Boundary Harnack Inequality For Jump-Type Processes

Mateusz Kwaśnicki
Polish Academy of Sciences
Wrocław University of Technology
mateusz.kwasnicki@pwr.wroc.pl

Banff, Canada, Sep 19, 2011

Some papers of R．F．Bass

围 R．F．Bass，K．Burdzy（1989）
A probabilistic proof of the boundary Harnack principle
固 R．F．Bass，K．Burdzy（1991）
A boundary Harnack principle for twisted Hölder domains
求 R．Bañuelos，R．F．Bass，K．Burdzy（1991） Hölder domains and the boundary Harnack principle
固 R．F．Bass，K．Burdzy（1993）
The Martin boundary in non－Lipschitz domains
圁 R．F．Bass，K．Burdzy（1994）
The boundary Harnack principle for non－divergence form elliptic operators

Boundary Harnack inequality (BHI)

BHI

If $f, g>0$ are harmonic in D, then:

$$
\frac{f(x)}{g(x)} \approx \frac{f\left(x_{0}\right)}{g\left(x_{0}\right)}
$$

(see figure)
False for general domains D !

- A. Ancona (1978)
B. Dahlberg (1977)
J.-M. Wu (1978): Lipschitz domains
- D.S. Jerison, C.E. Kenig (1982): NTA sets
- R.F. Bass, K. Burdzy (1991): twisted Hölder sets

BHI for probabilists

x_{t} : Brownian motion in \mathbf{R}^{d}
τ_{U} : time of first exit from U
\mathbf{P}_{x} : probability for $X_{0}=x$

BHI

$$
\frac{\mathbf{P}_{x}\left(X_{\tau_{D \cap B}} \in E_{1}\right)}{\mathbf{P}_{x}\left(X_{\tau_{D \cap B}} \in E_{2}\right)} \approx \frac{\mathbf{P}_{X_{0}}\left(X_{\tau_{D \cap B}} \in E_{1}\right)}{\mathbf{P}_{X_{0}}\left(X_{\tau_{D \cap B}} \in E_{2}\right)}
$$

(see figure)

- Laplace operator \longleftrightarrow Brownian motion
- elliptic operators \longleftrightarrow diffusion processes
- non-local operators \longleftrightarrow jump-type processes

Some more papers of R.F. Bass

R R.F. Bass (1979)
Adding and subtracting jumps from Markov processes
雷 R.F. Bass, M. Cranston (1983)
Exit times for symmetric stable processes in \mathbf{R}^{n}
R R.F. Bass (1988)
Uniqueness in law for pure jump Markov processes
國 R.F. Bass, D.A. Levin (2002)
Harnack inequalities for jump processes

- M.T. Barlow, R.F. Bass, Z.-Q. Chen, M. Kassmann Non-local Dirichlet forms and symmetric jump processes (2009)

Yet some more papers of R．F．Bass

围 M．T．Barlow，R．F．Bass（1989）
The construction of Brownian motion on the Sierpinski carpet
埥 M．T．Barlow，R．F．Bass（2000）
Divergence form operators on fractal－like domains
围 M．T．Barlow，R．F．Bass，T．Kumagai（2006） Stability of parabolic Harnack inequalities for metric measure spaces
围 R．F．Bass，K．Burdzy，Z．－Q．Chen（2008）
On the Robin problem in fractal domains
國 M．T．Barlow，R．F．Bass，T．Kumagai，A．Teplyaev Uniqueness for Brownian motion on Sierpinski carpets（2010）

Non-local BHI

BHI (for balls B^{\prime}, B and domain D)

$$
\frac{\mathbf{P}_{x}\left(X_{\tau_{D \cap B}} \in E_{1}\right)}{\mathbf{P}_{x}\left(X_{\tau_{D \cap B}} \in E_{2}\right)} \approx \frac{\mathbf{P}_{y}\left(X_{\tau_{D \cap B}} \in E_{1}\right)}{\mathbf{P}_{y}\left(X_{\tau_{D \cap B}} \in E_{2}\right)}
$$

for $x, y \in D \cap B^{\prime}, E_{1}, E_{2} \subseteq B^{C}$ (see figure)
(equivalently: comparability of X_{t}-harmonic functions)

Problems

- For which processes?
- For what domains?
- What about scale-invariance?

State of the art (1/3)

Isotropic stable processes in \mathbf{R}^{d} :

- K. Bogdan (1997)
K. Bogdan, T. Byczkowski (1999): Lipschitz domains
- R. Song, J.-M. Wu (1999):

Arbitrary domains, not scale-invariant (scale-invariant for κ-fat sets)

- K. Bogdan, T. Kulczycki, K. (2008):

Arbitrary domains

State of the art (2/3)

Non-isotropic stable processes in \mathbf{R}^{d} :

- K. Bogdan, A. Stós, P. Sztonyk (2002)
P. Sztonyk (2003):

Arbitrary domains, not scale-invariant (scale-invariant for κ-fat sets)

More or less general subordinate Brownian motions:

- T. Grzywny, M. Ryznar (2007):

Lipschitz sets

- P. Kim, R. Song, Z. Vondraček (2007, 2008, 2009): *-fat sets arbitrary domains (2011)

Sums of Brownian motion and isotropic stables:

- Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček (in press): smooth sets

State of the art (3/3)

Censored isotropic stable processes:

- K. Bogdan, K. Burdzy, Z.-Q. Chen (2003): smooth sets
- Q. Guan (arXiv): Lipschitz sets

Stable-like processes on Sierpiński gasket:

- K. Bogdan, A. Stós, P. Sztonyk (2003):
‘smooth' sets
- K. Kaleta, K. (2010): arbitrary sets, $\alpha<1$

Stable-like processes on Sierpiński carpet:

- A. Stós (2005):
‘smooth' sets

Result

Theorem (K. Bogdan, T. Kumagai, K.)
BHI holds for a Hunt process X_{t} on a metric measure space X_{t} under 4 assumptions:

- jumps of X_{t} are regular enough
- potential kernel of X_{t} is bounded away from the diagonal
- generator has rich domain
- X_{t} is doubly Feller and there is a dual process X_{t}^{*}
for arbitrary open sets
A sufficient criterion for scale-ivariance is provided

Features

- uniformity: constants do not depend on geometry!
- generality: relatively mild assumptions
- examples:
- stable-like processes in (subsets of) \mathbf{R}^{d}
- subordinate diffusions on fractals
- processed killed by multiplicative functionals
- processes with diffusion component (no scale-invariance here!)
- explicitness: good control of constants
- stability under certain perturbations

Example

Let B_{s} be the Brownian motion on the Sierpiński carpet Let Z_{t} be the α / d_{w}-stable subordinator

$$
\left(0<\alpha<d_{w}\right)
$$

Let $X_{t}=B_{Z_{t}}$
(jumping kernel: $\mathcal{v}(x, y) \approx|x-y|^{-d-\alpha}$)
Then scale-invariant BHI holds for arbitrary domains.

A priori supremum estimate

An intermediate result:
Theorem (K. Bogdan, T. Kumagai, K.) If $f \geq 0$ is X_{t}-subharmonic in B, then

$$
\sup _{B^{\prime}} f \leq C \int_{\left(B^{\prime}\right)^{c}} \nu\left(x_{0}, y\right) f(y) d y
$$

where v is the jumping kernel of X_{t}
(For example: $f(x)=\mathbf{P}_{x}\left(X_{\tau_{\text {DRB }}} \in E\right)$)

Note 2: This sup-estimate implies BHI under even milder assumptions!

Jumps

Assumption

The jumping kernel $v(x, y)$ is everywhere positive and $\nu\left(x_{1}, y\right) \approx \nu\left(x_{2}, y\right)$ when $x_{1} \approx x_{2}$ are away from y

Why? If $\mathcal{v}\left(x_{1}, y\right) \gg \nu\left(x_{2}, y\right)$, then

$$
\mathbf{P}_{x_{1}}\left(X_{\tau_{D \cap B}} \in E_{1}\right) \gg \mathbf{P}_{x_{2}}\left(X_{\tau_{D \cap B}} \in E_{1}\right)
$$

but for $E_{2}=B^{C}$,

$$
\mathbf{P}_{X_{1}}\left(X_{\tau_{D \cap B}} \in E_{2}\right) \approx \mathbf{P}_{x_{2}}\left(X_{\tau_{\text {DOB }}} \in E_{2}\right)
$$

This contradicts (BHI):

$$
\frac{\mathbf{P}_{x_{1}}\left(X_{\tau_{\text {DBB }}} \in E_{1}\right)}{\mathbf{P}_{x_{1}}\left(X_{\left.\tau_{\text {DOB }} \in E_{2}\right)}\right)} \gg \frac{\mathbf{P}_{x_{2}}\left(X_{\tau_{\text {DDB }}} \in E_{1}\right)}{\mathbf{P}_{x_{2}}\left(X_{\tau_{\text {DOB }}} \in E_{2}\right)}
$$

Potential kernel

Assumption

Green functions of balls are bounded off diagonal

Why? To eliminate partially degenerate processes, for example: sum of degenerate Brownian motion and a compound Poisson process.

Note: Brownian motion plus a compound Poisson is perfectly fine! (But (BHI) will not be scale-invariant)

Generators

Assumption

There are bump functions (for example, $C_{c}^{\infty}\left(\mathbf{R}^{d}\right)$) in the domain of the Feller generator of X_{t}

Why? Required to use Dynkin's results
Note: We don't like this assumption!
Can one do better using Dirichlet forms?

Potential theory

Assumption

- X_{t} is Feller and strong Feller
- There is a dual (\approx time-reversed) process X_{t}^{*}
- X_{t}^{*} satisfies all conditions imposed on X_{t}
- Hunt's hypothesis (H) holds true (polar = semi-polar)

Why? Required for potential-theoretic developments

Supremum estimate: idea

$$
\sup _{B^{\prime}} f \leq C \int_{\left(B^{\prime}\right)^{c}} \nu\left(x_{0}, y\right) f(y) d y
$$

- Consider potential $V(x)$ such that
- $V(x)=\infty$ for $x \notin B$
- $V(x)=0$ for $x \in B^{\prime}$
- $1 /(V(x)+1)$ is smooth
- Stop X_{t} according to $V(x)$:
- $A_{t}=\int_{0}^{t} V\left(X_{s}\right) d s$
- T - exponential variable (independent of X_{t})
- $\tau=\inf \left\{t: A_{t} \geq T\right\}$
- If f is X_{t}-subharmonic, then

$$
f(x) \leq \mathbf{E}_{\chi} f\left(X_{\tau}\right)
$$

