it is the p.d.f. of X; for some Lévy process (X;).

Theorem (Lévy, 1937; Khintchine, 1938)

A Lévy process (X;) is completely characterised by the
Gaussian coefficients a and b, and the Lévy measure v.
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Definition (de Finetti, 1929)
A probability density function f is infinitely divisible (ID)
if it is the p.d.f. of X; for some Lévy process (X;).

Theorem (Lévy, 1937; Khintchine, 1938)

A Lévy process (X;) is completely characterised by the
Gaussian coefficients a and b, and the Lévy measure v.

Definition (Rogers, 1983)
A Lévy process (X;) has completlely monotone jumps if
v has an AM-CM density function.

Examples: stable Lévy processes,
‘complete’ subordinate Brownian motions.
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ID an-ene = {p.d.f.’s of X; for Lévy processes (X;)
with completely monotone jumps}.



Infinite divisibility
0®00000000

ID an-ene = {p.d.f.’s of X; for Lévy processes (X;)
with completely monotone jumps}.

Notation

fap,u € ID with Gaussian coefficients a, b,
and the Lévy measure:

(/(o,oo) e (ds))dz on (0, c0),
(_ /(_OOO) =z (ds))dz on (0, ),

Here ;1 > 0 on (0,00) and p < 0 on (—o0, 0).

v(dz) =
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ID ant-em = {Fappu}-
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ID ant-em = {Fappu}-

The measure p is the boundary value of
the imaginary part of
the analytic extension to {Re¢ > 0} of
the characteristic exponent: — log ﬂbyu.

(This is why we prefer to have 1 < 0 on (—o0,0).)
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Proposition
PFTF = {fap, : u(ds) = p(s)ds, ¢ : R = Z increasing}.

4

3

-2

~3

Sample .
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AM-CM = {fo0,, : p(ds) = p(s)ds, ¢ : R — [-1,1]}.
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Proposition
AM-CM = {fo0,, : p(ds) = p(s)ds, ¢ : R — [-1,1]}.

AN/ W W
NAWNT AL

Sample .

Fact

f317b1,ul * faz,bz,uz = fal+az,b1+b2,u1+u2'
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AM-CM + PFF = {fop,, : p1(ds) = ¢(s)ds, ¢ as below}.

4 v
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EGGC = {fap, : pu(ds) = p(s)ds, ¢ increasing}.
4

3

=1

=2

-3

Sample .
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{stable} C £G5C C (AM-CM * PFF) C BS.
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{stable} C £G5C C (AM-CM * PFF) C BS.

Theorem (K, Simon, 2019+)

(AM-CM * PFF) = BS.

A complete surprise to me!
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Corollary

If f € BSis a p.d.f.,, then f € ID syren.
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Corollary

If f € BSis a p.d.f.,, then f € ID syren.

Corollary

Every f € BS is real-analytic in R\ {b} for some b
(and it extends to an analytic function in C \ (/R + b)).
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Corollary

If f € BSis a p.d.f.,, then f € ID syren.

Corollary

Every f € BS is real-analytic in R\ {b} for some b
(and it extends to an analytic function in C \ (/R + b)).

Corollary
{(X¢) Lévy : X; € BS fort > 0} = {(X;) Lévy : X; € €GGC}.




Introduction Complete monotonicity History Pélya frequency functions Bell-shape Infinite divisibility
e} oo o 00 00000 000000000@

Proposition (K, Simon, 2019+)

If f € BSis a p.d.f., then

1
lim E{zeroes of (M} = {1/s, -k € Z\ {0}}.
n—oo
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Proposition (K, Simon, 2019+)

If f € BSis a p.d.f., then

lim %{zeroes of M} = {1/s, : k € Z\ {0}}.

n—oo

Proposition (K, Simon, 2019+)

If f € BS, then
f+pf eBS < pe{l/sy:keZ\{0}} U{0}.
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Proposition (K, Simon, 2019+)
If f € BSis a p.d.f., then

1
lim E{zeroes of (M} = {1/s, -k € Z\ {0}}.
n—oo

Proposition (K, Simon, 2019+)
If f € BS, then
f+pfeBS < pe{l/sy:keZ)\{0}} U{0}.

minor cheating
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Proposition (K, Simon, 2019+)
If f € BSis a p.d.f., then

1
lim E{zeroes of (M} = {1/s, -k € Z\ {0}}.
n—oo

Proposition (K, Simon, 2019+)
If f € BS, then
f+pfeBS < pe{l/sy:keZ)\{0}} U{0}.

minor cheating

Corollary

1—2px + x? 1
_ = =—,keZ\{0}.
e €EBS «<— p=0orp — ke \ {0}
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