Liouville's theorems for Lévy operators

Tomasz Grzywny, Mateusz Kwaśnicki

Wrocław University of Science and Technology mateusz.kwasnicki@pwr.edu.pl

NOMP conference, Bedlewo, March 24, 2023

Classical results

Harmonic

•0000

Liouville's theorem

(Liouville, Cauchy)

Example

If f is a bounded harmonic function on \mathbb{R}^d , then f is constant.

Classical results

Harmonic

•0000

Liouville's theorem

(Liouville, Cauchy)

Example

If f is a bounded harmonic function on \mathbb{R}^d , then f is constant.

Liouville's theorem

(Bôcher, Picard)

If f is a positive harmonic function on \mathbb{R}^d , then f is constant.

Classical results

Liouville's theorem

(Liouville, Cauchy)

If f is a bounded harmonic function on \mathbb{R}^d , then f is constant.

Liouville's theorem

(Bôcher, Picard)

If f is a positive harmonic function on \mathbb{R}^d , then f is constant.

Strong Liouville's theorem

If f is a polynomially bounded harmonic function on \mathbb{R}^d , then f is a polynomial.

00000

Let X_t be the standard Brownian motion in \mathbb{R}^d , started at an arbitrary point.

Example

Harmonic

00000

Let X_t be the standard Brownian motion in \mathbb{R}^d , started at an arbitrary point.

<u>Liouville's</u> theorems — equivalent form

• If f is bounded and $f(X_t)$ is a martingale, then f is constant.

Harmonic

00000

Let X_t be the standard Brownian motion in \mathbb{R}^d , started at an arbitrary point.

Liouville's theorems — equivalent form

- If f is bounded and $f(X_t)$ is a martingale, then f is constant.
- If f is positive and $f(X_t)$ is a local martingale, then f is constant.

Let X_t be the standard Brownian motion in \mathbb{R}^d , started at an arbitrary point.

Liouville's theorems — equivalent form

- If f is bounded and $f(X_t)$ is a martingale, then f is constant.
- If f is positive and $f(X_t)$ is a local martingale, then f is constant.

For a sufficiently regular function f, the following are equivalent:

• $\Delta f = 0$,

Harmonic

00000

• $f(X_t)$ is a local martingale.

Liouville's theorem has been studied in a variety of contexts:

• Laplacians on manifolds

or Brownian motion on manifolds,

Liouville's theorem has been studied in a variety of contexts:

- Laplacians on manifolds
- other elliptic operators

- or Brownian motion on manifolds,
 - or other diffusions,

Liouville's theorem has been studied in a variety of contexts:

- Laplacians on manifolds
- other elliptic operators
- non-linear operators,

or Brownian motion on manifolds.

or other diffusions.

Liouville's theorem has been studied in a variety of contexts:

Laplacians on manifolds or Brownian motion on manifolds,

• other elliptic operators or other diffusions,

non-linear operators,

discrete Laplacians
 or simple random walks,

Liouville's theorem has been studied in a variety of contexts:

Laplacians on manifolds or Brownian motion on manifolds,

• other elliptic operators or other diffusions,

non-linear operators,

• discrete Laplacians or simple random walks,

other discrete operators
 or random walks and Markov chains,

Liouville's theorem has been studied in a variety of contexts:

Laplacians on manifolds or Brownian motion on manifolds,

• other elliptic operators or other diffusions,

non-linear operators,

• discrete Laplacians or simple random walks,

other discrete operators
 or random walks and Markov chains,

• non-local operators or Lévy processes and Markov processes.

Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .

Harmonic

00000

Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .

For a continuous function f, the following are equivalent:

- $f(x) = \int_{\mathbb{R}^d} f(x+y)\nu(dy),$
- $f(X_n)$ is a martingale.

In this case, f is said to be X_n -harmonic.

Harmonic

00000

Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .

For a continuous function f, the following are equivalent:

- $f(x) = \int_{\mathbb{R}^d} f(x+y)\nu(dy),$
- $f(X_n)$ is a martingale.

In this case, f is said to be X_n -harmonic.

- Are bounded or positive X_n -harmonic functions constant?
- Are polynomially bounded X_n -harmonic functions polynomials?

Lévy operators and Lévy processes

Consider a Lévy process X_t in \mathbb{R}^d generated by a Lévy operator \mathcal{L} :

$$\mathcal{L}f(x) = a \cdot \nabla^2 f(x) + b \cdot \nabla f(x) + \int_{\mathbb{R}^{d \setminus \{0\}}} (f(x+z) - f(x) - z \cdot \nabla f(x) \mathbb{1}_{B}(z)) \nu(dz).$$

Lévy operators and Lévy processes

Consider a Lévy process X_t in \mathbb{R}^d generated by a Lévy operator \mathcal{L} :

$$\mathcal{L}f(x) = a \cdot \nabla^2 f(x) + b \cdot \nabla f(x) + \int_{\mathbb{R}^{d}\setminus\{0\}} (f(x+z) - f(x) - z \cdot \nabla f(x) \mathbb{1}_B(z)) \nu(dz).$$

For a sufficiently smooth function f, the following are equivalent:

• $\mathcal{L}f = 0$

Harmonic

0000

• $f(X_t)$ is a local martingale.

In this case, f is said to be \mathcal{L} -harmonic or X_t -harmonic.

Lévy operators and Lévy processes

Consider a Lévy process X_t in \mathbb{R}^d generated by a Lévy operator \mathcal{L} :

$$\mathcal{L}f(x) = a \cdot \nabla^2 f(x) + b \cdot \nabla f(x) + \int_{\mathbb{R}^{d \setminus \{0\}}} (f(x+z) - f(x) - z \cdot \nabla f(x) \mathbb{1}_B(z)) \nu(dz).$$

For a sufficiently smooth function f, the following are equivalent:

• $\mathcal{L}f = 0$.

Harmonic

0000

• $f(X_t)$ is a local martingale.

In this case, f is said to be \mathcal{L} -harmonic or X_t -harmonic.

- Are bounded or positive \mathcal{L} -harmonic functions constant?
- Are polynomially bounded \mathcal{L} -harmonic functions polynomials?

• Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .

- Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .
- Assume that the subgroup generated by the support of ν is dense in \mathbb{R}^d .

- Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .
- Assume that the subgroup generated by the support of ν is dense in \mathbb{R}^d .
- We denote by Λ the set of $\xi \in \mathbb{R}^d$ such that $e^{\xi x}$ is X_n -harmonic, that is:

$$\int_{\mathbb{R}^d} e^{\xi y} \nu(dy) = 1.$$

Harmonic

- Consider a random walk X_n in \mathbb{R}^d with increments drawn from distribution ν .
- Assume that the subgroup generated by the support of ν is dense in \mathbb{R}^d .
- We denote by Λ the set of $\xi \in \mathbb{R}^d$ such that $e^{\xi x}$ is X_n -harmonic, that is:

$$\int_{\mathbb{R}^d} \mathsf{e}^{\xi y} \nu(dy) = 1.$$

Liouville's theorem for random walks

(Denv

A positive function f is X_n -harmonic if and only if:

$$f(x) = \int_{\Lambda} e^{\xi x} m(d\xi)$$

for a positive measure m.

Lévy operators

ullet Consider a Lévy operator $\mathcal L$ in $\mathbb R^d$ and the corresponding Lévy process $X_t.$

Example

Lévy operators

- ullet Consider a Lévy operator $\mathcal L$ in $\mathbb R^d$ and the corresponding Lévy process X_t .
- Assume that the subgroup generated by the supports of X_t is dense in \mathbb{R}^d .

Lévy operators

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d and the corresponding Lévy process X_t .
- Assume that the subgroup generated by the supports of X_t is dense in \mathbb{R}^d .
- We denote by Λ the set of $\xi \in \mathbb{R}^d$ such that $e^{\xi x}$ is \mathcal{L} -harmonic, that is:

$$\mathcal{L}[e^{\xi x}](0)=0.$$

Lévy operators

Harmonic

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d and the corresponding Lévy process X_t .
- Assume that the subgroup generated by the supports of X_t is dense in \mathbb{R}^d .
- We denote by Λ the set of $\mathcal{E} \in \mathbb{R}^d$ such that $e^{\xi \times}$ is \mathcal{L} -harmonic, that is:

$$\mathcal{L}[e^{\xi x}](0)=0.$$

Liouville's theorem for Lévy operators l

(Berger-Schilling, TG-MK)

A positive function f is \mathcal{L} -harmonic if and only if:

$$f(x) = \int_{\Lambda} e^{\xi x} m(d\xi)$$

for a positive measure m.

(Berger-Schilling: under an appropriate generalised moment condition)

Idea of the proof

• One direction is nearly obvious.

Idea of the proof

- One direction is nearly obvious.
- If $f(X_t)$ were a martingale, we could apply Deny's theorem to f and $X_{n\delta}$, the random walk obtained by sampling X_t at fixed times $t = 0, \delta, 2\delta, 3\delta, \ldots$ (Berger-Schilling: true under an appropriate generalised moment condition)

Example

Positive

00

Idea of the proof

- One direction is nearly obvious.
- If $f(X_t)$ were a martingale, we could apply Deny's theorem to f and $X_{n\delta_t}$ the random walk obtained by sampling X_t at fixed times $t = 0, \delta, 2\delta, 3\delta, \dots$ (Berger-Schilling: true under an appropriate generalised moment condition)
- If $f(X_t)$ is merely a local martingale, we apply Deny's theorem to f and X_{T_t} . the random walk obtained by sampling X_t when it moves away by at least r from the previously sampled location:

$$T_0 = 0,$$

$$T_{n+1} = \min \Big\{ t \geqslant T_n : \big| X_t - X_{T_n} \big| \geqslant r \Big\}.$$

Idea of the proof

Harmonic

- One direction is nearly obvious.
- If $f(X_t)$ were a martingale, we could apply Deny's theorem to f and $X_{n\delta_t}$ the random walk obtained by sampling X_t at fixed times $t = 0, \delta, 2\delta, 3\delta, \dots$ (Berger-Schilling: true under an appropriate generalised moment condition)
- If $f(X_t)$ is merely a local martingale, we apply Deny's theorem to f and X_{T_t} . the random walk obtained by sampling X_t when it moves away by at least r from the previously sampled location:

$$T_0 = 0,$$

$$T_{n+1} = \min \Big\{ t \geqslant T_n : \big| X_t - X_{T_n} \big| \geqslant r \Big\}.$$

• X_{T_n} -harmonicity of f follows from Dynkin's formula.

Idea of the proof

- One direction is nearly obvious.
- If $f(X_t)$ were a martingale, we could apply Deny's theorem to f and $X_{n\delta}$, the random walk obtained by sampling X_t at fixed times $t=0,\delta,2\delta,3\delta,\ldots$ (Berger-Schilling: true under an appropriate generalised moment condition)
- If $f(X_t)$ is merely a local martingale, we apply Deny's theorem to f and X_{T_n} , the random walk obtained by sampling X_t when it moves away by at least r from the previously sampled location:

$$T_0 = 0,$$

$$T_{n+1} = \min \Big\{ t \geqslant T_n : \big| X_t - X_{T_n} \big| \geqslant r \Big\}.$$

- X_{T_n} -harmonicity of f follows from Dynkin's formula.
- All that remains is a number of technical problems.

Fourier transform

• If f is an integrable function:

$$\mathcal{F}f(\xi) = \int_{\mathbb{R}^d} e^{-i\xi x} f(x) dx.$$

Fourier transform

• If f is an integrable function:

$$\mathcal{F}f(\xi) = \int_{\mathbb{R}^d} e^{-i\xi x} f(x) dx.$$

• Similarly, if ν is a measure:

$$\mathfrak{F}\nu(\xi)=\int_{\mathbb{R}^d}\mathrm{e}^{-i\xi x}\nu(dx).$$

Fourier transform

• If f is an integrable function:

$$\mathcal{F}f(\xi) = \int_{\mathbb{R}^d} e^{-i\xi x} f(x) dx.$$

• Similarly, if ν is a measure:

$$\mathfrak{F}\nu(\xi)=\int_{\mathbb{R}^d}\mathrm{e}^{-i\xi x}\nu(dx).$$

• If F is a tempered distribution:

$$\langle \mathcal{F}F, \varphi \rangle = \langle F, \mathcal{F}\varphi \rangle$$
 for every $\varphi \in \mathcal{S}$.

Harmonic

• Suppose that f is tempered and harmonic: $\Delta f = 0$.

- Suppose that f is tempered and harmonic: $\Delta f = 0$.
- The Fourier transform of Δf is $-|\xi|^2 \mathcal{F} f(\xi)$.

- Suppose that f is tempered and harmonic: $\Delta f = 0$.
- The Fourier transform of Δf is $-|\xi|^2 \mathcal{F} f(\xi)$.
- Thus, $|\xi|^2 \mathcal{F} f(\xi) = 0$.

- Suppose that f is tempered and harmonic: $\Delta f = 0$.
- The Fourier transform of Δf is $-|\xi|^2 \mathcal{F} f(\xi)$.
- Thus, $|\xi|^2 \mathcal{F} f(\xi) = 0$.
- It follows that $\mathcal{F}f = 0$ in $\mathbb{R}^d \setminus \{0\}$.

- Suppose that f is tempered and harmonic: $\Delta f = 0$.
- The Fourier transform of Δf is $-|\xi|^2 \mathcal{F} f(\xi)$.
- Thus, $|\xi|^2 \mathcal{F} f(\xi) = 0$.

- It follows that $\mathcal{F}f = 0$ in $\mathbb{R}^d \setminus \{0\}$.
- In other words: f is a polynomial.

- Suppose that f is tempered and harmonic: $\Delta f = 0$.
- The Fourier transform of Δf is $-|\xi|^2 \mathcal{F} f(\xi)$.
- Thus, $|\xi|^2 \mathcal{F} f(\xi) = 0$.

- It follows that $\mathcal{F}f = 0$ in $\mathbb{R}^d \setminus \{0\}$.
- In other words: f is a polynomial.
- If f is bounded, then f is constant.

• Tempered distributions F, G are convolvable if:

$$(F*\varphi)*(G*\psi) \text{ is well-defined for every } \varphi,\psi\in\mathbb{S}$$
 and in this case
$$(F*G)*(\varphi*\psi)=(F*\varphi)*(G*\psi).$$

• Tempered distributions F, G are convolvable if:

$$(F*\varphi)*(G*\psi) \text{ is well-defined for every } \varphi,\psi\in\mathbb{S}$$
 and in this case
$$(F*G)*(\varphi*\psi)=(F*\varphi)*(G*\psi).$$

• Watch out: associativity is an issue!

• Tempered distributions F, G are convolvable if:

$$(F*\varphi)*(G*\psi) \text{ is well-defined for every } \varphi,\psi\in\mathbb{S}$$
 and in this case
$$(F*G)*(\varphi*\psi)=(F*\varphi)*(G*\psi).$$

- Watch out: associativity is an issue!
- A tempered distribution *F* is bounded if:

 $F * \varphi$ is bounded for every $\varphi \in S$.

Harmonic

• Tempered distributions F, G are convolvable if:

$$(F*\varphi)*(G*\psi) \text{ is well-defined for every } \varphi,\psi\in\mathbb{S}$$
 and in this case
$$(F*G)*(\varphi*\psi)=(F*\varphi)*(G*\psi).$$

- Watch out: associativity is an issue!
- A tempered distribution F is bounded if:

$$F * \varphi$$
 is bounded for every $\varphi \in S$.

• A tempered distribution F is integrable if:

 $F * \varphi$ is integrable for every $\varphi \in S$.

Harmonic

• Tempered distributions F, G are convolvable if:

$$(F*\varphi)*(G*\psi) \text{ is well-defined for every } \varphi,\psi\in\mathbb{S}$$
 and in this case
$$(F*G)*(\varphi*\psi)=(F*\varphi)*(G*\psi).$$

- Watch out: associativity is an issue!
- A tempered distribution F is bounded if:

$$F * \varphi$$
 is bounded for every $\varphi \in S$.

• A tempered distribution F is integrable if:

$$F * \varphi$$
 is integrable for every $\varphi \in S$.

• Bounded distributions are convolvable with integrable distributions.

Multiplication of distributions

• Tempered distributions F, G can be multiplied if:

$$(F * \varphi_n) \cdot (G * \psi_n)$$
 converges in S' as $n \to \infty$

for arbitrary approximate identities φ_n , ψ_n .

Multiplication of distributions

Harmonic

• Tempered distributions F, G can be multiplied if:

$$(F * \varphi_n) \cdot (G * \psi_n)$$
 converges in S' as $n \to \infty$

for arbitrary approximate identities φ_n , ψ_n .

Again: associativity is an issue!

Multiplication of distributions

• Tempered distributions F, G can be multiplied if:

$$(F * \varphi_n) \cdot (G * \psi_n)$$
 converges in S' as $n \to \infty$

for arbitrary approximate identities φ_n , ψ_n .

Again: associativity is an issue!

Exchange formula

If F and G are convolvable, then:

$$\mathfrak{F}(F*G)=\mathfrak{F}F\cdot\mathfrak{F}G.$$

ullet Consider a Lévy operator $\mathcal L$ in $\mathbb R^d$.

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d
- $\mathcal{L}f = L * f$, where L is an appropriate integrable distribution.

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d .
- $\mathcal{L}f = L * f$, where L is an appropriate integrable distribution.
- $\Psi = \mathcal{F}L$ is the Fourier symbol of \mathcal{L} , or the characteristic exponent of X_t .

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d .
- $\mathcal{L}f = L * f$, where L is an appropriate integrable distribution.
- $\Psi = \mathcal{F}L$ is the Fourier symbol of \mathcal{L} , or the characteristic exponent of X_t .
- Ψ is continuous and, by assumption, $\Psi \neq 0$ on $\mathbb{R}^d \setminus \{0\}$.

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d
- $\mathcal{L}f = L * f$, where L is an appropriate integrable distribution.
- $\Psi = \mathcal{F}L$ is the Fourier symbol of \mathcal{L} , or the characteristic exponent of X_t .
- Ψ is continuous and, by assumption, $\Psi \neq 0$ on $\mathbb{R}^d \setminus \{0\}$.
- Thus, if f is a tempered \mathcal{L} -harmonic function, then:

$$\mathcal{L}f = 0 \implies L * f = 0$$

$$\implies \Psi \cdot \mathcal{F}f = 0$$

$$\implies \mathcal{F}f = 0 \text{ on } \mathbb{R}^d \setminus \{0\}$$

$$\implies f \text{ is a polynomial.}$$

- Consider a Lévy operator \mathcal{L} in \mathbb{R}^d
- $\mathcal{L}f = L * f$, where L is an appropriate integrable distribution.
- $\Psi = \mathcal{F}L$ is the Fourier symbol of \mathcal{L} , or the characteristic exponent of X_t .
- Ψ is continuous and, by assumption, $\Psi \neq 0$ on $\mathbb{R}^d \setminus \{0\}$.
- Thus, if f is a tempered \mathcal{L} -harmonic function, then:

$$\mathcal{L}f = 0 \implies L * f = 0$$

$$\implies \Psi \cdot \mathcal{F}f = 0$$

$$\stackrel{(?)}{\Longrightarrow} \mathcal{F}f = 0 \text{ on } \mathbb{R}^d \setminus \{0\}$$

$$\implies f \text{ is a polynomial.}$$

Smooth symbols

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

Smooth symbols

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

• Easy: Yes, if Ψ is smooth.

Smooth symbols

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

• Easy: Yes, if Ψ is smooth.

Liouville's theorem for Lévy operators | (Chen-D'Ambrosio-Li, Fall, Berger-Schilling)

Suppose that the Fourier symbol Ψ of \mathcal{L} is smooth on $\mathbb{R}^d \setminus \{0\}$.

Then every tempered \mathcal{L} -harmonic function f is a polynomial.

(Chen-D'Ambrosio-Li, Fall: fractional Laplacian/isotropic stable processes)

Bounded harmonic functions

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

- Trickier: Yes, if L is an integrable distribution and f is a bounded distribution.
- This is a relatively straightforward extension of Wiener's theorem.

Bounded harmonic functions

Harmonic

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

- Trickier: Yes, if L is an integrable distribution and f is a bounded distribution.
- This is a relatively straightforward extension of Wiener's theorem.

Liouville's theorem for Lévy operators III (Alibaud-del Teso-Endal-Jakobsen, Berger-Schilling)

Every bounded \mathcal{L} -harmonic function f is constant.

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

• Natural conjecture: Yes, whenever L and f are convolvable.

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

- Natural conjecture: Yes, whenever L and f are convolvable.
- This is false!

Harmonic

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

- Natural conjecture: Yes, whenever L and f are convolvable.
- This is false!

Liouville's non-theorem for Lévy operators IV

(TG-MK)

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

$$\Psi \neq 0$$
 and $\Psi \cdot \mathcal{F}f = 0$ $\stackrel{(?)}{\Longrightarrow}$ $\mathcal{F}f = 0$

- Natural conjecture: Yes, whenever L and f are convolvable.
- This is false!

Liouville's non-theorem for Lévy operators IV

(TG-MK)

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

Corollary

 $(\mathsf{TG-MK})$

$$F > 0$$
 continuous, G tempered, $F \cdot G = 0$ \implies $G = 0$.

Wiener-type algebra

Definition

A Wiener-type algebra is an algebra W of continuous functions on \mathbb{R}^d such that:

- every $\Psi \in W$ is a tempered distribution;
- $\varphi \Psi \in W$ whenever $\varphi \in S$ and $\Psi \in W$;
- if $K \subseteq \mathbb{R}^d$ is compact, $\Psi \in W$, and $\Psi \neq 0$ on K, then for some $\Phi \in W$:

$$\Phi \cdot \Psi = 1$$
 on K .

Wiener-type algebra

Definition

Harmonic

A Wiener-type algebra is an algebra W of continuous functions on \mathbb{R}^d such that:

- every $\Psi \in W$ is a tempered distribution;
- $\varphi \Psi \in W$ whenever $\varphi \in S$ and $\Psi \in W$;
- if $K \subseteq \mathbb{R}^d$ is compact, $\Psi \in W$, and $\Psi \neq 0$ on K, then for some $\Phi \in W$:

$$\Phi \cdot \Psi = 1$$
 on K .

Definition

A tempered distribution F acts on W if:

• $F \cdot (\Phi \cdot \Psi) = (F \cdot \Phi) \cdot \Psi$ whenever $\Phi, \Psi \in W$.

General result

Liouville's theorem factory for Lévy operators V

(TG-MK)

Assume that the Fourier symbol Ψ of \mathcal{L} belongs to W locally on $\mathbb{R}^d \setminus \{0\}$. Then every tempered \mathcal{L} -harmonic function f such that $\mathcal{F}f$ acts on W is a polynomial.

General result

Liouville's theorem factory for Lévy operators V

(TG-MK)

Assume that the Fourier symbol Ψ of \mathcal{L} belongs to W locally on $\mathbb{R}^d \setminus \{0\}$. Then every tempered \mathcal{L} -harmonic function f such that $\mathcal{F}f$ acts on W is a polynomial.

Different choices of W lead to different variants of Liouville's theorem. We have already seen two examples: smooth symbols and bounded functions.

Applications (1/2)

Harmonic

Recall that ν is the non-local kernel of \mathcal{L} . Let B be the unit ball in \mathbb{R}^d .

Applications (1/2)

Recall that ν is the non-local kernel of \mathcal{L} . Let \mathcal{B} be the unit ball in \mathbb{R}^d .

Liouville's theorem for Lévy operators VI (Ros-Oton-Serra, Kühn, Berger-Schilling-Shargorodsky, TG-MK)

Assume that $|x|^{\alpha}\nu(dx)$ is integrable on $\mathbb{R}^d\setminus B$. If f is an \mathcal{L} -harmonic function such that $(1+|x|^{\alpha})^{-1}f(x)$ is bounded, then f is a polynomial.

(Ros-Oton-Serra: fractional derivatives)

Applications (1/2)

Recall that ν is the non-local kernel of \mathcal{L} . Let B be the unit ball in \mathbb{R}^d . Let M be a positive, polynomially bounded submultiplicative function.

Liouville's theorem for Lévy operators VI (Ros-Oton-Serra, Kühn, Berger-Schilling-Shargorodsky, TG-MK)

Assume that $M(x)\nu(dx)$ is integrable on $\mathbb{R}^d\setminus B$. If f is an \mathcal{L} -harmonic function such that $(M(x))^{-1}f(x)$ is bounded, then f is a polynomial.

(Ros-Oton-Serra: fractional derivatives)

(Kühn: power functions)

Applications (2/2)

Recall that ν is the non-local kernel of \mathcal{L} . Let \mathcal{B} be the unit ball in \mathbb{R}^d .

Liouville's theorem for Lévy operators VII (Fall-Weth, TG-MK)

Assume that $|x|^{d+\alpha}\nu(dx)$ is bounded on $\mathbb{R}^d\setminus B$. If f is an \mathcal{L} -harmonic function such that $(1+|x|)^{-d-\alpha}f(x)$ is integrable, then f is a polynomial.

Applications (2/2)

Harmonic

Recall that ν is the non-local kernel of \mathcal{L} . Let B be the unit ball in \mathbb{R}^d . Let V be a positive, integrable radial function with doubling property.

Liouville's theorem for Lévy operators VII (Fall–Weth, TG–MK)

Assume that $(V(x))^{-1}\nu(dx)$ is bounded on $\mathbb{R}^d\setminus B$. If f is an \mathcal{L} -harmonic function such that V(x)f(x) is integrable, then f is a polynomial.

(Fall-Weth: power functions)

Example

Harmonic

Liouville's non-theorem for Lévy operators IV

(TG-MK)

Example

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

Harmonic

Liouville's non-theorem for Lévy operators IV

(TG-MK)

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

• Counter-example involves the operator:

$$\mathcal{L}f(x) = f''(x) + \sum_{k=0}^{\infty} 2^{-k} \left(f(x + y_k) + f(x - y_k) - 2f(x) \right).$$

Harmonic

Liouville's non-theorem for Lévy operators IV

(TG-MK)

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

• Counter-example involves the operator:

$$\mathcal{L}f(x) = f''(x) + \sum_{k=0}^{\infty} 2^{-k} (f(x+y_k) + f(x-y_k) - 2f(x)).$$

• Jump sizes v_k grow rapidly.

Liouville's non-theorem for Lévy operators IV

(TG-MK)

For an appropriate 1-D Lévy operator \mathcal{L} with positive second-order term, there is a non-polynomial, polynomially bounded \mathcal{L} -harmonic function.

• Counter-example involves the operator:

$$\mathcal{L}f(x) = f''(x) + \sum_{k=0}^{\infty} 2^{-k} (f(x+y_k) + f(x-y_k) - 2f(x)).$$

- Jump sizes y_k grow rapidly.
- ullet The Fourier symbol Ψ is a Weierstrass-type function.

• The harmonic function is constructed iteratively on $I_k = (k - \frac{1}{2}, k + \frac{1}{2})$.

- The harmonic function is constructed iteratively on $I_k = (k \frac{1}{2}, k + \frac{1}{2})$.
- Step -1: Define f to be a smooth bump in $I_0=(-\frac{1}{2},\frac{1}{2})$ and f=0 elsewhere.

- The harmonic function is constructed iteratively on $I_k = (k \frac{1}{2}, k + \frac{1}{2})$.
- Step -1: Define f to be a smooth bump in $I_0=(-\frac{1}{2},\frac{1}{2})$ and f=0 elsewhere.
- Step k = 0, 1, 2, ...: Modify f on:

$$I_{k+y_k}$$
 and I_{-k-y_k}

in such a way that

$$\mathcal{L}f = 0 \quad \text{on } I_k \text{ and on } I_{-k}.$$

$$f[\text{before step } k] \quad f[\text{ofter step } k]$$

$$I_{-k-y_k} \quad I_{-k} \quad I_k \quad I_{-k+y_k}$$

- The harmonic function is constructed iteratively on $I_k = (k \frac{1}{2}, k + \frac{1}{2})$.
- Step -1: Define f to be a smooth bump in $I_0=(-\frac{1}{2},\frac{1}{2})$ and f=0 elsewhere.
- Step k = 0, 1, 2, ...: Modify f on:

$$I_{k+y_k}$$
 and I_{-k-y_k}

in such a way that

$$\mathcal{L}f = 0$$
 on I_k and on I_{-k} .

• If y_k grows fast enough, we have $\mathcal{L}f = 0$ everywhere.

- The harmonic function is constructed iteratively on $I_k = (k \frac{1}{2}, k + \frac{1}{2})$.
- Step -1: Define f to be a smooth bump in $I_0 = (-\frac{1}{2}, \frac{1}{2})$ and f = 0 elsewhere.
- Step k = 0, 1, 2, ...: Modify f on:

$$I_{k+y_k}$$
 and I_{-k-y_k}

in such a way that

$$\mathcal{L}f = 0$$
 on I_k and on I_{-k} .

- If y_k grows fast enough, we have $\mathcal{L}f = 0$ everywhere.
- If y_k grows really fast, $|x|^{-\varepsilon}f(x)\to 0$ as $|x|\to \infty$ for every $\varepsilon>0$.