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Brownian motion

Source: YouTube, http://youtube.com/watch/?v=cDcprgWiQEY

• Xt is the position of the particle at time t ≥ 0

http://youtube.com/watch/?v=cDcprgWiQEY
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Brownian motion: mathematical model

Definition
The Brownian motion (BM) is a stochastic process Xt
with the following properties:
• X0 = x

• independent increments:

0 ≤ t0 < t1 < ... < tn,

⇓

Xt1 − Xt0 , Xt2 − Xt1 , ..., Xtn − Xtn−1 are independent

• stationarity: law of Xt − Xs depends only on t − s
• isotropy: law of Xt − X0 is invariant under rotations
• continuity of paths: t 7→ Xt is continuous
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Brownian motion: simulation

Source: Wikipedia, http://en.wikipedia.org/wiki/File:2D_Random_Walk_400x400.ogv

http://en.wikipedia.org/wiki/File:2D_Random_Walk_400x400.ogv
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Brownian motion and PDEs (1)

Central limit theorem
Brownian motion is a Gaussian process:
(Xt1 , Xt2 , ..., Xtn) has Gaussian distribution.

Notation
• Px, Ex correspond to process starting at x
• Ex(Z;E) =

∫

E
ZdPx

• For readability, we use both Xt and X(t)

• Components of Xt are independent
• Variance of each component is 2ct for some c > 0
• Typically, c = 1

2 , but we take c = 1
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Brownian motion and PDEs (2)

Theorem
The function:

u(t, x) = Exf (Xt)

solves the heat equation:
∂u

∂t
(t, x) = c∆u(t, x), u(0, x) = f (x)

• ∆ =

� ∂

∂x1

�2

+ ...+

� ∂

∂xd

�2
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Brownian motion and PDEs (3)

Definition
For D open, we define the first exit time:

τD = inf {t ≥ 0 : Xt /∈ D}

Theorem (Doob, Dynkin, Hunt, Feller, Kakutani, ...)

The function:
u(t, x) = Ex(f (Xt); t < τD)

solves heat equation in D with boundary condition:
∂u

∂t
(t, x) = c∆u(t, x) (t ≥ 0, x ∈ D)

u(t, x) = 0 (t ≥ 0, x ∈ ∂D)

u(0, x) = f (x) (x ∈ D)
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Lévy processes

Definition
A Lévy process is a stochastic process Xt with
the following properties:
• X0 = x

• independent increments
• stationarity
• no isotropy (though we will need it later)
• càdlàg paths: right-continuous with left limits

(instead of continuous)

• We will only study one-dimensional Lévy processes
• In dimension one, isotropy = symmetry



Brownian motion

Symmetric 1-stable process
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Lévy processes jump!
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Lévy measure
Definition
The Lévy measure ν describes intensity of jumps:

ν(B) = lim
t→0+

Px(Xt − x ∈ B)

t

Theorem

ν is a Lévy measure ⇐⇒
∫

min(1, |y|2)ν(dy) <∞

Theorem (Lévy-Ito decomposition)

Every Lévy process is a sum of:
• pure-jump process (described by the Lévy measure)

(plus compensation)

• Brownian motion (up to an affine map)
• uniform motion
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Lévy processes and non-local PDEs (1)
Theorem (a version of the Lévy-Khintchine formula)

The function:
u(t, x) = Exf (Xt)

solves a ‘heat’ equation:
∂u

∂t
(t, x) = (−A)u(t, x), u(0, x) = f (x)

for a pseudo-differential operator:
(−A)f (x) = a f ′′(x) + bf ′(x)

+

∫

(f (x+ y)− f (x)− f ′(x)y1|y|<1)ν(dy)

• a ≥ 0: d× d matrix, ‘Brownian part’
• b ∈ Rd: ‘drift’
• ν: Lévy measure, ‘jump part’
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Lévy processes and non-local PDEs (2)

Theorem
The function:

u(t, x) = Ex(f (Xt); t < τD)

solves the ‘heat’ equation in D with exterior condition:
∂u

∂t
(t, x) = (−A)u(t, x) (t ≥ 0, x ∈ D)

u(t, x) = 0 (t ≥ 0, x ∈ Dc)

u(0, x) = f (x) (x ∈ D)

• A is non-local!
• Hence Af (x) requires f to be defined everywhere

(not just in a neighbourhood of x)
• X(τD) ∈ Dc instead of X(τD) ∈ ∂D
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Transition operators
Definition
We define free transition kernel:

pt(x,A) = Px(Xt ∈ A)

and transition kernel on D:
pD
t

(x,A) = Px(Xt ∈ A; t < τD)

Definition
We define free transition operators:

Ptf (x) = Exf (Xt) =

∫

f (y)pt(x,dy)

and transition operators on D:

PD
t
f (x) = Ex(f (Xt); t < τD) =

∫

D

f (y)pD
t

(x,dy)
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Generators

• PtPsf = Pt+sf

• PD
t
PD
s
f = PD

t+s
f

Definition

• (−A)f = lim
t→0+

Ptf − f
t

(as in the ‘heat’ equation)

• (−AD)f = lim
t→0+

PD
t
f − f

t

• When f (x) = 0 in Dc, then ADf (x) = Af (x)

• A and AD have different domains
• if f ∈ Dom(AD), then f (x) = 0 in Dc

• A and AD are positive definite
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Lévy-Khintchine formula

Definition
We define the Lévy-Khintchine exponent:

Ψ(ξ) = aξ2 + ibξ+

∫

(1− e−iξy − iξy1|y|<1)ν(dy)

Theorem (Lévy-Khintchine formula)

E0e
−iξXt = e−tΨ(ξ)

dPtf (ξ) = e−tΨ(ξ)f̂ (ξ)

ÓAf (ξ) = Ψ(ξ)f̂ (ξ)

• Ψ(ξ) is our initial data:
all results will be given in terms of Ψ(ξ)
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Kernels and densities

• Often pt(x,dy) and pD
t

(x,dy) are absolutely
continuous

• Also the Lévy measure ν(dy) will typically be
absolutely continuous

Notation
For an absolutely continuous measure μ(dy),
μ(y) denotes its density function

• pt(x, y) and pD
t

(x, y) (if they exist) are called
transition densities or heat kernels

• pt(x, y) depends only on y− x:
pt(x, y) = pt(y− x)
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Summary

• We are given a Lévy-Khintchine exponent Ψ(ξ)
(think: Ψ(ξ) = |ξ|α, 0 < α ≤ 2)

• There is a corresponding pseudo-differential
operator A and:

ÓAf (ξ) = Ψ(ξ)f̂ (ξ)

(think: A = (−∆)α/2)
• Given a domain D, AD is the operator A on D

with ‘Dirichlet’ exterior condition
• We study eigenvalues and eigenfunctions of AD

• There is a Lévy process Xt corresponding to A
• AD corresponds to the process Xt killed at τD

(the first exit time from D)
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Half-line
Goal

Study the spectral theory for AD and PD
t

for the half-line:

D = (0,∞) ⊆ R

• Why half-line?
É explicit formulae (Part II)
É applications in fluctuation theory (Part III)
É model case for intervals and smooth domains in Rd

(Part III)
É possible applications in relativistic quantum

physics
• The details are very technical, but the idea is simple
• We begin with two examples for which also

the details are simple
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BM in interval: The simplest example

• Let D = (0, π) be the interval
• Let Xt be the Brownian motion with VarXt = 2t
• Then:
É Ψ(ξ) = ξ2

É (−A)f = ∆f = f ′′

É (−AD) = ∆D is the Dirichlet Laplacian
• Goal: eigenvalues and eigenfunctions of AD and PD

t
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BM in interval: eigenvalues and eigenfunctions

• Eigenfunctions of A are sines and cosines
• Eigenfunctions and eigenvalues of AD are

¨

fn(x) = sin(nx)1x∈D

μn = n2 n = 1,2, ...

Indeed:
É fn′′(x) = −n2fn(x) in D
É fn(x) = 0 in Dc

É fn is continuous
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BM in interval: solution

Solution
For:

fn(x) = sin(nx)1x∈D, μn = n2

we have:
PD
t
fn = e−μntfn, ADfn = μnfn

• Similar explicit solutions exist for balls, cubes etc.
• fn form a complete orthogonal set in L2(D)

• ‖fn‖2 =

r

π

2

•
2

π
〈f , fn〉 is the Fourier series coefficient of f



BM Lévy processes BM in interval BM in half-line Setting

BM in interval: eigenfunction expansion

Corollary

PD
t
f (x) =

2

π

∞
∑

n=1

e−μnt 〈f , fn〉 fn(x)

pD
t

(x, y) =
2

π

∞
∑

n=1

e−μntfn(x)fn(y)

• There are better formulae for pD
t

(x, y) for small t
• Results extend to:
É more general processes
É in general bounded domains
But in general, there are no explicit formulae for μn
and fn!
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BM in half-line: The unbounded example

• Let D = (0,∞) be the half-line
• Let Xt be again the Brownian motion, VarXt = 2t:
É Ψ(ξ) = ξ2

É (−A)f = ∆f = f ′′

É (−AD) = ∆D is the Dirichlet Laplacian
• Goal: eigenvalues and eigenfunctions of AD and PD

t

• Main change: PD
t

are no longer compact operators
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BM in half-line: eigenvalues and eigenfunctions

• Again, eigenfunctions and eigenvalues of AD are:
¨

Fλ(x) = sin(λx)1x>0

μλ = λ2 λ ∈ (0,∞)

Indeed:
É Fλ′′(x) = −λ2Fλ(x) in D
É Fλ(x) = 0 in Dc

É Fλ is continuous
• This time Fλ /∈ L2(D)!
• Note that μλ = Ψ(λ)
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BM in half-line: solution

Solution
For:

Fλ(x) = sin(λx)1x>0, μλ = λ2 = Ψ(λ)

we have:
PD
t
Fλ = e−tΨ(λ)Fλ, ADFλ = Ψ(λ)Fλ

• Fλ are not in L2(D)

• There are uncountably many eigenfunctions
• The Fourier sine transform of f is given by:

〈f , Fλ〉 =

∫

f (y)Fλ(y)dy
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BM in half-line: eigenfunction expansion
Corollary

PD
t
f (x) =

2

π

∫ ∞

0
e−tΨ(λ) 〈f , Fλ〉Fλ(x)dλ

pD
t

(x, y) =
2

π

∫ ∞

0
e−tΨ(λ)Fλ(x)Fλ(y)dλ

• Here f ∈ L1(D)
Can be extended to f ∈ L2(D)

• By reflection principle, there is a better formula:
pD
t

(x, y) = pt(y− x)− pt(y+ x) (x, y ∈ D)

No reflection principle for jump-type processes
• No similar results for other Lévy processes!

(until very recently)



Problems:

(1) Let Xt be the Brownian motion and D = (0,∞) . Prove, by a direct calculation,
that Fλ(x) = sin(λx) is the eigenfunction of PD

t
.

(Hint: use pD
t

(x, y) = pt(y− x)− pt(y+ x))

(2) Let Xt be the Brownian motion and D = (0, π). Prove that for x, y ∈ D:

pD
t

(x, y) =
∞
∑

n=−∞
pt(y− x+ 2nπ)−

∞
∑

n=−∞
pt(y+ x+ 2nπ)

(3) Show that for D = (0,∞), AD and PD
t

may fail to be normal operators when Xt
is not symmetric.

(4) Let Xt be the Brownian motion with drift 2b ∈ R (that is, VarXt = 2t,
ExXt = 2bt) and D = (0,∞). Prove that Fλ(x) = e−bx sin(λx)1x>0 (λ > 0)
satisfies ADFλ(x) = (λ2 + b2)Fλ and PD

t
Fλ = e−t(λ

2+b2)Fλ. Give eigenfunction
expansion for PD

t
on the weighted L2(D;ebxdx) space. Find a (well-known)

closed-form formula for pD
t

(x, y).
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Assumptions

Goal
For a class of Lévy processes in half-line D = (0,∞):
• find a formula for eigenfunctions of AD and PD

t

• prove eigenfunctions expansion

• Xt should be symmetric ( = isotropic)
(otherwise, AD, PD

t
are not self-adjoint)

• some regularity is needed

Assumption (⚓)

• There is no drift
• The Lévy measure ν is:
É symmetric
É has completely monotone density on (0,∞)
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Complete monotonicity

Definition
g(y) is completely monotone if:

(−1)ng(n)(y) ≥ 0 (n = 0,1,2, ..., y > 0)

Theorem (Sergei Natanovich Bernstein, 1929)

Equivalently: g is the Laplace transform of a measure:

g(y) = Lm(y) =

∫ ∞

0
e−sym(ds)

Proof
• (⇐) direct differentiation (easy)
• (⇒) inversion of Laplace transform (hard)



BM Lévy processes BM in interval BM in half-line Setting

Complete Bernstein functions
Definition
Φ(ξ) is a complete Bernstein function (CBF) if:
• Φ : C \ (−∞,0]→ C \ (−∞,0] is holomorphic
• Im Φ(ξ) ≥ 0 when Imξ ≥ 0
• Im Φ(ξ) ≤ 0 when Imξ ≤ 0

• Equivalent definitions and properties of CBFs
will be discussed later

• CBF ≡ operator monotone function ∼= Pick function

Theorem

Assumption (⚓) ⇐⇒ Ψ(ξ) = Φ(ξ2) for a CBF Φ(ξ)

• Ψ(ξ) is the Lévy-Khintchine exponent of Xt
• Proof will be given later in this part
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Subordinators
Definition
A subordinator is a nonnegative Lévy process
(starting at 0)

Definition
We define the Laplace exponent:

Φ(ξ) = bξ+

∫ ∞

0
(1− e−ξy)ν(dy)

(b ≥ 0)

(ν((−∞,0)) = 0)

(
∫∞

0 min(1, y)ν(dy) <∞)

Theorem (Lévy-Khintchine formula for subordinators)

E0e
−ξXt = e−tΦ(ξ)

L(Ptf )(ξ) = e−tΦ(ξ)Lf (ξ)

L(Af )(ξ) = Φ(ξ)Lf (ξ)
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Subordinators and CBFs (1)
Theorem

Laplace exponent
(of a subordinator)

Φ(ξ) is a CBF
m

Lévy measure
(of a subordinator)

ν has completely monotone density

Proof
• Suppose that ν(y) = Lm(y) (that is, ν(dy) = (Lm(y))dy)

• Φ(ξ) = bξ+

∫ ∞

0
(1− e−ξy)ν(dy)

= bξ+

∫ ∞

0

∫ ∞

0
(1− e−ξy)e−sym(ds)dy

= bξ+

∫ ∞

0

ξ

s+ ξ

m(ds)

s
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Subordinators and CBFs (2)
Proof (cont.)

• Φ(ξ) = bξ+

∫ ∞

0

ξ

s+ ξ

m(ds)

s
• By checking Im Φ(ξ), Φ(ξ) is

(more precisely: extends to a CBF)

a CBF
• Reasoning can be reversed by the next result.

Theorem

Φ(ξ) is a CBF ⇐⇒ Φ(ξ) = a+ bξ+

∫ ∞

0

ξ

s+ ξ

m(ds)

s (a,b ≥ 0)

(
∫∞

0 min(1, y)m(dy) <∞)

Proof
• (⇐) direct calculation (easy)
• (⇒) representation of positive harmonic functions by

the Poisson kernel (harder)
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Subordination
Definition
• If Yt is a stochastic process, Zt is a subordinator,

and Yt, Zt are independent processes, then
Xt = Y(Zt) is a subordinate process

• If Yt is Brownian motion, then Xt is subordinate
Brownian motion

Theorem
Suppose that:
• Yt is Brownian motion (VarYt = 2t, ΨY(ξ) = ξ2)
• Zt is a subordinator
• ΦZ(ξ) is the Laplace exponent of Zt

Then ΨX(ξ) = ΦZ(ξ2) is the Lévy-Khintchine exp. of Xt

Proof
• Direct calculation: a nice exercise
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Summary

Theorem (equivalent forms of Assumption (⚓))

• Xt has no drift
• The Lévy measure ν of Xt is:
É symmetric
É has completely monotone density on (0,∞)

m
• The Lévy-Khintchine exponent of Xt satisfies

Ψ(ξ) = Φ(ξ2) for a CBF Φ(ξ)

m
• Xt = Y(Zt) is a subordinate Brownian motion
• The Lévy measure νZ of Zt has completely

monotone density on (0,∞)
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Examples

Process: Stable Relativistic Var. gamma

Parameter: α ∈ (0,2) m ∈ (0,∞) —

Ψ(ξ) |ξ|α
p

ξ2 +m2 −m log(ξ2 + 1)

νX(y)
cα

|y|1+α

mK1(m|y|)
π |y|

e−|y|

|y|

Φ(ξ) ξα/2
p

ξ+m2 −m log(ξ+ 1)

νZ(s)
cα

s1+α/2

e−ms

2
p
π s3/2

e−s

s
(K1 is a Bessel function)
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Proof ((3) ⇒ (1))
• Suppose that Xt = Y(Zt), Yt is BM,
Zt is a subordinator and νZ(s) = Lm(s)

(Xt symmetric ⇒ no drift)

• pX,t(y) =

∫ ∞

0
pY,s(y)pZ,t(s)ds (subordination formula)

• νX(y) = lim
t→0+

pX,t(y)

t
=

∫ ∞

0
pY,s(y)νZ(s)ds

• By pY,s(y) = 1p
4πs

exp
�

−y2

4s

�

, νZ(s) =
∫∞

0 e−stm(dt):

νX(y) =

∫ ∞

0

�
∫ ∞

0

1
p

4πs
exp

�

−
y2

4s

�

e−stds

�

m(dt)

=

∫ ∞

0

1

2
p
t
e−
p
t |y|m(dt) = Lm̃(|y|)
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Proof ((1) ⇒ (3))
• Reverse the reasoning

Proof ((2) ⇐⇒ (3))

• ΨX(ξ) = ΦZ(ξ2) ⇐⇒ Xt = Y(Zt)
(a theorem above)

• ΦZ(ξ) is a CBF ⇐⇒ νZ(s) is completely monotone
(another theorem above)

Rene Schilling, Renming Song, Zoran Vonraček
Bernstein Functions: Theory and Applications
De Gruyter, 2010



Problems:

(1) Let ΨY(ξ) be the Lévy-Khintchine exponent of a Lévy process Yt, and ΦZ(ξ) be
the Laplace exponent of a subordinator Zt. Suppose that Yt and Zt are
independent processes. Show that the Lévy-Khintchine exponent of
Xt = Y(Zt) is ΨX(ξ) = ΦZ(ΨY(ξ)).
(Note: Re ΨY(ξ) ≥ 0 and ΦZ(ξ) is well-defined if Reξ ≥ 0)

(2) Prove that Φ(ξ) is a Laplace exponent (a.k.a. Bernstein function) if and
only if Φ(0) ≥ 0 and Φ′(ξ) is completely monotone.

(3) Suppose that Φ(ξ), Φ1(ξ), Φ2(ξ) are non-zero CBFs and c > 0, 0 < α < 1.
Prove that:

(a) cΦ(ξ), Φ1(ξ) + Φ2(ξ), Φ1(Φ2(ξ)),
ξ

Φ(ξ)
, (Φ1(ξ))α(Φ2(ξ))1−α are CBFs;

(b) ξ1−αΦ(ξα) is a CBF;
(Hint: use only ‘Φ(ξ) is CBF ⇒ Φ(ξα) is CBF’ and ‘Φ(ξ) is CBF ⇒ ξ/Φ(ξ) is CBF’)

(c) (Φ(ξα))1/α is a CBF;

(d) Φ maps
�

ξ ∈ C : Argξ ∈ (0, απ)
	

into itself;

(e) (Φ1(ξα) + Φ2(ξα))1/α, ((Φ1(ξ))α + (Φ2(ξ))α)1/α, Φ1(ξα)Φ2(ξ1−α) are CBFs.
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Eigenfunction expansion in half-line

6 Formula for eigenfunctions

7 Properties of eigenfunctions

8 Eigenfunction expansion

Note: There are a lot of ugly formulae in this part!
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Formula for eigenfunctions



Eigenfunctions Their properties Eigenfunction expansion

Setting

Assumptions

Throughout this part we assume that:
• Xt is a (symmetric) Lévy process in R
• Ψ(ξ) is the Lévy-Khintchine exponent of Xt
• Assumption (⚓):

Ψ(ξ) = Φ(ξ2) for a CBF Φ(ξ)

• Pt are free transition operators of Xt
A is the generator of Pt

• D = (0,∞)

• PD
t

are transition operators of Xt on D

AD is the generator of PD
t



Eigenfunctions Their properties Eigenfunction expansion

Eigenfunctions: intuition
• For F(x) = sin(λx+ θ): (bF = cδλ − c̄δλ for c = − i

2 e
iθ)

AF = Ψ(λ)F, PtF = e−tΨ(λ)F

(Lévy-Khintchine formula, Ψ(λ) = Ψ(−λ))
• For g(x) = f (x)1x>0 and x ∈ D large:

ADg(x) = Ag(x) ≈ Af (x)

Guess
For each λ > 0 there is Fλ(x) such that:

ADFλ = Ψ(λ)Fλ, PD
t
Fλ = e−tΨ(λ)Fλ

and Fλ(x) ≈ sin(λx+ θλ) as x→∞. That is:
Fλ(x) = sin(λx+ θλ)1x>0 −Gλ(x)

where Gλ is small.

• In this part, always x > 0
• For simplicity, we drop 1x>0 from the notation
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Eigenfunctions: formula (1)
Theorem [K, 2010]

For each λ > 0 there are:
• θλ ∈ [0, π/2) • completely monotone Gλ(x)

such that Fλ(x) = sin(λx+ θλ)−Gλ(x) satisfies:

ADFλ = Ψ(λ)Fλ, PD
t
Fλ = e−tΨ(λ)Fλ

Π
4

Π
2

3 Π
4 Π 5 Π

4
3 Π
2

7 Π
4 2 Π

-1.0

-0.5

0.5

1.0

Fλ(x/λ) for the relativistic process
(λ = 1

20 ,
1
2 , 1, 10)

Π

4
Π

2
3 Π

4 Π
5 Π

4
3 Π

2
7 Π

4 2 Π

0.1

0.2

0.3

corresponding Gλ(x/λ)
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Eigenfunctions: formula (2)

• Fλ(x) = sin(λx+ θλ)−Gλ(x)

• Gλ is completely monotone: Gλ(x) = Lγλ(x)

Theorem [K, 2010]

θλ =
1

π

∫ ∞

0

λ

λ2 − u2
log

2λ(Ψ(λ)−Ψ(u))

Ψ′(λ)(λ2 − u2)
du

γλ(ds) =
1

2π

�

Im
Ψ′(λ)

Ψ(λ)−Φ+(−s2)

�

× exp

�

1

π

∫ ∞

0

s

s2 + u2
log

2λ(Ψ(λ)−Ψ(u))

Ψ′(λ)(λ2 − u2)
du

�

ds

• γλ may fail to have density!
• Φ+(−s2) = lim

ϵ→0+
Φ(−s2 + ϵi) in the distributional sense
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Eigenfunctions: stable processes

Example

For the
(symmetric)

α-stable process, Ψ(ξ) = |ξ|α, α ∈ (0,2):

Fλ(x) = sin

�

λx+
(2− α)π

8

�

−
∫ ∞

0
γ(s)e−λsxds

γ(s) =

p
2α sin(απ/2)

2π

sα

1 + s2α − 2sα cos(απ/2)

× exp

�

1

π

∫ ∞

0

1

1 + u2
log

1− s2u2

1− sαuα
du

�

• Scaling: Fλ(x) = F1(λx)

• Fλ(x) ∼
1

p
α/2 Γ(α/2)

(λx)α/2 as x→ 0+
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Eigenfunctions: relativistic processes
Example

For the relativistic process, Ψ(ξ) =
p

ξ2 +m2 −m:
• θλ increases from 0 to π/8

• Fλ(x) ∼

È

2λx

π
as x→ 0+

0 2 4 6 8 10

Π

32
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3 Π

32

Π

8

θλ

Π
4

Π
2

3 Π
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1.0

Fλ(x/λ), λ = 1
20 ,

1
2 , 1, 10
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Eigenfunctions: two more examples
Example

For the variance gamma process, Ψ(ξ) = log(ξ2 + 1):
• θλ increases from 0 to π/4

• Fλ(x) ∼
λ

p
2
p

λ2 + 1

1
p

| logx|
as x→ 0+

Example

For the mixture of stables, Ψ(ξ) = ξα + ξβ,
(sum of two independent stables, 0 < α ≤ β ≤ 2):

• θλ decreases from
(2− α)π

8
to

(2− β)π

8

• Fλ(x) ∼
1

p

β/2 Γ(β/2)
(λx)β/2 as x→ 0+
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Eigenfunctions: yet another two examples
Example

For the Brownian motion, Ψ(ξ) = ξ2:

• log
2λ(Ψ(λ)−Ψ(u))

Ψ′(λ)(λ2 − u2)
= 0

• θλ = 0, γλ = 0 and Fλ(x) = sin(λx), as expected

Example

For Ψ(ξ) =
ξ

1 + ξ
, ν(y) =

e−|y|

2
(compound Poisson

with Laplace distributed jumps):
• θλ = arctanλ increases from 0 to π/2
• γλ vanishes!
• Fλ(x) = sin(λx+ arctanλ)1x>0

• Fλ is discontinuous at 0!
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Laplace transform of eigenfunctions

• Derivation of the formula for Fλ will be sketched
in Part IV

• Bounds and asymptotics of Fλ can be proved
in a fairly general setting

• Most of them follow from the formula for LFλ
• In most applications, exact formula is not needed

Theorem [K, 2010]

LFλ(s) =
λ

λ2 + s2

× exp

�

1

π

∫ ∞

0

s

s2 + u2
log

Ψ′(λ)(λ2 − u2)

2λ(Ψ(λ)−Ψ(u))
du

�
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Common elements (the worst slide ever!)

θλ =
1

π

∫ ∞

0

λ

λ2 − u2
log

2λ(Ψ(λ)−Ψ(u))

Ψ′(λ)(λ2 − u2)
du

γλ(ds) =
1

2π

�

Im
Ψ′(λ)

Ψ(λ)−Φ+(−s2)

�

× exp

�

1

π

∫ ∞

0

s

s2 + u2
log

2λ(Ψ(λ)−Ψ(u))

Ψ′(λ)(λ2 − u2)
du

�

ds

LFλ(s) =
λ

λ2 + s2
exp

�

1

π

∫ ∞

0

s

s2 + u2
log

Ψ′(λ)(λ2 − u2)

2λ(Ψ(λ)−Ψ(u))
du

�

Definition

Φ†
λ

(ξ) = exp

�

1

π

∫ ∞

0

ξ

ξ2 + u2
log

Ψ′(λ)(λ2 − u2)

2λ(Ψ(λ)−Ψ(u))
du

�
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Simplification

• Ψ(ξ) = Φ(ξ2)

• We will now use mostly Φ(ξ), not Ψ(ξ)

Definition

• Φλ(ξ2) =
Φ′(λ2)(λ2 − ξ2)

Φ(λ2)−Φ(ξ2)
=

Ψ′(λ)(λ2 − ξ2)

2λ(Ψ(λ)−Ψ(ξ))

• Φ†(ξ) = exp

�

1

π

∫ ∞

0

ξ

ξ2 + u2
log Φ(u2)du

�

• Φ
†
λ = (Φλ)†

• Arg Φ†(iξ) = −
1

π

∫ ∞

0

ξ

ξ2 − u2
log Φ(u2)du
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Eigenfunctions revisited

Theorem
We have:

Fλ(x) = sin(λx+ θλ)− Lγλ(x)

with:
θλ = Arg(Φ†

λ
(iλ))

γλ(ds) =
1

π

λ

λ2 + s2

Im(Φλ)+(−s)

Φ
†
λ(s)

ds

LFλ(s) =
λ

λ2 + s2
Φ†
λ

(s)

• Technical details are now moved to definitions
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Divide and rule

Strategy [K, 2010], [K-Małecki-Ryznar, 2011]

(1) study Φλ

(2) study Φ†

(3) use (1) and (2) to θλ
(4) apply (1) and (2) to LFλ
(5) use tauberian theory (Jovan Karamata et al.)

(properties of LFλ ⇒ properties of Fλ)

• Alternatively, for a specific Ψ, one may try:
(4’) apply (1) and (2) to γλ
(5’) use abelian theory

(properties of γλ ⇒ properties of Lγλ)
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Properties of Φλ

Φλ(ξ) =
Φ′(λ2)(λ2 − ξ)

Φ(λ2)−Φ(ξ)

Lemma

Φ(ξ) is a CBF ⇒ Φλ(ξ) is a CBF

• Proof: nice exercise

• estimates of Φλ depend on bounds on
−ξΦ′′(ξ)

Φ′(ξ)

• Φλ(ξ2) ∼ Φ′(λ2)
ξ2

Φ(ξ2)
as ξ→∞

• Φλ(ξ2)→ Φ′(λ2)
λ2

Φ(λ2)
as ξ→ 0+
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Properties of Φ† (1)

Φ†(ξ) = exp

�

1

π

∫ ∞

0

ξ

ξ2 + u2
log Φ(u2)du

�

Lemma [K, 2010], [Kim-Song-Vondraček, 2010], [Rogers, 1983]

(and discoverers of the Wiener-Hopf factorization for Lévy processes)

• Φ(ξ) is a CBF ⇒ Φ†(ξ) is a CBF
• Φ†(ξ)Φ†(−ξ) = Φ(−ξ2)

• Proof: smart contour integration
• A fundamental lemma!
• It enables inversion of the Laplace transform in

LFλ(s) =
λ

λ2 + s2
Φ†
λ

(s)

• Residues at ±iλ 7→ sin(λx+ θλ)

• Jump along (−∞,0] 7→ Lγλ(x)
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Properties of Φ† (2)

Φ†(ξ) = exp

�

1

π

∫ ∞

0

ξ

ξ2 + u2
log Φ(u2)du

�

Bounds [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

1
2

p

Φ(ξ2) ≤ Φ†(ξ) ≤ 2
p

Φ(ξ2)

Proof

• min

�

1,
u2

ξ2

�

≤
Φ(u2)

Φ(ξ2)
≤max

�

1,
u2

ξ2

�

•
1

π

∫ ∞

0

ξ

ξ2 + u2
log

�

max

�

1,
u2

ξ2

��

du ≤ log2

• Similar estimate for the lower bound
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Properties of Φ† (3)
Definition
Φ(ξ) is regularly varying of order α (α-RV) at 0+ if

lim
ξ→0+

Φ(cξ)

Φ(ξ)
= cα for all c > 0

Φ(ξ) is regularly varying of order α (α-RV) at ∞ if

lim
ξ→∞

Φ(cξ)

Φ(ξ)
= cα for all c > 0

Asymptotics [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

• Φ†(ξ) ∼
p

Φ(ξ2) as ξ→∞ if Φ(ξ) is RV at ∞

• Φ†(ξ) ∼
p

Φ(ξ2) as ξ→ 0+ if Φ(ξ) is RV at 0+

• Proof: explicit estimates
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Properties of θλ

θλ = Arg Φ†
λ

(iλ)

• θλ ∈ [0, π/2) (Φ
†
λ(ξ) 6≡ cξ, so θλ 6= π/2)

• θλ close to π/2 generates problems

• θλ ≤ arctan

s

Φ(λ2)

λ2Φ′(λ2)
− 1

(good for Φ(ξ) with power-type growth)

Bounds [K-Małecki-Ryznar, 2011]
�

inf
ξ>0

−ξΦ′′(ξ)

Φ′(ξ)

�

π

4
≤ θλ ≤

�

sup
ξ>0

−ξΦ′′(ξ)

Φ′(ξ)

�

π

4

• Proof: bounds for Φλ, explicit formula for Φ(ξ) = ξα/2
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Properties of Fλ (1)

LFλ(s) =
λ

λ2 + s2
Φ†
λ

(s)

Fλ(x) = sin(λx+ θλ)− Lγλ(x)

Bounds [K-Małecki-Ryznar, 2011]

When λx ≤ 1
2(π2 − θλ), then:

1
5 λx

p

Φλ(1/x2) ≤ Fλ(x) ≤ 30(π2 − θλ)λx
p

Φλ(1/x2)

• Proof: concavity of Fλ(x) for small x, comparison of
Laplace transforms

• Kind of uniform continuity of Fλ(x/λ)
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Properties of Fλ (2)

LFλ(s) =
λ

λ2 + s2
Φ†
λ

(s)

Fλ(x) = sin(λx+ θλ)− Lγλ(x)

Asymptotics [K, 2010], [K-Małecki-Ryznar, 2011]

• Fλ(x) ∼

p

λ2Φ′(λ2)

Γ(1 + α)

1
p

Φ(1/x2)
as x→ 0+

if Φ(ξ) is α-RV at ∞

• Fλ(x) ∼ V(x)
p

λ2Φ′(λ2) as λ→ 0+

if limsup
λ→0+

θλ < π/2

• Proof: technical, nothing interesting

• V(x) comes from fluctuation theory, LV(ξ) =
1

ξΦ†(ξ)
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Eigenfunction expansion (1)

Guess

PD
t
f (x) =

2

π

∫ ∞

0
e−tΨ(λ) 〈f , Fλ〉Fλ(x)dλ

ADf (x) =
2

π

∫ ∞

0
Ψ(λ) 〈f , Fλ〉Fλ(x)dλ

pD
t

(x, y) =
2

π

∫ ∞

0
e−tΨ(λ)Fλ(x)Fλ(y)dλ

• Some delicate problems with integrability arise
when e−tΨ(λ) is not integrable

• Solution: use continuous L2(D) extension
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Eigenfunction expansion (2)

Definition

Πf (λ) =

∫ ∞

0
f (x)Fλ(x)dx = 〈f , Fλ〉

Π∗g(x) =

∫ ∞

0
g(λ)Fλ(x)dλ

Theorem [K, 2010], [K-Małecki-Ryznar, 2011]

•
Æ

2
π Π,

Æ

2
π Π∗ extend to unitary operators on L2(D)

• f ∈ DomL2(D)(AD) ⇐⇒ Ψ(λ)Πf (λ) ∈ L2(D)

• Π(ADf )(λ) = Ψ(λ)Πf (λ) for f ∈ DomL2(D)(AD)

• Π(PD
t
f )(λ) = e−tΨ(λ)Πf (λ) for f ∈ L2(D)
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Eigenfunction expansion (3)

Corollary

If f ∈ L1(D) and e−tΨ(λ) is integrable, then:

PD
t
f (x) =

2

π
Π∗(Ψ · (Πf ))(x)

=
2

π

∫ ∞

0
e−tΨ(λ) 〈f , Fλ〉Fλ(x)dλ

If e−tΨ(λ) is integrable, then:

pD
t

(x, y) =
2

π

∫ ∞

0
e−tΨ(λ)Fλ(x)Fλ(y)dλ

• Proofs will be sketched in Part IV
• Most difficult part: completeness of Fλ



Problems:

(1) Show that if Φ(ξ) is a CBF, then Φλ(ξ) is a CBF.

(2) Prove, by a direct calculation, that for Ψ(ξ2 + 1) (that is, ν(y) = e−|y|/2),
Fξ(x) = sin(ξx+ arctanξ)1ξ>0 is an eigenfunction in (0,∞).

(3) Prove that PD
t

has no L2(D) eigenfunctions when Xt is the symmetric α-stable
process, Ψ(ξ) = |ξ|α.
Note: this is true in the general case under Assumption (⚓), but the proof is much more difficult.

(4) Show that PD
t

may have L2(D) eigenfunctions when Xt is not symmetric.

Open problems:

(1) Are there any other eigenfunctions F of PD
t
?

(2) Formula for LFλ makes sense for a much more general class of
Lévy-Khintchine exponents Ψ(ξ). For which exponents does this formula
indeed define the Laplace transform of a function?

(3) Is it true that pD
t

(x, y) = lim
ϵ→0+

2

π

∫ ∞

0
e−ϵλ−tΨ(λ)Fλ(x)Fλ(y)dλ when e−tΨ(λ) is not

integrable?
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Supremum functional and first
passage times
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Supremum functional and FPT (1)

• In this section we often write P for P0
(that is, Xt starts at 0)

Definition
We define the the first passage time (FPT):

τx = inf {s ≥ 0 : Xs ≥ x}

and the supremum functional (or sup. process):
Mt = sup

s∈[0,t]
Xs

• Important in many areas of applied probability
• Distribution is rather difficult to compute
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Supremum functional and FPT (2)

Proposition

P(Mt < x) = P(τx > t)

Proof
• {Mt < x} is almost equal to {τx > t}
• Use càdlàg paths and quasi left continuity

• Let D = (0,∞)

• When Xt is symmetric, then P(τx > t) = Px(τD > t)

• (In the general case, P(τx > t) = P−x(τ(−∞,0) > t))

• Px(τD > t) =

∫ ∞

0
pD
t

(x, y)dy

• We have a formula for pD
t

(x, y)
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Formula for FPT (1)

Theorem [K, 2010], [K-Małecki-Ryznar, 2011]

Under Assumption (⚓), and if:

• sup
λ>0

θλ <
π

2

•

s

Ψ′(λ)

2λΨ(λ)
e−tΨ(λ) is integrable at ∞ (note that

Ψ′(λ)
2λΨ(λ) =

Φ′(λ2)

Φ(λ2)
≤ 1

λ2 )

we have:

P(τx > t) =
2

π

∫ ∞

0

s

Ψ′(λ)

2λΨ(λ)
e−tΨ(λ)Fλ(x)dλ

• Integrability near 0 is automatic!
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Examples

• Assumptions are relatively mild, examples include:
É Symmetric stable processes
É Relativistic processes
É Variance gamma process
É Mixtures of stables
É Ψ(ξ) = log(log(ξ2 + 1) + 1) when t ≥ 1/2

• Problems when Ψ(ξ) grows very slowly,
for example, for compound Poisson processes

• Formula is applicable for numerical computations
(although there are essential problems
with numerical stability)



First passage times Fluctuation theory Interval Domains in Rd
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Ψ(ξ) =
p

ξ2 + 1− 1 Ψ(ξ) = 1− cos(ξ/2) (here (⚓) fails!)

(using Baxter and Donsker’s result)

Plots of P(τx > t) for x = 0.5, 1, 1.5 and 2
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Formula for FPT (2)
Proof no. 1

• P(τx > t) =

∫ ∞

0
pD
t

(x, y)dy = lim
ϵ→0+

∫ ∞

0
e−ϵypD

t
(x, y)dy

• pD
t

(x, y) =
2

π

∫ ∞

0
e−tΨ(λ)Fλ(x)Fλ(y)dλ

•
∫ ∞

0
e−ϵyFλ(y) = LFλ(y)

• P(τx > t) =
2

π
lim
ϵ→0+

∫ ∞

0
e−tΨ(λ)Fλ(x)LFλ(ϵ)dλ

• LFλ(ϵ)→

s

Ψ′(λ)

2λΨ(λ)
as ϵ→ 0+

• Show uniform integrability as ϵ→ 0+

(very technical)
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Formula for FPT (3)

Proof no. 2

•
∫ ∞

0

∫ ∞

0
e−ξxe−ztP(τx > t)dxdt is known

(Baxter-Donsker formula, discussed later)

•
∫ ∞

0

∫ ∞

0
e−ξxe−zt







2

π

∫ ∞

0

s

Ψ′(λ)

2λΨ(λ)
e−tΨ(λ)Fλ(x)dλ






dxdt

can be computed (slightly less technical)
(compared to Proof no. 1)

• Both turn out to be equal
• Use uniqueness argument for Laplace transform
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Properties of FPT (1)

Corollary

The formula can be differentiated under the integral

when

s

Ψ′(λ)

2λΨ(λ)
e−tΨ(λ)(Ψ(λ))n is integrable at ∞:

(−1)n
dn

dtn
P(τx > t)

=
2

π

∫ ∞

0

s

Ψ′(λ)

2λΨ(λ)
e−tΨ(λ)(Ψ(λ))nFλ(x)dλ

• For large t, the integral over [0, C/x] dominates
• We have good estimates for Fλ(x) when λx ∈ [0, C]
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Properties of FPT (2)
Corollary

τx has ultimately completely monotone distribution:

(−1)n
dn

dtn
P(τx > t) > 0 for t large enough

(t > C(n,x,Ψ))

Asymptotics

• (−1)n
dn

dtn
P(τx > t) ∼

Γ(n+ 1/2)

π

V(x)

tn+1/2
as t→∞

• (−1)n
dn

dtn
P(τx > t) ∼

Γ(n+ 1/2)

π Γ(1 + α)

1

tn+1/2
p

Ψ(1/x)

as x→ 0+, if Ψ(ξ) is α-RV at ∞

• Bounds with explicit constants are also available
• For n = 0, some of the above has been known before
• More information on V(x) in the next section
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Baxter-Donsker formula

Theorem [Baxter-Donsker, 1957]

When Xt is a symmetric Lévy process:
∫ ∞

0

∫ ∞

0
e−ξx−ztP(τx > t)dxdt =

1

ξ
p
z

1

(z + Φ)†(ξ)

=
1

ξ
p
z

exp

�

−
1

π

∫ ∞

0

ξ

ξ2 + u2
log(z + Ψ(u))du

�

• There is a variant for asymmetric processes

Glen Baxter, Monroe David Donsker, 1957
On the distribution of the supremum functional for
processes with stationary independent increments
Trans. Amer. Math. Soc. 85
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Inversion of the Laplace transform (1)

• If Ψ(ξ) = Φ(ξ2) for a CBF Φ(ξ) (Assumption (⚓)),
then our formula for P(τx > t) inverts the double
Laplace transform in Baxter-Donsker formula

• In general, partial inverse in space is known:
∫ ∞

0
e−ztP(τx > t)dt =

Vz(x)
p
z

But Vz(x) is not explicit:

Vz(x) = E

�
∫ ∞

0
e−zt1Mt<xdLt

�

where Lt is the local time of Mt − Xt at 0



First passage times Fluctuation theory Interval Domains in Rd

Inversion of the Laplace transform (2)
Theorem [K-Małecki-Ryznar, 2011]

If Xt is a symmetric Lévy process and
Ψ(ξ) is increasing on (0,∞), then:
∫ ∞

0
e−ξxP(τx > t)dx =

1

π

∫ ∞

0

ξ

λ2 + ξ2

s

Ψ′(λ)

Ψ(λ)
e−tΨ(λ)

× exp

�

1

π

∫ ∞

0

ξ

ξ2 + u2
log

Ψ′(λ)(λ2 − u2)

2λ(Ψ(λ)−Ψ(u))
du

�

dλ

• Proof: analytic continuation, contour integration and
smart substitution, rather standard

• It remained undiscovered for more than 50 years!
• This theorem is used in the ‘Proof no. 2’ of the

formula for P(τx > t)
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Increasing harmonic function (1)

• Vz(x) = E

�
∫ ∞

0
e−zt1t<τxdLt

�

• Let V(x) = V0(x) = EL(τx)

• As usual, V(x) = 0 for x ≤ 0
• Then V(x) is harmonic in (0,∞):

AV(x) = 0 for x > 0

• It is the unique increasing harmonic function
(under some regularity assumptions)

• It already appeared twice in the slides
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Increasing harmonic function (2)

• Suppose that Assumption (⚓) is satisfied

• V(x) = lim
λ→0+

Fλ(x)

λ
p

Ψ(λ)

• V(x) = lim
t→∞

�p
π tP(τx > t)

�

• LV(ξ) =
1

ξΦ†(ξ)
(this holds in greater generality)

Bounds [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

If Xt is a symmetric Lévy process, and
Ψ(ξ), ξ2/Ψ(ξ) are increasing, then: (more general than Assumption (⚓))

2

5

1
p

Ψ(1/x)
≤ V(x) ≤ 5

1
p

Ψ(1/x)
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Bounds for FPT
Theorem [K-Małecki-Ryznar, 2011]

If Xt is a symmetric Lévy process, and
Ψ(ξ), ξ2/Ψ(ξ) are increasing, then:

1

100
min

 

1,
1

200
p

tΨ(1/x)

!

≤ P(τx > t) ≤min

 

1,
10

p

tΨ(1/x)

!

• Theorem applies for all subordinate BM!
That is, Ψ(ξ) = Φ(ξ2) satisfies the assumptions for
any Laplace exponent Φ(ξ) (not just for CBFs)

• There is a (less explicit) version for asymmetric
processes

• Note: P(τx ≤ t) = 1−P(τx > t) is much easier
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Increasing harmonic function (3)
Asymptotics [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

If Xt is a symmetric Lévy process, and
Ψ(ξ), ξ2/Ψ(ξ) are increasing, then:

• V(x) ∼
1

Γ(1 + α)
p

V(1/x)
as x→ 0

if Ψ(ξ) is α-RV at ∞

• V(x) ∼
1

Γ(1 + α)
p

V(1/x)
as x→∞

if Ψ(ξ) is α-RV at 0+

• Some special cases have been known before
• Under Assumption (⚓):
É V(x) is a Bernstein function
É explicit formula for V(x) can be given

• One can obtain similar results for Vz(x)

• V(x) is much simpler than Fλ(x) and P(τx < t)
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Section 3

Eigenvalues for intervals
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Interval: idea

• Let D = (a,b)

• As for the BM, there are fn and μn such that
PD
t
fn = e−μntfn, ADfn = μnfn

• fn form a complete orthogonal set in L2(D)

Guess
We should have:

fn(x) ≈ c1Fλn(x− a) for x ≈ a

fn(x) ≈ c2Fλn(b− x) for x ≈ b

for λn such that:
Ψ(λn) ≈ μn
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Interval: sketch of the proof

• Define ‘approximate eigenfunction’ f̃n so that:
(see the next slide)

f̃n(x) = Fλn(x− a) for x ∈ (a, 2
3a+ 1

3b)

fn(x) = (−1)n−1Fλn(b− x) for x ∈ (1
3a+ 2

3b,b)

and f̃n changes ‘smoothly’ on (2
3a+ 1

3b,
1
3a+ 2

3b)

• This is possible only when:

λn =
nπ

2
− θλn

(then sine parts of Fλn(x− a) and Fλn(b− x) coincide)

• Show that ADf̃n ≈ Ψ(λn)f̃n
• Deduce that μ̃n ≈ Ψ(λn)
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Interval: construction of the approximations

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

f̃n(x) (solid line), Fλn (x− a) (dashed lined) and ±Fλn (b− x) (dotted line)
for Ψ(ξ) = |ξ|1/10, D = (a,b) = (−1,1), n = 1,2,3,4.
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Interval: results
Theorem [Kulczycki-K-Małecki-Stós, 2010]

For the symmetric 1-stable process, Ψ(ξ) = |ξ|:
�

�

�

�

(b− a)μn −
�

nπ −
π

4

�
�

�

�

�

<
2

n

Theorem [K, 2010]
For the symmetric α-stable process, Ψ(ξ) = |ξ|α:

(b− a)αμn =

�

nπ −
(2− α)π

4

�α

+O

�

1

n

�

Theorem [Kaleta-K-Małecki]

For the relativistic process, Ψ(ξ) =
p

ξ2 +m2 −m:

(b− a)μn =

�

nπ −
π

4

�

+O

�

1

n

�
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Higher-dimensional domains
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Multidimensional domains: introduction

• Let Xt be the isotropic α-stable process in Rd

• Let D ⊆ Rd be a bounded domain
• There are fn and μn such that

PD
t
fn = e−μntfn, ADfn = μnfn

• fn form a complete orthogonal set in L2(D)

• N(λ) = #{n : μn ≤ λ} is the partition function

Theorem (Robert M. Blumenthal, Ronald K. Getoor, 1959)

For C1 =
1

2dπd/2Γ(d/2 + 1)
:

N(λ)

λd/α
= C1|D|+ o(1) as λ→∞
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Multidimensional domains: second term
Theorem (Rodrigo Bañuelos, Tadeusz Kulczycki, 2008)

(Abel means) As t→ 0+:
tLN(t)

Γ( dα + 1)td/α
= C1|D| −C

(1)

2 |∂D|t
1/α + o(t1/α)

• C
(1)

2 given only implicitly

Theorem (Rupert L. Frank, Leander Geisinger, 2011)

(Cesaro means) As λ→∞:
∫ λ

0 N(u)du

( dα + 1)λ(d+1)/α
= C1|D| −C

(2)

2 |∂D|λ
−1/α + o(t1/α)

• C
(2)

2 given explicitly in terms of the eigenfunctions
Fλ(x) for Ψ(ξ) = (ξ2 + 1)α/2 − 1!
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Multidimensional domains: second term (2)

Conjecture
As λ→∞:

N(λ)

λd/α
= C1|D| −C

(3)

2 |∂D|t
1/α + o(t1/α)

Or even:
μn

λd/α
= C1|D| −C

(4)

2 |∂D|t
1/α + o(t1/α)

• This conjecture seems to be extremely difficult

• Constants C
(n)

2 (n = 1,2,3,4) are related to each
other through simple formulae



Problems:

(1) Using the strong Markov property, prove that (X(τx + t)− X(τx)) is
independent from the σ-algebra Fτx and has the same law as the process Xt.

(2) Prove the reflection principle: if Xt is a symmetric Lévy process and
P(Xt = 0) = 0 for all t > 0, then:

P(Mt ≥ x) = P(τx ≤ t) = 2P(τx ≤ t, Xt ≥ Xτx)

Prove similar inequalities when P(Xt = 0) > 0 for t > 0.

(3) Show that for the Brownian motion:
P(Mt ≥ x) = 2P(Xt ≥ x)

(4) Show the Lévy inequality: for symmetric Lévy processes Xt:
P(Xt ≥ x) ≤ P(Mt ≥ x) ≤ 2P(Xt ≥ x)

(5) Prove that if Xt is a symmetric Lévy process and e−tΨ(ξ) is integrable in ξ ∈ R,
then:

P(Xt ≥ x) =
1

π

∫ ∞

0

sin(ξ)

ξ
(1− e−tΨ(ξ/x))dξ



Part IV

Some technical details

13 Wiener-Hopf method

14 Heuristic derivation of the formula for eigenfunctions

This part will be available soon
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