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Classical results

Liouville's theorem (Liouville, Cauchy)

If f is a bounded harmonic function on RY, then f is constant.

Liouville’s theorem (Bécher, Picard)

If £ is a positive harmonic function on R, then f is constant.

Strong Liouville's theorem

If f is a polynomially bounded harmonic function on R?, then f is a polynomial.



Harmonic Positive Tempered Example
00000 000 000000000000 [e]e)
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Let X; be the standard Brownian motion in R, started at an arbitrary point.
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Probabilistic interpretation

Let X; be the standard Brownian motion in R, started at an arbitrary point.

Liouville's theorems — equivalent form

e If f is bounded and f(X;) is a martingale, then f is constant.
e If f is positive and f(X;) is a local martingale, then f is constant.
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Probabilistic interpretation

Let X; be the standard Brownian motion in R, started at an arbitrary point.

Liouville's theorems — equivalent form

e If f is bounded and f(X;) is a martingale, then f is constant.
e If f is positive and f(X;) is a local martingale, then f is constant.

For a sufficiently regular function f, the following are equivalent:
o Af =0,

e f(X;) is a local martingale.
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Generalisations

Liouville’s theorem has been studied in a variety of contexts:

e Laplacians on manifolds or Brownian motion on manifolds,
e other elliptic operators or other diffusions,
e non-linear operators,

e discrete Laplacians or simple random walks,
e other discrete operators or random walks and Markov chains,

e non-local operators or Lévy processes and Markov processes.
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Random walks

Consider a random walk X, in R? with increments drawn from distribution v.
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Random walks

Consider a random walk X, in R? with increments drawn from distribution v.

For a continuous function f, the following are equivalent:

o )= [ Fxtyuidy),
]Rd
e f(X,) is a martingale.
In this case, f is said to be X,-harmonic.
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Random walks

Consider a random walk X, in R? with increments drawn from distribution v.

For a continuous function f, the following are equivalent:

¢ 100 = [ Flxty)la)
e f(X,) is a martingale.

In this case, f is said to be X,-harmonic.

e Are bounded or positive X,-harmonic functions constant?

e Are polynomially bounded X,-harmonic functions polynomials?
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Lévy operators and Lévy processes
Consider a Lévy process X; in RY generated by a Lévy operator £:
Lf(x) =a-V*(x)+b-VFf(x)
—i—/ (f(x+z) — f(x) —z~Vf(x)]lB(z))u(dz).

R9\{0}
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Lévy operators and Lévy processes

Consider a Lévy process X; in RY generated by a Lévy operator £:
Lf(x) =a-V?f(x)+ b-VFf(x)
—|—/ (f(x +2) — f(x) — z- VF(x)1g(2))v(dz).
R\{0}

For a sufficiently smooth function f, the following are equivalent:
o Lf =0,
e f(X;) is a local martingale.

In this case, f is said to be L-harmonic or X;-harmonic.
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Lévy operators and Lévy processes

Consider a Lévy process X; in RY generated by a Lévy operator £:
Lf(x) =a-V?f(x)+ b-VFf(x)
—|—/ (f(x +2) — f(x) — z- VF(x)1g(2))v(dz).
R\{0}

For a sufficiently smooth function f, the following are equivalent:
o Lf =0,
e f(X;) is a local martingale.

In this case, f is said to be L-harmonic or X;-harmonic.

e Are bounded or positive £-harmonic functions constant?

e Are polynomially bounded £-harmonic functions polynomials?
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e Consider a random walk X, in R? with increments drawn from distribution v.
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Random walks

e Consider a random walk X, in RY with increments drawn from distribution v.
e Assume that the subgroup generated by the support of v is dense in R€.
e We denote by A the set of £ € RY such that e is X,-harmonic, that is:

/ e“v(dy) = 1.
R4
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Random walks

e Consider a random walk X, in RY with increments drawn from distribution v.
e Assume that the subgroup generated by the support of v is dense in R¢.
e We denote by A the set of £ € RY such that e is X,-harmonic, that is:

/ e~v(dy) = 1.
R4

Liouville’s theorem for random walks (Deny)

A positive function f is X,-harmonic if and only if:

00 = [ e m(de)

for a positive measure m.
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Lévy operators

e Consider a Lévy operator £ in R? and the corresponding Lévy process X..
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Lévy operators

e Consider a Lévy operator £ in R? and the corresponding Lévy process X..
e Assume that the subgroup generated by the supports of X; is dense in R¢.
e We denote by A the set of £ € R? such that e is L-harmonic, that is:

L[e*](0) = 0.

Lle*])>0
s\
Lle™]<0
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Lévy operators

e Consider a Lévy operator £ in R? and the corresponding Lévy process X..
e Assume that the subgroup generated by the supports of X; is dense in R¢.
e We denote by A the set of £ € RY such that €% is £-harmonic, that is:

L[e*](0) = 0.

Liouville's theorem for Lévy operators | (Berger-Schilling, TG-MK)

A positive function f is L-harmonic if and only if:

(0 = [ e m(de)

for a positive measure m.

(Berger—Schilling: under an appropriate generalised moment condition)
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the random walk obtained by sampling X; at fixed times t = 0, 6,24, 30, . ..
(Berger—Schilling: true under an appropriate generalised moment condition)
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e One direction is nearly obvious.

e If f(X;) were a martingale, we could apply Deny's theorem to f and X;,
the random walk obtained by sampling X; at fixed times t = 0, 6,24, 30, . ..
(Berger—Schilling: true under an appropriate generalised moment condition)
e If f(X;) is merely a local martingale, we apply Deny’s theorem to f and X,
the random walk obtained by sampling X; when it moves away by at least r
from the previously sampled location:

7—0 :Oa
Toit = min{t > T X — X,
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If £(X;) were a martingale, we could apply Deny’s theorem to f and X,;,
the random walk obtained by sampling X; at fixed times t = 0, 6,24, 30, . ..
(Berger—Schilling: true under an appropriate generalised moment condition)

If £(X;) is merely a local martingale, we apply Deny’s theorem to f and X7,
the random walk obtained by sampling X; when it moves away by at least r
from the previously sampled location:

To =0,
Toi =min{t> T, X, - X,

> r}.

e X -harmonicity of f follows from Dynkin's formula.
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|dea of the proof

e One direction is nearly obvious.

e If f(X;) were a martingale, we could apply Deny's theorem to f and X;,
the random walk obtained by sampling X; at fixed times t = 0, 6,24, 30, . ..
(Berger—Schilling: true under an appropriate generalised moment condition)

e If f(X;) is merely a local martingale, we apply Deny’s theorem to f and X,
the random walk obtained by sampling X; when it moves away by at least r
from the previously sampled location:

To =0,
Toi =min{t> T, X, - X,

= r}.

e X -harmonicity of f follows from Dynkin's formula.
e All that remains is a number of technical problems.
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Fourier transform

e If f is an integrable function:

FF(E) = /R e ()

Example
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Fourier transform

e If f is an integrable function:

Q

/ —I§Xf
R
/ l§x
Rd

e Similarly, if v is a measure:

Example
[e]e)
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Fourier transform

e If f is an integrable function:
FF(E) = / e F(x)dx
e Similarly, if v is a measure: !
Fv(€) :/ e v (dx).
RY

e If F is a tempered distribution:

(FF, @) = (F,Fp) for every ¢ € 8.

Example
[e]e)
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Proof of the strong Liouville's theorem

e Suppose that f is tempered and harmonic: Af = 0.
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e Suppose that f is tempered and harmonic: Af = 0.
e The Fourier transform of Af is —|£2PFF ().
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Proof of the strong Liouville's theorem

e Suppose that f is tempered and harmonic: Af = 0.
e The Fourier transform of Af is —|£2PFF ().
e Thus, [£]?FF(¢) = 0.

Exampl
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Proof of the strong Liouville's theorem

Suppose that f is tempered and harmonic: Af = 0.
The Fourier transform of Af is —|¢]2FF(€).

Thus, [€]2Ff (&) = 0.

It follows that Ff = 0 in RY \ {0}.
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Proof of the strong Liouville's theorem

Suppose that f is tempered and harmonic: Af = 0.
The Fourier transform of Af is —|¢]2FF(€).

Thus, [€]2Ff (&) = 0.

It follows that Ff = 0 in RY \ {0}.

In other words: f is a polynomial.
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Proof of the strong Liouville's theorem

Suppose that f is tempered and harmonic: Af = 0.
The Fourier transform of Af is —|¢]2FF(€).

Thus, [€]2Ff (&) = 0.

It follows that Ff = 0 in RY \ {0}.

In other words: f is a polynomial.

If f is bounded, then f is constant.
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Convolution of distributions

e Tempered distributions F, G are convolvable if:
(F % ) * (G x 1) is well-defined for every p, ¢ € 8
and in this case (F * G) x (p x 1) = (F * @) * (G x ).
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e Watch out: associativity is an issue!
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(F % ) % (G % 1) is well-defined for every ¢, 1 € 8
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F % ¢ is bounded for every ¢ € 8.
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Convolution of distributions

e Tempered distributions F, G are convolvable if:
(F % ) % (G % 1) is well-defined for every ¢, 1 € 8
and in this case (F * G) x (p x 1) = (F * @) * (G x ).
Watch out: associativity is an issue!
A tempered distribution F is bounded if:

F % ¢ is bounded for every ¢ € 8.

A tempered distribution F is integrable if:
F % ¢ is integrable for every ¢ € 8.

Bounded distributions are convolvable with integrable distributions.
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e Tempered distributions F, G can be multiplied if:
(F*,) - (G x1,) convergesin 8 as n— oo

for arbitrary approximate identities ,, ¥,.
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e Tempered distributions F, G can be multiplied if:
(F*,) - (G x1,) convergesin 8 as n— oo

for arbitrary approximate identities ,, ¥,.

e Again: associativity is an issue!
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Multiplication of distributions

e Tempered distributions F, G can be multiplied if:
(F*,) - (G x1,) convergesin 8 as n— oo

for arbitrary approximate identities ,, ¥,.

e Again: associativity is an issue!

Exchange formula

If F and G are convolvable, then:
F(F «G) =FF - FG.
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Fourier approach

e Consider a Lévy operator £ in RY.
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Fourier approach

e Consider a Lévy operator £ in R¢.

e Lf = L=xf, where L is an appropriate integrable distribution.
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Fourier approach

e Consider a Lévy operator £ in R¢.
e Lf = L=xf, where L is an appropriate integrable distribution.
e V = F[ is the Fourier symbol of £, or the characteristic exponent of Xi.
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Fourier approach

Consider a Lévy operator £ in RY.

e Lf = L=xf, where L is an appropriate integrable distribution.
e V = F[ is the Fourier symbol of £, or the characteristic exponent of Xi.
V is continuous and, by assumption, W = 0 on RY \ {0}.
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Fourier approach

e Consider a Lévy operator £ in R¢.
e Lf = L=xf, where L is an appropriate integrable distribution.
e V = F[ is the Fourier symbol of £, or the characteristic exponent of Xi.
e W is continuous and, by assumption, W # 0 on R4 \ {0}.
Thus, if f is a tempered L-harmonic function, then:
LF=0 = Lxf=0

= V.-Ff=0

— Jf=0 onR?\{0}

_—

f is a polynomial.
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Fourier approach

e Consider a Lévy operator £ in R¢.

e Lf = L=xf, where L is an appropriate integrable distribution.

e V = F[ is the Fourier symbol of £, or the characteristic exponent of Xi.
e W is continuous and, by assumption, W # 0 on R4 \ {0}.

Thus, if f is a tempered L-harmonic function, then:

LF=0 = Lxf=0
— V.Jf=0
Ff=0 onR?\ {0}

f is a polynomial.

| s

?)



Harmonic Positive Tempered Example
00000 000 0O0000e000000 [e]e)
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W40 and V-5F=0 -2 Ff=0
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e Easy: Yes, if U is smooth.
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Smooth symbols

W40 and V-5F=0 -2 Ff=0

e Easy: Yes, if U is smooth.

Liouville’s theorem for Lévy operators |l

(Chen—D'Ambrosio—Li, Fall, Berger-Schilling)

Suppose that the Fourier symbol W of £ is smooth on R?\ {0}.
Then every tempered L-harmonic function f is a polynomial.
(Chen—D’Ambrosio—Li, Fall: fractional Laplacian/isotropic stable processes)
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Bounded harmonic functions

W40 and V-5F=0 -2 Ff=0

e Trickier: Yes, if L is an integrable distribution and f is a bounded distribution.

e This is a relatively straightforward extension of Wiener's theorem.
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Bounded harmonic functions

W40 and V-5F=0 -2 Ff=0

e Trickier: Yes, if L is an integrable distribution and f is a bounded distribution.

e This is a relatively straightforward extension of Wiener's theorem.

Liouville's theorem for Lévy operators |

(Alibaud—del Teso—Endal-Jakobsen, Berger—Schilling)

Every bounded £-harmonic function f is constant.
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Wishful thinking

W40 and V-5F=0 -2 Ff=0

e Natural conjecture: Yes, whenever L and f are convolvable.
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Wishful thinking

W40 and V-5F=0 -2 Ff=0

e Natural conjecture: Yes, whenever L and f are convolvable.
e This is false!
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Wishful thinking

V#£0 and V. FF=0 & gFf=0

e Natural conjecture: Yes, whenever L and f are convolvable.
e This is false!

Liouville’s non-theorem for Lévy operators IV (TG-MK)

For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.
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Wishful thinking

V#£0 and V. FF=0 & gFf=0

e Natural conjecture: Yes, whenever L and f are convolvable.
e This is false!

Liouville's non-theorem for Lévy operators |V (TG-MK)

For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.

Corollary (TG-MK)

F > 0 continuous, G tempered, F-G=0 =~ G=0.
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Wiener-type algebra

A Wiener-type algebra is an algebra W of continuous functions on R? such that:
e every W € W is a tempered distribution;
e oV c W whenever p € S and ¥V € W,

o if K CRYis compact, W € W, and ¥ # 0 on K, then for some ® € W:
- ¥Y=1 onK.
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Wiener-type algebra

A Wiener-type algebra is an algebra W of continuous functions on R? such that:
e every W € W is a tempered distribution;
e oV c W whenever p € S and ¥V € W,

o if K CRYis compact, W € W, and ¥ # 0 on K, then for some ® € W:
- ¥Y=1 onK.

A tempered distribution F acts on W if:
e F-(®- V)= (F- -®) -V whenever d,V € V.
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General result

Liouville’s theorem factory for Lévy operators V (TG-MK)

Assume that the Fourier symbol W of £ belongs to W locally on R9 \ {0}.
Then every tempered L-harmonic function f such that Ff acts on W
is a polynomial.



Harmonic Positive

Tempered Example
00000 000

O00000000e00 [e]e]

General result

Liouville’s theorem factory for Lévy operators V (TG-MK)

Assume that the Fourier symbol W of £ belongs to W locally on R9 \ {0}.

Then every tempered L-harmonic function f such that Ff acts on W
is a polynomial.

Different choices of W lead to different variants of Liouville’s theorem.
We have already seen two examples: smooth symbols and bounded functions.
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Applications (1/2)

Recall that v is the non-local kernel of £. Let B be the unit ball in R,
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Applications (1/2)
Recall that v is the non-local kernel of £. Let B be the unit ball in R,

Liouville’s theorem for Lévy operators VI

(Ros-Oton-Serra, Kiihn, Berger-Schilling—Shargorodsky, TG-MK)

Assume that |x|“v(dx) is integrable on R \ B. If f is an L-harmonic function

such that (1 + [x|*)~*f(x) is bounded, then f is a polynomial.
(Ros-Oton—Serra: fractional derivatives)
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Applications (1/2)

Recall that v is the non-local kernel of £. Let B be the unit ball in R,
Let M be a positive, polynomially bounded submultiplicative function.

Liouville’s theorem for Lévy operators VI

(Ros-Oton-Serra, Kiihn, Berger-Schilling—Shargorodsky, TG-MK)

Assume that M(x)v(dx) is integrable on RY \ B. If f is an L-harmonic function

such that  (M(x))~'f(x) is bounded, then f is a polynomial.
(Ros-Oton—Serra: fractional derivatives)

(Kihn: power functions)
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Applications (2/2)

Recall that v is the non-local kernel of £. Let B be the unit ball in R.

Liouville's theorem for Lévy operators VII (Fall-Weth, TG-MK)

Assume that  |x|?"*v(dx) is bounded on R?\ B. If f is an £-harmonic
function such that (1 + |x|)~9~“f(x) is integrable, then f is a polynomial.
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Applications (2/2)

Recall that v is the non-local kernel of £. Let B be the unit ball in R¢.
Let V be a positive, integrable radial function with doubling property.

Liouville's theorem for Lévy operators VII (Fall-Weth, TG-MK)
Assume that (V/(x)) 'v(dx) is bounded on R?\ B. If f is an £-harmonic
function such that V(x)f(x) is integrable, then f is a polynomial.

(Fall-Weth: power functions)
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Counter-example: operator

Liouville's non-theorem for Lévy operators |V (TG-MK)

For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.
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Counter-example: operator

Liouville's non-theorem for Lévy operators |V (TG-MK)

For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.

e Counter-example involves the operator:

Lf(x)=f"(x) + EOO:Q_"(f(x + yk) + F(x — yi) — 2f(x)).

-
~4s ;’“\\ a b
&

4 ¥4
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Counter-example: operator

Liouville's non-theorem for Lévy operators |V (TG-MK)

For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.

e Counter-example involves the operator:
LF(x) = f"(x) + ZQ_k(f(X + yk) + F(x — yi) — 2f(x)).
k=0

e Jump sizes y, grow rapidly.
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Counter-example: operator
Liouville's non-theorem for Lévy operators |V (TG-MK)
For an appropriate 1-D Lévy operator £ with positive second-order term,
there is a non-polynomial, polynomially bounded £-harmonic function.

e Counter-example involves the operator:
LF(x) = f"(x) + ZQ_k(f(X + yk) + F(x — yi) — 2f(x)).
k=0 \
\M

e Jump sizes y, grow rapidly. Y J
[ 1

e The Fourier symbol W is a Weierstrass-type function.  ° \”W . fW '

M ’\W

\'}
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Counter-example: function

e The harmonic function is constructed iteratively on I, = (k — 3, k + 3).

‘ , , ,1-4,:[0,14,]:2.13'
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e The harmonic function is constructed iteratively on I/, = (k — 3, k + 3).

11

e Step —1: Define f to be a smooth bump in Iy = (=3, 5

) and f = 0 elsewhere.
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Counter-example: function

e The harmonic function is constructed iteratively on I/, = (k — 3, k + 3).

11

e Step —1: Define f to be a smooth bump in Iy = (=3, 5

e Step k=0,1,2,...: Modify f on:

) and f = 0 elsewhere.

/k+)/k and /—k—}/k
in such a way that

Lf=0 onl andon /I_,.
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Step —1: Define f to be a smooth bump in fy = (
Step k =0,1,2,...: Modify f on:

) and f = 0 elsewhere.
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in such a way that

Lf=0 onl, andon [_,.

If v, grows fast enough, we have Lf = 0 everywhere.
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Step —1: Define f to be a smooth bump in fy = (
Step k =0,1,2,...: Modify f on:

) and f = 0 elsewhere.

/k+)/k and /—k—)/k
in such a way that

Lf=0 onl, andon [_,.

If v, grows fast enough, we have Lf = 0 everywhere.

If yx grows really fast, |x|~¢f(x) — 0 as |x| — oo for every € > 0.
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