Spectral Theory for Subordinate Brownian Motions in Half-line

Mateusz Kwaśnicki

마테우시 크바시닡스키

Polish Academy of Sciences Wrocław University of Technology

mateusz.kwasnicki@pwr.wroc.pl

Lecture slides, preliminary version Yangyang, Korea, June 26–29, 2011

Outline

- (1) Part I: Introduction

 BM Lévy processes BM in interval BM in half-line Setting
- (2) Part II: Eigenfunction expansion in half-line
 Eigenfunctions Their properties Eigenfunction expansion
- (3) Part III: Applications

 First passage times Fluctuation theory Interval Domains in \mathbf{R}^d
- (4) Part IV: Some technical details

 Wiener-Hopf method Heuristic derivation
 - K., 2010
 Spectral analysis of subordinate Brownian motions in half-line
 - K., Jacek Małecki, Michał Ryznar, 2011 Suprema of Lévy processes

Part I

Introduction

- Brownian motion
- Lévy processes
- Warm-up: Brownian motion in an interval
- Motivation: Brownian motion in half-line
- Complete monotonicity, complete Bernstein functions and subordinate Brownian motions

Part I Section 1

Brownian motion

Brownian motion

ВМ

•00000

Source: YouTube, http://youtube.com/watch/?v=cDcprgWiQEY

• X_t is the position of the particle at time $t \ge 0$

Brownian motion: mathematical model

Definition

The **Brownian motion** (**BM**) is a stochastic process X_t with the following properties:

- $X_0 = x$
- independent increments:

$$0 \le t_0 < t_1 < \dots < t_n$$

$$X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, ..., X_{t_n} - X_{t_{n-1}}$$
 are independent

- stationarity: law of $X_t X_s$ depends only on t s
- isotropy: law of $X_t X_0$ is invariant under rotations
- continuity of paths: $t \mapsto X_t$ is continuous

ВМ

000000

Brownian motion: simulation

Source: Wikipedia, http://en.wikipedia.org/wiki/File:2D_Random_Walk_400x400.ogv

Brownian motion and PDEs (1)

Central limit theorem

Lévy processes

Brownian motion is a Gaussian process: $(X_{t_1}, X_{t_2}, ..., X_{t_n})$ has Gaussian distribution.

Notation

- P_x , E_x correspond to process starting at x
- $\mathbf{E}_X(Z;E) = \int_E Zd\mathbf{P}_X$
- For readability, we use both X_t and X(t)
- Components of X_t are independent
- Variance of each component is 2ct for some c > 0
- Typically, $c = \frac{1}{2}$, but we take c = 1

Brownian motion and PDEs (2)

Theorem

The function:

Lévy processes

$$u(t,x) = \mathbf{E}_x f(X_t)$$

solves the **heat equation**:

$$\frac{\partial u}{\partial t}(t,x) = c \,\Delta u(t,x), \quad u(0,x) = f(x)$$

•
$$\Delta = \left(\frac{\partial}{\partial x_1}\right)^2 + \dots + \left(\frac{\partial}{\partial x_d}\right)^2$$

Brownian motion and PDEs (3)

Definition

For *D* open, we define the **first exit time**:

$$\tau_D = \inf \{ t \ge 0 : X_t \notin D \}$$

Theorem (Doob, Dynkin, Hunt, Feller, Kakutani, ...)

The function:

$$u(t,x) = \mathbf{E}_X(f(X_t); t < \tau_D)$$

solves **heat equation** in *D* with **boundary condition**:

$$\frac{\partial u}{\partial t}(t,x) = c \Delta u(t,x) \qquad (t \ge 0, x \in D)$$

$$u(t,x) = 0 \qquad (t \ge 0, x \in \partial D)$$

$$u(0, x) = f(x)$$

$$(t \geq 0, x \in \partial D)$$

$$u(0,x)=f(x)$$

$$(x \in D)$$

Part I Section 2

Lévy processes

Lévy processes

Definition

A **Lévy process** is a stochastic process X_t with the following properties:

- $X_0 = x$
- independent increments
- stationarity
- no isotropy (though we will need it later)
- càdlàg paths: right-continuous with left limits (instead of continuous)
- We will only study one-dimensional Lévy processes
- In dimension one, isotropy = symmetry

Lévy measure

Definition

The **Lévy measure** ν describes intensity of jumps:

$$\nu(B) = \lim_{t \to 0^+} \frac{\mathbf{P}_X(X_t - X \in B)}{t}$$

Theorem

$$\nu$$
 is a Lévy measure $\iff \int \min(1, |y|^2) \nu(dy) < \infty$

Theorem (Lévy-Ito decomposition)

Every Lévy process is a sum of:

(plus compensation)

- pure-jump process (described by the Lévy measure)
- Brownian motion (up to an affine map)
- uniform motion

Lévy processes and non-local PDEs (1)

Theorem (a version of the Lévy-Khintchine formula)

The function:

Lévy processes

00000000000

$$u(t,x) = \mathbf{E}_{x} f(X_{t})$$

solves a 'heat' equation:

$$\frac{\partial u}{\partial t}(t,x) = (-A)u(t,x), \quad u(0,x) = f(x)$$

for a pseudo-differential operator:

$$(-\mathcal{A})f(x) = af''(x) + bf'(x)$$
$$+ \int (f(x+y) - f(x) - f'(x)y\mathbf{1}_{|y|<1})\nu(dy) \quad \Box$$

- $a \ge 0$: $d \times d$ matrix, 'Brownian part'
- $b \in \mathbb{R}^d$: 'drift'
- ν: Lévy measure, 'jump part'

Lévy processes and non-local PDEs (2)

Theorem

The function:

$$u(t,x) = \mathbf{E}_{X}(f(X_{t}); t < \tau_{D})$$

solves the 'heat' equation in *D* with **exterior** condition:

$$\frac{\partial u}{\partial t}(t,x) = (-A)u(t,x) \qquad (t \ge 0, x \in D)$$

$$u(t,x) = 0 \qquad (t \ge 0, x \in D^c)$$

$$u(0,x) = f(x) \qquad (x \in D)$$

- A is non-local!
- Hence Af(x) requires f to be defined everywhere (not just in a neighbourhood of x)
- $X(\tau_D) \in D^c$ instead of $X(\tau_D) \in \partial D$

Transition operators

Lévy processes

Definition

We define **free transition kernel**:

$$p_t(x,A) = \mathbf{P}_x(X_t \in A)$$

and transition kernel on D:

$$p_t^D(x,A) = \mathbf{P}_X(X_t \in A; t < \tau_D)$$

Definition

We define **free transition operators**:

$$P_t f(x) = \mathbf{E}_X f(X_t) = \int f(y) p_t(x, dy)$$

and transition operators on D:

$$P_t^D f(x) = \mathbf{E}_X(f(X_t); t < \tau_D) = \int_D f(y) p_t^D(x, dy)$$

Generators

BM

- $P_tP_sf = P_{t+s}f$
- $P_t^D P_s^D f = P_{t+s}^D f$

Definition

•
$$(-A)f = \lim_{t \to 0^+} \frac{P_t f - f}{t}$$
 (as in the 'heat' equation)

•
$$(-A_D)f = \lim_{t \to 0^+} \frac{P_t^D f - f}{t}$$

- When f(x) = 0 in D^c , then $A_D f(x) = A f(x)$
- A and An have different domains
- if $f \in Dom(A_D)$, then f(x) = 0 in D^c
- A and A_D are positive definite

Definition

BM

We define the **Lévy-Khintchine exponent**:

$$\Psi(\xi) = a\xi^{2} + ib\xi + \int (1 - e^{-i\xi y} - i\xi y \mathbf{1}_{|y| < 1}) \nu(dy)$$

Theorem (Lévy-Khintchine formula)

$$\mathbf{E}_0 e^{-i\xi X_t} = e^{-t \,\Psi(\xi)}$$

$$\widehat{P_t f}(\xi) = e^{-t \,\Psi(\xi)} \widehat{f}(\xi)$$

$$\widehat{\mathcal{A} f}(\xi) = \Psi(\xi) \widehat{f}(\xi)$$

• $\Psi(\xi)$ is our **initial data**: all results will be given in terms of $\Psi(\xi)$

Kernels and densities

- Often $p_t(x, dy)$ and $p_t^D(x, dy)$ are absolutely continuous
- Also the Lévy measure $\nu(dy)$ will typically be absolutely continuous

Notation

BM

For an absolutely continuous measure $\mu(dy)$, $\mu(y)$ denotes its density function

- p_t(x, y) and p_t^D(x, y) (if they exist) are called transition densities or heat kernels
- $p_t(x, y)$ depends only on y x:

$$p_t(x, y) = p_t(y - x)$$

BM

- We are given a Lévy-Khintchine exponent $\Psi(\xi)$ (think: $\Psi(\xi) = |\xi|^{\alpha}$, $0 < \alpha \le 2$)
- There is a corresponding pseudo-differential operator \mathcal{A} and:

$$\widehat{\mathcal{A}f}(\xi)=\Psi(\xi)\widehat{f}(\xi)$$
 (think: $\mathcal{A}=(-\Delta)^{lpha/2}$)

- Given a domain D, A_D is the operator A on Dwith 'Dirichlet' exterior condition
- We study eigenvalues and eigenfunctions of A_D
- There is a Lévy process X_t corresponding to A
- A_D corresponds to the process X_t killed at τ_D (the first exit time from *D*)

Half-line

Goal

Study the spectral theory for A_D and P_{+}^{D} for the **half-line**:

$$D=(0,\infty)\subseteq \mathbf{R}$$

- Why half-line?
 - explicit formulae (Part II)
 - applications in fluctuation theory (Part III)
 - model case for intervals and smooth domains in R^d (Part III)
 - possible applications in relativistic quantum physics
- The details are very technical, but the idea is simple
- We begin with two examples for which also the details are simple

Part I Section 3

Warm-up: Brownian motion in an interval

BM in interval: The simplest example

- Let $D = (0, \pi)$ be the **interval**
- Let X_t be the **Brownian motion** with $Var X_t = 2t$
- Then:
 - $\Psi(\xi) = \xi^2$
 - $(-\mathcal{A})f = \Delta f = f''$
 - $(-A_D) = \Delta_D$ is the Dirichlet Laplacian
- Goal: eigenvalues and eigenfunctions of A_D and P_t^D

- Eigenfunctions of A are sines and cosines
- Eigenfunctions and eigenvalues of A_D are

$$\begin{cases} f_n(x) = \sin(nx) \mathbf{1}_{x \in D} \\ \mu_n = n^2 \end{cases} \qquad n = 1, 2, \dots$$

Indeed:

- $f_n''(x) = -n^2 f_n(x)$ in D
- $f_n(x) = 0 \text{ in } D^c$
- $ightharpoonup f_n$ is continuous

Solution

For:

BM

$$f_n(x) = \sin(nx)\mathbf{1}_{x \in D}, \qquad \mu_n = n^2$$

we have:

$$P_t^D f_n = e^{-\mu_n t} f_n, \qquad \mathcal{A}_D f_n = \mu_n f_n$$

- Similar explicit solutions exist for balls, cubes etc.
- f_n form a complete orthogonal set in $L^2(D)$

$$\bullet ||f_n||_2 = \sqrt{\frac{\pi}{2}}$$

• $\frac{2}{\pi} \langle f, f_n \rangle$ is the Fourier series coefficient of f

Corollary

BM

$$P_t^D f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-\mu_n t} \langle f, f_n \rangle f_n(x)$$

$$\rho_t^D(x,y) = \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-\mu_n t} f_n(x) f_n(y)$$

- There are better formulae for $p_t^D(x, y)$ for small t
- Results extend to:
 - more general processes
 - in general bounded domains

But in general, there are no explicit formulae for μ_n and f_n !

Part I Section 4

Motivation: Brownian motion in half-line

BM in half-line: The unbounded example

- Let $D = (0, \infty)$ be the half-line
- Let X_t be again the **Brownian motion**, $Var X_t = 2t$:
 - $\Psi(\xi) = \xi^2$
 - $(-\mathcal{A})f = \Delta f = f''$
 - $(-A_D) = \Delta_D$ is the Dirichlet Laplacian
- Goal: eigenvalues and eigenfunctions of A_D and P_t^D
- Main change: P^D_t are no longer compact operators

BM in half-line: eigenvalues and eigenfunctions

• Again, eigenfunctions and eigenvalues of A_D are:

$$\begin{cases} F_{\lambda}(x) = \sin(\lambda x) \mathbf{1}_{x>0} \\ \mu_{\lambda} = \lambda^{2} \end{cases} \qquad \lambda \in (0, \infty)$$

Indeed:

- $F_{\lambda}^{\prime\prime}(x) = -\lambda^2 F_{\lambda}(x)$ in D
- $F_{\lambda}(x) = 0$ in D^c
- F_{λ} is continuous
- This time $F_{\lambda} \notin L^{2}(D)!$
- Note that $\mu_{\lambda} = \Psi(\lambda)$

BM in half-line: solution

Solution

For:

$$F_{\lambda}(x) = \sin(\lambda x) \mathbf{1}_{x>0}, \qquad \mu_{\lambda} = \lambda^2 = \Psi(\lambda)$$

we have:

$$P_t^D F_{\lambda} = e^{-t \, \Psi(\lambda)} F_{\lambda}, \qquad \mathcal{A}_D F_{\lambda} = \Psi(\lambda) F_{\lambda}$$

- F_{λ} are not in $L^{2}(D)$
- There are uncountably many eigenfunctions
- The Fourier sine transform of *f* is given by:

$$\langle f, F_{\lambda} \rangle = \int f(y) F_{\lambda}(y) dy$$

BM in half-line: eigenfunction expansion

Corollary

BM

$$P_t^D f(x) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} \langle f, F_\lambda \rangle F_\lambda(x) d\lambda$$
$$\rho_t^D(x, y) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} F_\lambda(x) F_\lambda(y) d\lambda$$

- Here $f \in L^1(D)$ Can be extended to $f \in L^2(D)$
- By **reflection principle**, there is a better formula:

$$p_t^D(x, y) = p_t(y - x) - p_t(y + x) \quad (x, y \in D)$$

No reflection principle for jump-type processes

 No similar results for other Lévy processes! (until very recently)

Problems:

- (1) Let X_t be the Brownian motion and $D=(0,\infty)$. Prove, by a direct calculation, that $F_{\lambda}(x)=\sin(\lambda x)$ is the eigenfunction of P_t^D .

 (Hint: use $\rho_t^D(x,y)=\rho_t(y-x)-\rho_t(y+x)$)
- (2) Let X_t be the Brownian motion and $D = (0, \pi)$. Prove that for $x, y \in D$:

$$p_t^D(x,y) = \sum_{n=-\infty}^{\infty} p_t(y-x+2n\pi) - \sum_{n=-\infty}^{\infty} p_t(y+x+2n\pi)$$

- (3) Show that for $D=(0,\infty)$, \mathcal{A}_D and P_t^D may fail to be normal operators when X_t is not symmetric.
- (4) Let X_t be the Brownian motion with drift $2b \in \mathbf{R}$ (that is, $\operatorname{Var} X_t = 2t$, $\mathbf{E}_x X_t = 2bt$) and $D = (0, \infty)$. Prove that $F_\lambda(x) = e^{-bx} \sin(\lambda x) \mathbf{1}_{x>0}$ ($\lambda > 0$) satisfies $A_D F_\lambda(x) = (\lambda^2 + b^2) F_\lambda$ and $P_t^D F_\lambda = e^{-t(\lambda^2 + b^2)} F_\lambda$. Give eigenfunction expansion for P_t^D on the weighted $L^2(D; e^{bx} dx)$ space. Find a (well-known) closed-form formula for $P_t^D(x, y)$.

Part I Section 5

Complete monotonicity, complete Bernstein functions and subordinate Brownian motions

Assumptions

Goal

BM

For a class of Lévy processes in half-line $D = (0, \infty)$:

- find a formula for eigenfunctions of A_D and P_{+}^{D}
- prove eigenfunctions expansion
- X_t should be symmetric (= isotropic) (otherwise, A_D , P_t^D are not self-adjoint)
- some regularity is needed

Assumption (₺)

- There is no drift
- The Lévy measure ν is:
 - symmetric
 - ▶ has completely monotone density on $(0, \infty)$

Complete monotonicity

Definition

BM

g(y) is **completely monotone** if:

$$(-1)^n g^{(n)}(y) \ge 0 \quad (n = 0, 1, 2, ..., y > 0)$$

Theorem (Sergei Natanovich Bernstein, 1929)

Equivalently: g is the **Laplace transform** of a measure:

$$g(y) = \mathcal{L}m(y) = \int_0^\infty e^{-sy} m(ds)$$

Proof

- (⇐) direct differentiation (easy)
- (⇒) inversion of Laplace transform (hard)

Complete Bernstein functions

Definition

 $\Phi(\xi)$ is a **complete Bernstein function (CBF)** if:

- $\Phi : \mathbf{C} \setminus (-\infty, 0] \to \mathbf{C} \setminus (-\infty, 0]$ is **holomorphic**
- $\operatorname{Im} \Phi(\xi) \ge 0$ when $\operatorname{Im} \xi \ge 0$
- $\operatorname{Im} \Phi(\xi) \leq 0$ when $\operatorname{Im} \xi \leq 0$
- Equivalent definitions and properties of CBFs will be discussed later

Theorem

Assumption $(\mathfrak{T}) \iff \Psi(\xi) = \Phi(\xi^2)$ for a **CBF** $\Phi(\xi)$

- $\Psi(\xi)$ is the Lévy-Khintchine exponent of X_t
- Proof will be given later in this part

Subordinators

Definition

A **subordinator** is a nonnegative Lévy process (starting at 0)

Definition

We define the **Laplace exponent**:

$$\Phi(\xi) = b\xi + \int_0^\infty (1 - e^{-\xi y}) \nu(dy) \int_{0}^\infty \frac{(b \ge 0)}{(\int_0^\infty \min(1, y) \nu(dy) < \infty)}$$

Theorem (Lévy-Khintchine formula for subordinators)

$$\begin{split} \mathbf{E}_0 e^{-\xi X_t} &= e^{-t\Phi(\xi)} \\ \mathcal{L}(P_t f)(\xi) &= e^{-t\Phi(\xi)} \mathcal{L}f(\xi) \\ \mathcal{L}(\mathcal{A}f)(\xi) &= \Phi(\xi) \mathcal{L}f(\xi) \end{split}$$

Subordinators and CBFs (1)

Theorem

BM

(of a subordinator)

Laplace exponent $\Phi(\xi)$ is a CBF

(of a subordinator)

Lévy measure ν has completely monotone density

Proof

(that is, $v(dy) = (\mathcal{L}m(y))dy$) Suppose that $v(y) = \mathcal{L}m(y)$

$$\Phi(\xi) = b\xi + \int_0^\infty (1 - e^{-\xi y}) \nu(dy)$$

$$= b\xi + \int_0^\infty \int_0^\infty (1 - e^{-\xi y}) e^{-sy} m(ds) dy$$

$$= b\xi + \int_0^\infty \frac{\xi}{s + \xi} \frac{m(ds)}{s}$$

Subordinators and CBFs (2)

Proof (cont.)

•
$$\Phi(\xi) = b\xi + \int_0^\infty \frac{\xi}{s+\xi} \frac{m(ds)}{s}$$
(more precisely: extends to a CBF)

- By checking Im $\Phi(\xi)$, $\Phi(\xi)$ is a CBF
- Reasoning can be reversed by the next result.

Theorem

$$\Phi(\xi) \text{ is a CBF} \iff \Phi(\xi) = a + b\xi + \int_0^\infty \frac{\xi}{s + \xi} \frac{m(ds)}{s}$$

$$\int_0^\infty \frac{\xi}{s + \xi} \frac{m(ds)}{s}$$

$$\int_0^\infty \frac{\xi}{s} \frac{m(ds)}{s}$$

Proof

- (←) direct calculation (easy)
- (⇒) representation of positive harmonic functions by the Poisson kernel (harder)

Subordination

Definition

- If Y_t is a stochastic process, Z_t is a subordinator, and Y_t , Z_t are independent processes, then $X_t = Y(Z_t)$ is a subordinate process
- If Y_t is Brownian motion, then X_t is **subordinate Brownian motion**

Theorem

Suppose that:

- Y_t is Brownian motion ($Var Y_t = 2t$, $\Psi_Y(\xi) = \xi^2$)
- Z_t is a subordinator
- $\Phi_{Z}(\xi)$ is the Laplace exponent of Z_{t}

Then $\Psi_X(\xi) = \Phi_Z(\xi^2)$ is the Lévy-Khintchine exp. of X_t

Proof

Direct calculation: a nice exercise

Summary

Theorem (equivalent forms of Assumption (\pounds))

- X_t has no drift
- The Lévy measure ν of X_t is:
 - symmetric
 - ▶ has completely monotone density on $(0, \infty)$

1

• The Lévy-Khintchine exponent of X_t satisfies $\Psi(\xi) = \Phi(\xi^2)$ for a CBF $\Phi(\xi)$

- $X_t = Y(Z_t)$ is a subordinate Brownian motion
- The Lévy measure v_Z of Z_t has completely monotone density on $(0, \infty)$

Examples

ВМ

Process:	Stable	Relativistic	Var. gamma
Parameter:	$\alpha \in (0, 2)$	$m \in (0, \infty)$	_
$\Psi(\xi)$	$ \xi ^{\alpha}$	$\sqrt{\xi^2 + m^2} - m$	$\log(\xi^2+1)$
$\nu_X(y)$	Cα	$mK_1(m y)$	e ^{- y}
	$\overline{ y ^{1+lpha}}$	${\pi y }$	<u> </u>
$\Phi(\xi)$	ξα/2	$\sqrt{\xi+m^2}-m$	$log(\xi+1)$
$\nu_Z(s)$	c_{α}	e ^{-ms}	e ^{-s}
	$\overline{s^{1+\alpha/2}}$	$2\sqrt{\pi}s^{3/2}$	S
	II	$(K_1 \text{ is a Bessel function})$	

BM

- Suppose that $X_t = Y(Z_t)$, Y_t is BM, Z_t is a subordinator and $v_Z(s) = \mathcal{L}m(s)$
- $p_{X,t}(y) = \int_{0}^{\infty} p_{Y,s}(y)p_{Z,t}(s)ds$ (subordination formula)
- $v_X(y) = \lim_{t \to 0^+} \frac{p_{X,t}(y)}{t} = \int_0^\infty p_{Y,s}(y) v_Z(s) ds$
- By $p_{Y,s}(y) = \frac{1}{\sqrt{4\pi s}} \exp\left(-\frac{y^2}{4s}\right)$, $v_Z(s) = \int_0^\infty e^{-st} m(dt)$:

$$\nu_X(y) = \int_0^\infty \left(\int_0^\infty \frac{1}{\sqrt{4\pi s}} \exp\left(-\frac{y^2}{4s}\right) e^{-st} ds \right) m(dt)$$
$$= \int_0^\infty \frac{1}{2\sqrt{t}} e^{-\sqrt{t}|y|} m(dt) = \mathcal{L}\tilde{m}(|y|)$$

Proof $((1) \Rightarrow (3))$

BM

Reverse the reasoning

Proof $((2) \iff (3))$

- $\Psi_X(\xi) = \Phi_Z(\xi^2) \iff X_t = Y(Z_t)$ (a theorem above)
- $\Phi_Z(\xi)$ is a CBF $\iff \nu_Z(s)$ is completely monotone (another theorem above)
- Rene Schilling, Renming Song, Zoran Vonraček Bernstein Functions: Theory and Applications De Gruyter, 2010

Problems:

- (1) Let $\Psi_Y(\xi)$ be the Lévy-Khintchine exponent of a Lévy process Y_t , and $\Phi_Z(\xi)$ be the Laplace exponent of a subordinator Z_t . Suppose that Y_t and Z_t are independent processes. Show that the Lévy-Khintchine exponent of $X_t = Y(Z_t)$ is $\Psi_X(\xi) = \Phi_Z(\Psi_Y(\xi))$.
- (Note: Re $\Psi_Y(\xi) \ge 0$ and $\Phi_Z(\xi)$ is well-defined if Re $\xi \ge 0$)
- (2) Prove that $\Phi(\xi)$ is a Laplace exponent (a.k.a. **Bernstein function**) if and only if $\Phi(0) \ge 0$ and $\Phi'(\xi)$ is completely monotone.
- (3) Suppose that $\Phi(\xi)$, $\Phi_1(\xi)$, $\Phi_2(\xi)$ are non-zero CBFs and c > 0, $0 < \alpha < 1$. Prove that:
 - (a) $c\Phi(\xi)$, $\Phi_1(\xi) + \Phi_2(\xi)$, $\Phi_1(\Phi_2(\xi))$, $\frac{\xi}{\Phi(\xi)}$, $(\Phi_1(\xi))^{\alpha}(\Phi_2(\xi))^{1-\alpha}$ are CBFs;
 - (b) $\xi^{1-\alpha}\Phi(\xi^{\alpha})$ is a CBF; (Hint: use only ' $\Phi(\xi)$ is CBF $\Rightarrow \Phi(\xi^{\alpha})$ is CBF' and ' $\Phi(\xi)$ is CBF $\Rightarrow \xi/\Phi(\xi)$ is CBF')
 - (c) $(\Phi(\xi^{\alpha}))^{1/\alpha}$ is a CBF;
 - (d) Φ maps $\{\xi \in \mathbf{C} : \operatorname{Arg} \xi \in (0, \alpha\pi)\}$ into itself;
 - (e) $(\Phi_1(\xi^{\alpha}) + \Phi_2(\xi^{\alpha}))^{1/\alpha}$, $((\Phi_1(\xi))^{\alpha} + (\Phi_2(\xi))^{\alpha})^{1/\alpha}$, $\Phi_1(\xi^{\alpha})\Phi_2(\xi^{1-\alpha})$ are CBFs.

Part II

Eigenfunction expansion in half-line

- Formula for eigenfunctions
- Properties of eigenfunctions
- Eigenfunction expansion

Note: There are a lot of ugly formulae in this part!

Part II Section 1

Formula for eigenfunctions

Setting

Assumptions

Throughout this part we assume that:

- X_t is a (symmetric) Lévy process in R
- $\Psi(\xi)$ is the Lévy-Khintchine exponent of X_t
- Assumption (ま):

$$\Psi(\xi) = \Phi(\xi^2)$$
 for a **CBF** $\Phi(\xi)$

- P_t are free transition operators of X_t
 A is the generator of P_t
- $D=(0,\infty)$
- P_t^D are transition operators of X_t on D A_D is the generator of P_t^D

Eigenfunctions: intuition

• For $g(x) = f(x)\mathbf{1}_{x>0}$ and $x \in D$ large:

$$\mathcal{A}_D g(x) = \mathcal{A} g(x) \approx \mathcal{A} f(x)$$

Guess

For each $\lambda > 0$ there is $F_{\lambda}(x)$ such that:

$$A_D F_{\lambda} = \Psi(\lambda) F_{\lambda}, \qquad P_t^D F_{\lambda} = e^{-t\Psi(\lambda)} F_{\lambda}$$

and $F_{\lambda}(x) \approx \sin(\lambda x + \theta_{\lambda})$ as $x \to \infty$. That is:

$$F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) \mathbf{1}_{x>0} - G_{\lambda}(x)$$

where G_{λ} is **small**.

- In this part, always x > 0
- For simplicity, we drop $\mathbf{1}_{x>0}$ from the notation

Eigenfunctions: formula (1)

Theorem [K, 2010]

For each $\lambda > 0$ there are:

• $\theta_{\lambda} \in [0, \pi/2)$

• completely monotone $G_{\lambda}(x)$

such that $F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) - G_{\lambda}(x)$ satisfies:

$$A_D F_{\lambda} = \Psi(\lambda) F_{\lambda}, \quad P_t^D F_{\lambda} = e^{-t\Psi(\lambda)} F_{\lambda}$$

 $F_{\lambda}(x/\lambda)$ for the relativistic process $(\lambda = \frac{1}{20}, \frac{1}{2}, 1, 10)$

Eigenfunctions: formula (2)

- $F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) G_{\lambda}(x)$
- G_{λ} is completely monotone: $G_{\lambda}(x) = \mathcal{L}\gamma_{\lambda}(x)$

Theorem [K, 2010]

$$\theta_{\lambda} = \frac{1}{\pi} \int_{0}^{\infty} \frac{\lambda}{\lambda^{2} - u^{2}} \log \frac{2\lambda(\Psi(\lambda) - \Psi(u))}{\Psi'(\lambda)(\lambda^{2} - u^{2})} du$$

$$\gamma_{\lambda}(ds) = \frac{1}{2\pi} \left(\operatorname{Im} \frac{\Psi'(\lambda)}{\Psi(\lambda) - \Phi^{+}(-s^{2})} \right)$$

$$\times \exp \left(\frac{1}{\pi} \int_{0}^{\infty} \frac{s}{s^{2} + u^{2}} \log \frac{2\lambda(\Psi(\lambda) - \Psi(u))}{\Psi'(\lambda)(\lambda^{2} - u^{2})} du \right) ds \quad \Box$$

- γ_λ may fail to have density!
- $\Phi^+(-s^2) = \lim_{\varepsilon \to 0^+} \Phi(-s^2 + \varepsilon i)$ in the distributional sense

Eigenfunctions: stable processes

Example

(symmetric)

For the α -stable process, $\Psi(\xi) = |\xi|^{\alpha}$, $\alpha \in (0, 2)$:

$$F_{\lambda}(x) = \sin\left(\lambda x + \frac{(2-\alpha)\pi}{8}\right) - \int_{0}^{\infty} \gamma(s)e^{-\lambda sx}ds$$

$$\gamma(s) = \frac{\sqrt{2\alpha}\sin(\alpha\pi/2)}{2\pi} \frac{s^{\alpha}}{1 + s^{2\alpha} - 2s^{\alpha}\cos(\alpha\pi/2)}$$
$$\times \exp\left(\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1 + u^{2}} \log \frac{1 - s^{2}u^{2}}{1 - s^{\alpha}u^{\alpha}} du\right)$$

• Scaling:
$$F_{\lambda}(x) = F_{1}(\lambda x)$$

•
$$F_{\lambda}(x) \sim \frac{1}{\sqrt{\alpha/2} \Gamma(\alpha/2)} (\lambda x)^{\alpha/2} \text{ as } x \to 0^+$$

Eigenfunctions: relativistic processes

Example

For the **relativistic process**, $\Psi(\xi) = \sqrt{\xi^2 + m^2} - m$:

- θ_{λ} increases from 0 to $\pi/8$
- $F_{\lambda}(x) \sim \sqrt{\frac{2\lambda x}{\pi}}$ as $x \to 0^+$

Eigenfunctions: two more examples

Example

For the **variance gamma process**, $\Psi(\xi) = \log(\xi^2 + 1)$:

- θ_{λ} increases from 0 to $\pi/4$
- $F_{\lambda}(x) \sim \frac{\lambda}{\sqrt{2}\sqrt{\lambda^2 + 1}} \frac{1}{\sqrt{|\log x|}} \text{ as } x \to 0^+$

Example

For the **mixture of stables**, $\Psi(\xi) = \xi^{\alpha} + \xi^{\beta}$, (sum of two independent stables, $0 < \alpha \le \beta \le 2$):

- θ_{λ} decreases from $\frac{(2-\alpha)\pi}{8}$ to $\frac{(2-\beta)\pi}{8}$
- $F_{\lambda}(x) \sim \frac{1}{\sqrt{\beta/2} \Gamma(\beta/2)} (\lambda x)^{\beta/2} \text{ as } x \to 0^+$

Eigenfunctions: yet another two examples

Example

For the Brownian motion, $\Psi(\xi) = \xi^2$:

- $\log \frac{2\lambda(\Psi(\lambda) \Psi(u))}{\Psi'(\lambda)(\lambda^2 u^2)} = 0$
- $\theta_{\lambda} = 0$, $\gamma_{\lambda} = 0$ and $F_{\lambda}(x) = \sin(\lambda x)$, as expected

Example

For
$$\Psi(\xi) = \frac{\xi}{1+\xi}$$
, $\nu(y) = \frac{e^{-|y|}}{2}$ (compound Poisson with Laplace distributed jumps):

- $\theta_{\lambda} = \arctan \lambda$ increases from 0 to $\pi/2$
- γ_λ vanishes!
- $F_{\lambda}(x) = \sin(\lambda x + \arctan \lambda) \mathbf{1}_{x>0}$
- F_{λ} is discontinuous at 0!

Part II Section 2

Properties of eigenfunctions

Laplace transform of eigenfunctions

- Derivation of the formula for F_λ will be sketched in Part IV
- Bounds and asymptotics of F_λ can be proved in a fairly general setting
- Most of them follow from the formula for $\mathcal{L}F_{\lambda}$
- In most applications, exact formula is not needed

Theorem [K, 2010]

$$\mathcal{L}F_{\lambda}(s) = \frac{\lambda}{\lambda^{2} + s^{2}} \times \exp\left(\frac{1}{\pi} \int_{0}^{\infty} \frac{s}{s^{2} + u^{2}} \log \frac{\Psi'(\lambda)(\lambda^{2} - u^{2})}{2\lambda(\Psi(\lambda) - \Psi(u))} du\right) \square$$

Common elements (the worst slide ever!)

$$\theta_{\lambda} = \frac{1}{\pi} \int_{0}^{\infty} \frac{\lambda}{\lambda^{2} - u^{2}} \log \frac{2\lambda(\Psi(\lambda) - \Psi(u))}{\Psi'(\lambda)(\lambda^{2} - u^{2})} du$$

$$\gamma_{\lambda}(ds) = \frac{1}{2\pi} \left(\operatorname{Im} \frac{\Psi'(\lambda)}{\Psi(\lambda) - \Phi^{+}(-s^{2})} \right)$$

$$\times \exp \left(\frac{1}{\pi} \int_{0}^{\infty} \frac{s}{s^{2} + u^{2}} \log \frac{2\lambda(\Psi(\lambda) - \Psi(u))}{\Psi'(\lambda)(\lambda^{2} - u^{2})} du \right) ds$$

$$\mathcal{L}F_{\lambda}(s) = \frac{\lambda}{\lambda^{2} + s^{2}} \exp \left(\frac{1}{\pi} \int_{0}^{\infty} \frac{s}{s^{2} + u^{2}} \log \frac{\Psi'(\lambda)(\lambda^{2} - u^{2})}{2\lambda(\Psi(\lambda) - \Psi(u))} du \right)$$

Definition

$$\Phi_{\lambda}^{\dagger}(\xi) = \exp\left(\frac{1}{\pi} \int_{0}^{\infty} \frac{\xi}{\xi^{2} + u^{2}} \log \frac{\Psi'(\lambda)(\lambda^{2} - u^{2})}{2\lambda(\Psi(\lambda) - \Psi(u))} du\right)$$

Simplification

- $\bullet \ \Psi(\xi) = \Phi(\xi^2)$
- We will now use mostly $\Phi(\xi)$, not $\Psi(\xi)$

Definition

•
$$\Phi_{\lambda}(\xi^2) = \frac{\Phi'(\lambda^2)(\lambda^2 - \xi^2)}{\Phi(\lambda^2) - \Phi(\xi^2)} = \frac{\Psi'(\lambda)(\lambda^2 - \xi^2)}{2\lambda(\Psi(\lambda) - \Psi(\xi))}$$

•
$$\Phi^{\dagger}(\xi) = \exp\left(\frac{1}{\pi} \int_0^{\infty} \frac{\xi}{\xi^2 + u^2} \log \Phi(u^2) du\right)$$

$$ullet$$
 $\Phi_{\lambda}^{\dagger}=(\Phi_{\lambda})^{\dagger}$

• Arg
$$\Phi^{\dagger}(i\xi) = -\frac{1}{\pi} \int_0^{\infty} \frac{\xi}{\xi^2 - u^2} \log \Phi(u^2) du$$

Eigenfunctions revisited

Theorem

We have:

$$F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) - \mathcal{L}\gamma_{\lambda}(x)$$

with:

$$egin{aligned} heta_{\lambda} &= \mathsf{Arg}(\Phi_{\lambda}^{\dagger}(i\lambda)) \ \gamma_{\lambda}(ds) &= rac{1}{\pi} rac{\lambda}{\lambda^2 + s^2} rac{\mathsf{Im}(\Phi_{\lambda})^+(-s)}{\Phi_{\lambda}^{\dagger}(s)} \, ds \ \mathcal{L}F_{\lambda}(s) &= rac{\lambda}{\lambda^2 + s^2} \, \Phi_{\lambda}^{\dagger}(s) \end{aligned}$$

Technical details are now moved to definitions

Divide and rule

Strategy [K, 2010], [K-Małecki-Ryznar, 2011]

- (1) study Φ_{λ}
- (2) study Φ^{\dagger}
- (3) use (1) and (2) to θ_{λ}
- (4) apply (1) and (2) to $\mathcal{L}F_{\lambda}$
- (5) use tauberian theory (Jovan Karamata et al.) (properties of $\mathcal{L}F_{\lambda} \Rightarrow$ properties of F_{λ})
- Alternatively, for a specific Ψ, one may try:
- (4') apply (1) and (2) to γ_{λ}
- (5') use abelian theory (properties of $\gamma_{\lambda} \Rightarrow$ properties of $\mathcal{L}\gamma_{\lambda}$)

Properties of Φ_{λ}

$$\Phi_{\lambda}(\xi) = \frac{\Phi'(\lambda^2)(\lambda^2 - \xi)}{\Phi(\lambda^2) - \Phi(\xi)}$$

Lemma

$$\Phi(\xi)$$
 is a CBF $\Rightarrow \Phi_{\lambda}(\xi)$ is a CBF

- Proof: nice exercise
- estimates of Φ_{λ} depend on bounds on $\frac{-\xi \Phi^{\prime\prime}(\xi)}{\Phi^{\prime}(\xi)}$

•
$$\Phi_{\lambda}(\xi^{2}) \sim \Phi'(\lambda^{2}) \frac{\xi^{2}}{\Phi(\xi^{2})}$$
 as $\xi \to \infty$
• $\Phi_{\lambda}(\xi^{2}) \to \Phi'(\lambda^{2}) \frac{\lambda^{2}}{\Phi(\lambda^{2})}$ as $\xi \to 0^{+}$

•
$$\Phi_{\lambda}(\xi^2) \to \Phi'(\lambda^2) \frac{\lambda^2}{\Phi(\lambda^2)}$$
 as $\xi \to 0^+$

Properties of Φ^{\dagger} (1)

$$\Phi^{\dagger}(\xi) = \exp\left(\frac{1}{\pi} \int_{0}^{\infty} \frac{\xi}{\xi^{2} + u^{2}} \log \Phi(u^{2}) du\right)$$

Lemma [K, 2010], [Kim-Song-Vondraček, 2010], [Rogers, 1983] (and discoverers of the Wiener-Hopf factorization for Lévy processes)

- $\Phi(\xi)$ is a CBF $\Rightarrow \Phi^{\dagger}(\xi)$ is a CBF
- $\Phi^{\dagger}(\xi)\Phi^{\dagger}(-\xi) = \Phi(-\xi^2)$
- Proof: smart contour integration
- A fundamental lemma!
- It enables inversion of the Laplace transform in

$$\mathcal{L}F_{\lambda}(s) = \frac{\lambda}{\lambda^2 + s^2} \, \Phi^{\dagger}_{\lambda}(s)$$

- Residues at $\pm i\lambda \mapsto \sin(\lambda x + \theta_{\lambda})$
- Jump along $(-\infty, 0] \mapsto \mathcal{L}\gamma_{\lambda}(x)$

Properties of Φ^{\dagger} (2)

$$\Phi^{\dagger}(\xi) = \exp\left(\frac{1}{\pi} \int_0^{\infty} \frac{\xi}{\xi^2 + u^2} \log \Phi(u^2) du\right)$$

Bounds [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

$$\frac{1}{2}\sqrt{\Phi(\xi^2)} \le \Phi^{\dagger}(\xi) \le 2\sqrt{\Phi(\xi^2)}$$

Proof

•
$$\min\left(1, \frac{u^2}{\xi^2}\right) \le \frac{\Phi(u^2)}{\Phi(\xi^2)} \le \max\left(1, \frac{u^2}{\xi^2}\right)$$

•
$$\frac{1}{\pi} \int_0^\infty \frac{\xi}{\xi^2 + u^2} \log \left(\max \left(1, \frac{u^2}{\xi^2} \right) \right) du \le \log 2$$

Similar estimate for the lower bound

Properties of Φ^{\dagger} (3)

Definition

 $\Phi(\xi)$ is **regularly varying** of order α (α -RV) at 0^+ if

$$\lim_{\xi \to 0^+} \frac{\Phi(c\xi)}{\Phi(\xi)} = c^{\alpha} \qquad \text{for all } c > 0$$

 $\Phi(\xi)$ is **regularly varying** of order α (α -**RV**) at ∞ if

$$\lim_{\xi \to \infty} \frac{\Phi(c\xi)}{\Phi(\xi)} = c^{\alpha} \qquad \text{for all } c > 0$$

Asymptotics [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

- $\Phi^{\dagger}(\xi) \sim \sqrt{\Phi(\xi^2)}$ as $\xi \to \infty$ if $\Phi(\xi)$ is RV at ∞
- $\Phi^{\dagger}(\xi) \sim \sqrt{\Phi(\xi^2)}$ as $\xi \to 0^+$ if $\Phi(\xi)$ is RV at 0^+
- Proof: explicit estimates

Properties of θ_{λ}

$$heta_{\lambda} = \operatorname{Arg} \Phi_{\lambda}^{\dagger}(i\lambda)$$

- $\theta_{\lambda} \in [0, \pi/2)$ $(\Phi_{\lambda}^{\dagger}(\xi) \not\equiv c \, \xi$, so $\theta_{\lambda} \not= \pi/2)$
- θ_{λ} close to $\pi/2$ generates problems
- $\theta_{\lambda} \leq \arctan \sqrt{\frac{\Phi(\lambda^2)}{\lambda^2 \Phi'(\lambda^2)}} 1$ (good for $\Phi(\xi)$ with power-type growth)

Bounds [K-Małecki-Ryznar, 2011]

$$\left(\inf_{\xi>0} \frac{-\xi \Phi''(\xi)}{\Phi'(\xi)}\right) \frac{\pi}{4} \le \theta_{\lambda} \le \left(\sup_{\xi>0} \frac{-\xi \Phi''(\xi)}{\Phi'(\xi)}\right) \frac{\pi}{4}$$

• Proof: bounds for Φ_{λ} , explicit formula for $\Phi(\xi) = \xi^{\alpha/2}$

Properties of F_{λ} (1)

$$\mathcal{L}F_{\lambda}(s) = \frac{\lambda}{\lambda^2 + s^2} \Phi_{\lambda}^{\dagger}(s)$$

$$F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) - \mathcal{L}\gamma_{\lambda}(x)$$

Bounds [K-Małecki-Ryznar, 2011]

When $\lambda x \leq \frac{1}{2}(\frac{\pi}{2} - \theta_{\lambda})$, then:

$$\frac{1}{5}\lambda x \sqrt{\Phi_{\lambda}(1/x^2)} \le F_{\lambda}(x) \le 30(\frac{\pi}{2} - \theta_{\lambda})\lambda x \sqrt{\Phi_{\lambda}(1/x^2)}$$

- Proof: concavity of $F_{\lambda}(x)$ for small x, comparison of Laplace transforms
- Kind of uniform continuity of $F_{\lambda}(x/\lambda)$

Properties of F_{λ} (2)

$$\mathcal{L}F_{\lambda}(s) = \frac{\lambda}{\lambda^2 + s^2} \Phi_{\lambda}^{\dagger}(s)$$

$$F_{\lambda}(x) = \sin(\lambda x + \theta_{\lambda}) - \mathcal{L}\gamma_{\lambda}(x)$$

Asymptotics [K, 2010], [K-Małecki-Ryznar, 2011]

•
$$F_{\lambda}(x) \sim \frac{\sqrt{\lambda^2 \Phi'(\lambda^2)}}{\Gamma(1+\alpha)} \frac{1}{\sqrt{\Phi(1/x^2)}}$$
 as $x \to 0^+$
if $\Phi(\xi)$ is α -RV at ∞

• $F_{\lambda}(x) \sim V(x) \sqrt{\lambda^2 \Phi'(\lambda^2)}$ as $\lambda \to 0^+$

if $\limsup_{\lambda \to 0^+} \theta_{\lambda} < \pi/2$

- · Proof: technical, nothing interesting
- V(x) comes from fluctuation theory, $\mathcal{L}V(\xi) = \frac{1}{\xi \Phi^{\dagger}(\xi)}$

Part II Section 3

Eigenfunction expansion

Eigenfunction expansion (1)

Guess

$$P_t^D f(x) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} \langle f, F_\lambda \rangle F_\lambda(x) d\lambda$$
$$A_D f(x) = \frac{2}{\pi} \int_0^\infty \Psi(\lambda) \langle f, F_\lambda \rangle F_\lambda(x) d\lambda$$
$$p_t^D(x, y) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} F_\lambda(x) F_\lambda(y) d\lambda$$

- Some delicate problems with integrability arise when $e^{-t\Psi(\lambda)}$ is not integrable
- Solution: use continuous $L^2(D)$ extension

Eigenfunction expansion (2)

Definition

$$\Pi f(\lambda) = \int_0^\infty f(x) F_{\lambda}(x) dx = \langle f, F_{\lambda} \rangle$$

$$\Pi^* g(x) = \int_0^\infty g(\lambda) F_{\lambda}(x) d\lambda$$

Theorem [K, 2010], [K-Małecki-Ryznar, 2011]

- $\sqrt{\frac{2}{\pi}}\Pi$, $\sqrt{\frac{2}{\pi}}\Pi^*$ extend to **unitary** operators on $L^2(D)$
- $f \in Dom_{L^2(D)}(A_D) \iff \Psi(\lambda) \sqcap f(\lambda) \in L^2(D)$
- $\Pi(A_D f)(\lambda) = \Psi(\lambda)\Pi f(\lambda)$ for $f \in Dom_{L^2(D)}(A_D)$
- $\Pi(P_t^D f)(\lambda) = e^{-t\Psi(\lambda)}\Pi f(\lambda)$ for $f \in L^2(D)$

Eigenfunction expansion (3)

Corollary

If $f \in L^1(D)$ and $e^{-t\Psi(\lambda)}$ is integrable, then:

$$P_t^D f(x) = \frac{2}{\pi} \Pi^* (\Psi \cdot (\Pi f))(x)$$
$$= \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} \langle f, F_\lambda \rangle F_\lambda(x) d\lambda$$

If $e^{-t\Psi(\lambda)}$ is integrable, then:

$$p_t^D(x,y) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} F_{\lambda}(x) F_{\lambda}(y) d\lambda$$

- Proofs will be sketched in Part IV
- Most difficult part: completeness of F_{λ}

Problems:

- (1) Show that if $\Phi(\xi)$ is a CBF, then $\Phi_{\lambda}(\xi)$ is a CBF.
- (2) Prove, by a direct calculation, that for $\Psi(\xi^2+1)$ (that is, $\nu(y)=e^{-|y|}/2$), $F_{\xi}(x)=\sin(\xi x+\arctan\xi)\mathbf{1}_{\xi>0}$ is an eigenfunction in $(0,\infty)$.
- (3) Prove that P_t^D has no $L^2(D)$ eigenfunctions when X_t is the symmetric α -stable process, $\Psi(\xi) = |\xi|^{\alpha}$. Note: this is true in the general case under Assumption (4), but the proof is much more difficult.
- (4) Show that P_{+}^{D} may have $L^{2}(D)$ eigenfunctions when X_{t} is not symmetric.

Open problems:

- (1) Are there any other eigenfunctions F of P_{+}^{D} ?
- (2) Formula for $\mathcal{L}F_{\lambda}$ makes sense for a much more general class of Lévy-Khintchine exponents $\Psi(\xi)$. For which exponents does this formula indeed define the Laplace transform of a function?
- (3) Is it true that $p_t^D(x,y) = \lim_{\varepsilon \to 0^+} \frac{2}{\pi} \int_0^\infty e^{-\varepsilon \lambda t \Psi(\lambda)} F_\lambda(x) F_\lambda(y) d\lambda$ when $e^{-t \Psi(\lambda)}$ is not integrable?

Part III

Applications

- Supremum functional and first passage times
- Connections with fluctuation theory
- Eigenvalues for intervals
- Higher-dimensional domains

Part III Section 1

Supremum functional and first passage times

Supremum functional and FPT (1)

 In this section we often write P for P₀ (that is, X_t starts at 0)

Definition

We define the the **first passage time** (**FPT**):

$$\tau_X = \inf \{ s \ge 0 : X_s \ge x \}$$

and the **supremum functional** (or **sup. process**):

$$M_t = \sup_{s \in [0,t]} X_s$$

- Important in many areas of applied probability
- Distribution is rather difficult to compute

Proposition

$$\mathbf{P}(M_t < x) = \mathbf{P}(\tau_x > t)$$

Proof

First passage times 00000000

- $\{M_t < x\}$ is **almost** equal to $\{\tau_x > t\}$
- Use càdlàg paths and quasi left continuity
- Let $D=(0,\infty)$
- When X_t is symmetric, then $\mathbf{P}(\tau_x > t) = \mathbf{P}_x(\tau_D > t)$
- (In the general case, $\mathbf{P}(\tau_x > t) = \mathbf{P}_{-x}(\tau_{(-\infty,0)} > t)$)
- $\mathbf{P}_{x}(\tau_{D} > t) = \int_{0}^{\infty} p_{t}^{D}(x, y) dy$
- We have a formula for $p_t^D(x, y)$

Formula for FPT (1)

First passage times

00000000

<u>Theorem</u> [K, 2010], [K-Małecki-Ryznar, 2011]

Under Assumption (む), and if:

•
$$\sup_{\lambda>0}\theta_{\lambda}<\frac{\pi}{2}$$

•
$$\sqrt{\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)}}e^{-t\Psi(\lambda)}$$
 is integrable at ∞ (note that $\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)} = \frac{\Phi'(\lambda^2)}{\Phi(\lambda^2)} \le \frac{1}{\lambda^2}$)

we have:

$$\mathbf{P}(\tau_X > t) = \frac{2}{\pi} \int_0^\infty \sqrt{\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)}} e^{-t\Psi(\lambda)} F_{\lambda}(x) d\lambda$$

Integrability near 0 is automatic!

Examples

- Assumptions are relatively mild, examples include:
 - Symmetric stable processes
 - Relativistic processes
 - Variance gamma process
 - Mixtures of stables
 - ▶ $\Psi(\xi) = \log(\log(\xi^2 + 1) + 1)$ when $t \ge 1/2$
- Problems when $\Psi(\xi)$ grows very slowly, for example, for compound Poisson processes
- Formula is applicable for numerical computations (although there are essential problems with numerical stability)

Plots of **P**($\tau_X > t$) for x = 0.5, 1, 1.5 and 2

Formula for FPT (2)

Proof no. 1

First passage times

000000000

•
$$\mathbf{P}(\tau_X > t) = \int_0^\infty p_t^D(x, y) dy = \lim_{\epsilon \to 0^+} \int_0^\infty e^{-\epsilon y} p_t^D(x, y) dy$$

•
$$p_t^D(x, y) = \frac{2}{\pi} \int_0^\infty e^{-t\Psi(\lambda)} F_{\lambda}(x) F_{\lambda}(y) d\lambda$$

•
$$\int_{0}^{\infty} e^{-\varepsilon y} F_{\lambda}(y) = \mathcal{L} F_{\lambda}(y)$$

•
$$\mathbf{P}(\tau_X > t) = \frac{2}{\pi} \lim_{\epsilon \to 0^+} \int_0^\infty e^{-t\Psi(\lambda)} F_{\lambda}(x) \mathcal{L} F_{\lambda}(\epsilon) d\lambda$$

•
$$\mathcal{L}F_{\lambda}(\varepsilon) \to \sqrt{\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)}}$$
 as $\varepsilon \to 0^+$

• Show uniform integrability as $\varepsilon \to 0^+$ (very technical)

Formula for FPT (3)

Proof no. 2

- $\int_0^\infty \int_0^\infty e^{-\xi x} e^{-zt} \mathbf{P}(\tau_x > t) dx dt$ is known (Baxter-Donsker formula, discussed later)
- $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\xi x} e^{-zt} \left(\frac{2}{\pi} \int_{0}^{\infty} \sqrt{\frac{\Psi'(\lambda)}{2\lambda \Psi(\lambda)}} e^{-t\Psi(\lambda)} F_{\lambda}(x) d\lambda \right) dx dt$

can be computed (slightly less technical)

- Both turn out to be equal
- Use uniqueness argument for Laplace transform

Properties of FPT (1)

Corollary

First passage times

000000000

The formula can be differentiated under the integral

when
$$\sqrt{\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)}}e^{-t\Psi(\lambda)}(\Psi(\lambda))^n$$
 is integrable at ∞ :

$$(-1)^{n} \frac{d^{n}}{dt^{n}} \mathbf{P}(\tau_{x} > t)$$

$$= \frac{2}{\pi} \int_{0}^{\infty} \sqrt{\frac{\Psi'(\lambda)}{2\lambda\Psi(\lambda)}} e^{-t\Psi(\lambda)} (\Psi(\lambda))^{n} F_{\lambda}(x) d\lambda$$

- For large t, the integral over [0, C/x] dominates
- We have good estimates for $F_{\lambda}(x)$ when $\lambda x \in [0, C]$

Properties of FPT (2)

Corollary

 τ_x has **ultimately completely monotone** distribution:

$$(-1)^n \frac{d^n}{dt^n} \mathbf{P}(\tau_x > t) > 0$$
 for t large enough

Asymptotics

•
$$(-1)^n \frac{d^n}{dt^n} \mathbf{P}(\tau_x > t) \sim \frac{\Gamma(n+1/2)}{\pi} \frac{V(x)}{t^{n+1/2}} \text{ as } t \to \infty$$

•
$$(-1)^n \frac{d^n}{dt^n} \mathbf{P}(\tau_x > t) \sim \frac{\Gamma(n+1/2)}{\pi \Gamma(1+\alpha)} \frac{1}{t^{n+1/2} \sqrt{\Psi(1/x)}}$$

as $x \to 0^+$, if $\Psi(\xi)$ is α -RV at $\infty \square$

- Bounds with explicit constants are also available
- For n = 0, some of the above has been known before
- More information on V(x) in the next section

Part III Section 2

Connections with fluctuation theory

Baxter-Donsker formula

First passage times

Theorem [Baxter-Donsker, 1957]

When X_t is a symmetric Lévy process:

$$\int_0^\infty \int_0^\infty e^{-\xi x - zt} \mathbf{P}(\tau_x > t) dx dt = \frac{1}{\xi \sqrt{z}} \frac{1}{(z + \Phi)^{\dagger}(\xi)}$$
$$= \frac{1}{\xi \sqrt{z}} \exp\left(-\frac{1}{\pi} \int_0^\infty \frac{\xi}{\xi^2 + u^2} \log(z + \Psi(u)) du\right) \square$$

- There is a variant for asymmetric processes
- Glen Baxter, Monroe David Donsker, 1957 On the distribution of the supremum functional for processes with stationary independent increments Trans. Amer. Math. Soc. 85

Inversion of the Laplace transform (1)

- If $\Psi(\xi) = \Phi(\xi^2)$ for a CBF $\Phi(\xi)$ (Assumption (\mathfrak{t})), then our formula for $\mathbf{P}(\tau_x > t)$ inverts the double Laplace transform in Baxter-Donsker formula
- In general, partial inverse in space is known:

$$\int_0^\infty e^{-zt} \mathbf{P}(\tau_x > t) dt = \frac{V^z(x)}{\sqrt{z}}$$

But $V^z(x)$ is not explicit:

First passage times

$$V^{z}(x) = \mathbf{E}\left(\int_{0}^{\infty} e^{-zt} \mathbf{1}_{M_{t} < x} dL_{t}\right)$$

where L_t is the local time of $M_t - X_t$ at 0

Inversion of the Laplace transform (2)

Theorem [K-Małecki-Ryznar, 2011]

First passage times

If X_t is a symmetric Lévy process and $\Psi(\xi)$ is increasing on $(0, \infty)$, then:

$$\int_{0}^{\infty} e^{-\xi x} \mathbf{P}(\tau_{x} > t) dx = \frac{1}{\pi} \int_{0}^{\infty} \frac{\xi}{\lambda^{2} + \xi^{2}} \sqrt{\frac{\Psi'(\lambda)}{\Psi(\lambda)}} e^{-t\Psi(\lambda)}$$

$$\times \exp\left(\frac{1}{\pi} \int_{0}^{\infty} \frac{\xi}{\xi^{2} + u^{2}} \log \frac{\Psi'(\lambda)(\lambda^{2} - u^{2})}{2\lambda(\Psi(\lambda) - \Psi(u))} du\right) d\lambda \quad \Box$$

- Proof: analytic continuation, contour integration and smart substitution, rather standard
- It remained undiscovered for more than 50 years!
- This theorem is used in the 'Proof no. 2' of the formula for $\mathbf{P}(\tau_X > t)$

Increasing harmonic function (1)

•
$$V^{z}(x) = \mathbf{E}\left(\int_{0}^{\infty} e^{-zt}\mathbf{1}_{t<\tau_{x}}dL_{t}\right)$$

- Let $V(x) = V^0(x) = \mathbf{E}L(\tau_x)$
- As usual, V(x) = 0 for $x \le 0$
- Then V(x) is **harmonic** in $(0, \infty)$:

$$AV(x) = 0$$
 for $x > 0$

(under some regularity assumptions)

- It is the unique increasing harmonic function
- It already appeared twice in the slides

Interval

Increasing harmonic function (2)

- Suppose that Assumption (\$\ddots\$) is satisfied
- $V(x) = \lim_{\lambda \to 0^+} \frac{F_{\lambda}(x)}{\lambda \sqrt{\Psi(\lambda)}}$
- $V(x) = \lim_{t \to \infty} \left(\sqrt{\pi} t \mathbf{P}(\tau_x > t) \right)$
- $\mathcal{L}V(\xi)=rac{1}{\xi\,\Phi^{\dagger}(\xi)}$ (this holds in greater generality)

Bounds [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

If X_t is a symmetric Lévy process, and

 $\Psi(\xi)$, $\xi^2/\Psi(\xi)$ are increasing, then: (more general than Assumption (£))

$$\frac{2}{5} \frac{1}{\sqrt{\Psi(1/x)}} \le V(x) \le 5 \frac{1}{\sqrt{\Psi(1/x)}}$$

Bounds for FPT

First passage times

Theorem [K-Małecki-Ryznar, 2011]

If X_t is a symmetric Lévy process, and $\Psi(\xi)$, $\xi^2/\Psi(\xi)$ are increasing, then:

$$\frac{1}{100} \min \left(1, \frac{1}{200\sqrt{t\Psi(1/x)}} \right)$$

$$\leq \mathbf{P}(\tau_x > t) \leq \min \left(1, \frac{10}{\sqrt{t\Psi(1/x)}} \right)$$

- Theorem applies for all subordinate BM! That is, $\Psi(\xi) = \Phi(\xi^2)$ satisfies the assumptions for any Laplace exponent $\Phi(\xi)$ (not just for CBFs)
- There is a (less explicit) version for asymmetric processes
- Note: $\mathbf{P}(\tau_x \le t) = 1 \mathbf{P}(\tau_x > t)$ is much easier

Increasing harmonic function (3)

First passage times

Asymptotics [K-Małecki-Ryznar, 2011], [Kim-Song-Vondraček, 2010]

If X_t is a symmetric Lévy process, and $\Psi(\xi)$, $\xi^2/\Psi(\xi)$ are increasing, then:

•
$$V(x) \sim \frac{1}{\Gamma(1+\alpha)\sqrt{V(1/x)}}$$
 as $x \to 0$

if $\Psi(\xi)$ is α -RV at ∞

•
$$V(x) \sim \frac{1}{\Gamma(1+\alpha)\sqrt{V(1/x)}}$$
 as $x \to \infty$
if $\Psi(\xi)$ is α -RV at 0^+

- Some special cases have been known before
- Under Assumption (ま):
 - $\triangleright V(x)$ is a Bernstein function
 - ightharpoonup explicit formula for V(x) can be given
- One can obtain similar results for $V^{z}(x)$
- V(x) is much simpler than $F_{\lambda}(x)$ and $\mathbf{P}(\tau_x < t)$

Part III Section 3

Eigenvalues for intervals

Interval: idea

- Let D = (a, b)
- As for the BM, there are f_n and μ_n such that $P_{\cdot}^{D}f_{n}=e^{-\mu_{n}t}f_{n},\qquad \mathcal{A}_{D}f_{n}=\mu_{n}f_{n}$

• f_n form a complete orthogonal set in $L^2(D)$

Guess

We should have:

$$f_n(x) \approx c_1 F_{\lambda_n}(x-a)$$

for $x \approx a$

$$f_n(x) \approx c_2 F_{\lambda_n}(b-x)$$

for $x \approx b$

for λ_n such that:

$$\Psi(\lambda_n) \approx \mu_n$$

Interval: sketch of the proof

First passage times

(see the next slide)

• Define 'approximate eigenfunction' \tilde{f}_n so that:

$$\begin{split} \tilde{f}_n(x) &= F_{\lambda_n}(x-a) & \text{for } x \in (a, \frac{2}{3}a + \frac{1}{3}b) \\ f_n(x) &= (-1)^{n-1}F_{\lambda_n}(b-x) & \text{for } x \in (\frac{1}{3}a + \frac{2}{3}b, b) \\ \text{and } \tilde{f}_n \text{ changes 'smoothly' on } (\frac{2}{3}a + \frac{1}{3}b, \frac{1}{3}a + \frac{2}{3}b) \end{split}$$

• This is possible only when:

$$\lambda_n = \frac{n\pi}{2} - \theta_{\lambda_n}$$

(then sine parts of $F_{\lambda_n}(x-a)$ and $F_{\lambda_n}(b-x)$ coincide)

- Show that $A_D \tilde{f}_n \approx \Psi(\lambda_n) \tilde{f}_n$
- Deduce that $\tilde{\mu}_n \approx \Psi(\lambda_n)$

First passage times

Interval: construction of the approximations

 $\tilde{f}_n(x)$ (solid line), $F_{\lambda_n}(x-a)$ (dashed lined) and $\pm F_{\lambda_n}(b-x)$ (dotted line) for $\Psi(\xi) = |\xi|^{1/10}$, D = (a,b) = (-1,1), n = 1,2,3,4.

Interval: results

Theorem [Kulczycki-K-Małecki-Stós, 2010]

For the symmetric 1-stable process, $\Psi(\xi) = |\xi|$:

$$\left| (b-a)\mu_n - \left(n\pi - \frac{\pi}{4} \right) \right| < \frac{2}{n}$$

Interval 000

Theorem [K, 2010]

For the symmetric α -stable process, $\Psi(\xi) = |\xi|^{\alpha}$:

$$(b-a)^{\alpha}\mu_n = \left(n\pi - \frac{(2-\alpha)\pi}{4}\right)^{\alpha} + O\left(\frac{1}{n}\right)$$

Theorem [Kaleta-K-Małecki]

For the relativistic process, $\Psi(\xi) = \sqrt{\xi^2 + m^2 - m}$:

$$(b-a)\mu_n = \left(n\pi - \frac{\pi}{4}\right) + O\left(\frac{1}{n}\right)$$

Part III Section 4

Higher-dimensional domains

Multidimensional domains: introduction

- Let X_t be the isotropic α -stable process in \mathbb{R}^d
- Let $D \subseteq \mathbf{R}^d$ be a bounded domain
- There are f_n and μ_n such that

$$P_t^D f_n = e^{-\mu_n t} f_n, \qquad A_D f_n = \mu_n f_n$$

- f_n form a complete orthogonal set in $L^2(D)$
- $N(\lambda) = \# \{n : \mu_n \le \lambda\}$ is the **partition function**

Theorem (Robert M. Blumenthal, Ronald K. Getoor, 1959)

For
$$C_1=rac{1}{2^d\pi^{d/2}\Gamma(d/2+1)}$$
: $rac{N(\lambda)}{\lambda^{d/lpha}}=C_1|D|+o(1)$

as $\lambda \to \infty$

Theorem (Rodrigo Bañuelos, Tadeusz Kulczycki, 2008)

(Abel means) As $t \rightarrow 0^+$:

First passage times

$$\frac{t \, \mathcal{L} N(t)}{\Gamma(\frac{d}{\alpha}+1)t^{d/\alpha}} = C_1 |D| - C_2^{(1)} |\partial D| t^{1/\alpha} + o(t^{1/\alpha}) \qquad \qquad \Box$$

• $C_2^{(1)}$ given only implicitly

Theorem (Rupert L. Frank, Leander Geisinger, 2011)

(Cesaro means) As $\lambda \rightarrow \infty$:

$$\frac{\int_0^{\lambda} N(u) du}{(\frac{d}{\alpha} + 1)\lambda^{(d+1)/\alpha}} = C_1 |D| - C_2^{(2)} |\partial D| \lambda^{-1/\alpha} + o(t^{1/\alpha}) \qquad \Box$$

• $C_2^{(2)}$ given explicitly in terms of the eigenfunctions $F_{\lambda}(x)$ for $\Psi(\xi) = (\xi^2 + 1)^{\alpha/2} - 1!$

Multidimensional domains: second term (2)

Conjecture

As $\lambda \to \infty$:

First passage times

$$\frac{N(\lambda)}{\lambda^{d/\alpha}} = C_1|D| - C_2^{(3)}|\partial D|t^{1/\alpha} + o(t^{1/\alpha})$$

Or even:

$$\frac{\mu_n}{\lambda^{d/\alpha}} = C_1|D| - C_2^{(4)}|\partial D|t^{1/\alpha} + o(t^{1/\alpha})$$

- This conjecture seems to be extremely difficult
- Constants $C_2^{(n)}$ (n = 1, 2, 3, 4) are related to each other through simple formulae

Problems:

- (1) Using the strong Markov property, prove that $(X(\tau_x + t) X(\tau_x))$ is independent from the σ -algebra \mathcal{F}_{τ_x} and has the same law as the process X_t .
- (2) Prove the reflection principle: if X_t is a symmetric Lévy process and

$$\mathbf{P}(M_t \ge x) = \mathbf{P}(\tau_x \le t) = 2\mathbf{P}(\tau_x \le t, X_t \ge X_{\tau_x})$$

Prove similar *in*equalities when $P(X_t = 0) > 0$ for t > 0.

(3) Show that for the Brownian motion:

 $P(X_t = 0) = 0$ for all t > 0, then:

- $\mathbf{P}(M_t \geq x) = 2\mathbf{P}(X_t \geq x)$
- (4) Show the Lévy inequality: for symmetric Lévy processes X_t :

$$\mathbf{P}(X_t > x) < \mathbf{P}(M_t > x) < 2\mathbf{P}(X_t > x)$$

(5) Prove that if X_t is a symmetric Lévy process and $e^{-t\Psi(\xi)}$ is integrable in $\xi \in \mathbf{R}$, then:

$$\mathbf{P}(X_t \ge x) = \frac{1}{\pi} \int_0^\infty \frac{\sin(\xi)}{\xi} (1 - e^{-t\Psi(\xi/x)}) d\xi$$

Part IV

Some technical details

- Wiener-Hopf method
- Heuristic derivation of the formula for eigenfunctions

This part will be available soon

References: properties of $\Phi^{\dagger}(\xi)$

- Panki Kim, Renming Song, Zoran Vondraček, 2010 Two-sided Green function estimates for the killed subordinate Brownian motion
- Panki Kim, Renming Song, Zoran Vondraček, 2011 Potential theory of subordinate Brownian motions revisited
- L.C.G. Rogers, 1983
 Wiener-Hopf factorization of diffusions and Lévy processes
 Proc. London Math. Soc. 47(3)

Proc. London Math. Soc. 47(3)

References: eigenvalues in intervals

- Tadeusz Kulczycki, K., Jacek Małecki, Andrzej Stós, 2010 Spectral properties of the Cauchy process on half-line and interval Proc. London Math. Soc. 101(2)
- K., 2010
 Eigenvalues of the fractional Laplace operator in the interval
- Kamil Kaleta, K., Jacek Małecki Eigenvalues of the one-dimensional Klein-Gordon square root operator in the interval (in preparation)