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Random walks

e A random walk X, is a sequence of partial sums of i.i.d.
random variables:

Xo=AX1 +AX; + ...+ AX,,

where AXj, AX;, ... are independent and identically
distributed on R.

e We say that a random walk X, is non-trivial if
P(X; > 0) £ 0.

o Wewrite AL Bif P(A>t) = P(B > t) forall t € R.

o Of course if X; < Vi, then X, £ Y, for all n = 1,2,...;
in this case we say that X, and Y, are identical.
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Main theorem

If X, and Y, are non-trivial random walks, and
P(X, > t) =P(Y,>t)

foralln=1,2,...and all t € (0. c0), then the same is true for
all t € IR (that is, X, and Y, are identical).

e This was proved by Chaumont and Doney under additional
conditions on X, and Y,:

» if X1 has exponential moments; or
» if P(Xy > t) is completely monotone on (0, c0); or
» if Xi has analytic density function on (0, c0).

e This covers a majority of interesting examples.

e It is often enough to take n = 1,2 in the assumption.
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Simple reformulation

Theorem (equivalent version)

If X, and Y, are non-trivial random walks, and
max{0, X, } 4 max{0, Y,}
foralln=1,2,..., then

d

Xn =Y

foralln=1,2,...
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Some fluctuation theory

e Define X, = max{0, Xy, Xz, ..., X, }.
e Spitzer's formula: if |w| <1 and Imz > 0, then

S (Eexp(izX,))w" = exp (Z E exp(iz mnax{o, X:})
n=0 —0

e Knowing the distributions of X, is thus equivalent to
knowing the distributions of max{0, X, }.

).
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Another reformulation

Theorem (equivalent version)

If X, and Y, are non-trivial random walks, and
Xo=Y,
foralln=1,2,..., then

II=

Xn
foralln=1,2,...
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Some more fluctuation theory

e Let N be the smallest number n such that X, > 0
(the first ladder time).

e Let H be the the value of X, for n= N
(the first ladder height).

e Knowing the joint distribution of N and H, one can
reconstruct the distributions of X, forn=1,2,...

e The characteristic function of (N, H) is essentially the
upward space-time Wiener—Hopf factor.

Theorem (equivalent version)

If X, and Y, are non-trivial random walks with equal upward
space-time Wiener—Hopf factors, then X, and Y, are identical.
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Lévy processes

e A Lévy process is, in some sense, a random walk in
continuous time.

e Formally, X; is a Lévy process if it has independent and
stationary increments, and cadlag paths.

Corollary

If X; and Y; are non-trivial Lévy processes, and
max{0, X;} < max{0, ¥;}  (or X, = V))
for all t > 0, then
X2,
for all t > 0.

e Conjectured by Vigon, proved under extra assumptions by
Chaumont and Doney
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A variant for measures

e All measures below are finite signed Borel measures on R.

e The convolution of measures i and v is given by

(4% v)(A) = /R (A — x)(d).

Convolutive powers of u are denoted by p".

e We say that a measure  is non-trivial if the restriction of
p to (0,00) is a non-zero measure.

Theorem (extended version)

If 1 and v are non-trivial measures and
p'(A) = v"(A)
for all Borel A C (0,00) and n=1,2,..., then p = v.
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Change of notation

e We assume that
n"(A) = v"(A)
for all Borel AC (0,00) and n=1,2,...

Complex analysis
00000000
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[ le]

Change of notation

e We assume that
pu'(A) = v"(A)

for all Borel AC (0,00) and n=1,2,...
e Considering n = 1, we see that the restrictions of x4 and v

o (0,00) agree.
e Denote:

o= ]1( co) b = L(o,00) s

—00,0] s

(- ooOIV

qm
lﬂlﬂ
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Change of notation

We assume that

pu"(A) = v"(A)
for all Borel AC (0,00) and n=1,2,...

Considering n = 1, we see that the restrictions of y and v
o (0,00) agree.

Denote:

a = Too)p = Lok,
6 (—o0,0] 4,
Y= ]1( 00,0l V-

g,

Now pu =a+fFand v =a+1.
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ldea of the proof

e « is a non-zero measure concentrated on (0,00), 5 and
are concentrated on (—o0, 0].

e The proof consists of two steps:
Tio,00)(a + B)" = TL(goy(@+7)" forall n=1,2,...
ﬂ (simple algebra)
T(0,00) (" % B) = 1(0,00)(" % ¥) for all n=10,1, ...
ﬂ (complex analysis)
p=n
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e We prove that

To,00)(+ B)" = L(0,00)(x+7)" forall n=1,2,...

|

Loooy (@™ * B) = L(go0)(@” x7") for all n = 0,1,...

and k=1,2,...
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e \We prove that
Tioe0)(a+ B)" =TL(goy(@+7)" forall n=1,2,...

|

Loooy (@™ * B) = L(go0)(@” x7") for all n = 0,1,...
and k=1,2,...

e Induction with respect to n.

e Forn=0:

L(0,00)(8%) = 0 = L0,00) (7).
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e Suppose that
Loy (@™ * B5) = L(g00)(@” %) for n=10,1,...,N -1

and k=1,2,...
e By the binomial formula,
(o + 8" —(a+ 7)™
= Nt — N+? (J = O)
+ (N+1) (" %8 —a" x7) (=1)
N
N+1> N+1—j | aj N+1—j , j
+ ) Q@ Ty B — oM &
S (") )

j=2

+ BN =AM (j=N+2)
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e Suppose that

Lo,y (@™ % B5) = L (g 00)(@” % v*) for n=10,1,...
and k=1,2,...

e By the binomial formula,

zero on (0, 00) by the assumption
7\

(Oc +/3)N+1 o (Oé +’7)N+T

— N N

+ (N+1) (" %8 —a" x7)

= N

N1
(=0)
U=1)

n EN: (N—I— 1> (OzN+1_j « ﬁj _ Nt *’Yl)

+5N+1_’7N+1' (J:N_|_2)
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e Suppose that
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and k=1,2,...

e By the binomial formula,

zero on (0, 00) by the assumption
7\

(Oc +/B)N+1 o (Oé _’_,V)NJrT

— N N

————

zero on R

+ (N+1) (" %8 —a" x7)

= N

N1
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e Suppose that

Lo,y (@™ % B5) = L (g 00)(@” % v*) for n=10,1,...
and k=1,2,..

e By the binomial formula,

zero on (0, 00) by the assumption
7\

(Oc +/3)N+1 o (Oé _’_,V)NJrT

— N N

————

zero on R
+ (N+1) (" %8 —a" x7)
N

N1
(=0)
U=1)

j=2

n Z (Nj— 1> (OzN+1_j « /Bj B aN+1—j *W’i)

~
zero on (0, 00) by the induction hypothesis

+5N+1_7N+1‘ (_/:N+2)
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e Suppose that
Loy (@™ * B5) = L(g00)(@” %) for n=10,1,...,N -1
and k=1,2,...

e By the binomial formula,

zero on (0, 00) by the assumption
7\

(Oc +/3)N+1 o (Oé _’_,V)NJrT

= aNH — aNH (J - O)
N———

zero on R
+(N+1)(a"* B —a" x ) =1
N
(s ey

j=2

zero on (0, 00) by the induction hypothesis
N+1 N+1 -
+ 87T = U=N+2)
—_——

zero on (0, c0)
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Algebra
[e]e] o]

e Thus, 0= (N+1)(a 8 —a"%v) on (0,00).
e This is the desired result for n= N, k =1.

e Larger values of k: induction within induction.
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e Suppose that
]].(O’oo)(OéN X ﬁk) = ]].(O’oo)(OéN % ’)/k) fOI’ k = 1, 2, ey K —1.
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e Suppose that

Loy (@ % B5) = 1g oy (o 5 4¥) for k=1,2,...

e Then,

1 (0,00) (™ 55)
I

]1(0700)(( aN * 5K_1 ) * 5)
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e Suppose that
]].(0700)(0/\/ * ﬁk) = ]].(O’OO)(OKN * ’)/k) for k = 1, 2, RN K—1.
e Then, oxf3= (]l(_oqo]O') x 0+ (]1(0700)0') x [
10,00y (" + B5)
Il
Liooo) (2" 57 ) % B) = L(o.00) (Lo,00) (@ % B571) % 3)

g
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e Suppose that
1(0700)(aN * 6/() = ]].(O’Oo)(OéN * ’yk) for k = 1, 2, RN K -1
e Then,

1 (0,00) (N % 85)
!
Lio.0) (" 85 71) % B) = TL(0.00) (T(0.00) (@ % BH71) % )
]

Lo,00) (N %A% 1) % B) = 1(0,00)(L(0,00) (@™ % 7* 1) % 3)
I

]1(0700)((0/\/ * ﬂ) * ’yK_l)
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1(0700)(aN * 6/() = ]].(O’Oo)(OéN * ’yk) for k = 1, 2, ceey K —1.
e Then,

L(0,00) (N  BF)
!
Lioo) (" % B ) % B) = Lo00) (L(0.00) (@™  B571) % B)
!
L(o,00) (" %" 1) % B) = L(0,00) (L(0,00) (@ /1) % B)
!
Lio,00) (@ % B) % 4*71) = L(o00) (Lioep (@ % B) % 4H)
!
10,00y (" ‘T 1) * 7 = Lom) (Lo (@ %) x v

L (0,00) (N % 4K).

K—1>
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e We prove that
Lioc0)(@" % ) = L(go0y(a” % y) forall n =0,1, ...

|

B=r.
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e We prove that
Loco)(@” * B) = Lig ooy (" %) forall n =0,1,...
B=r.
e Equivalently: it is not possible to have
Looe)(a”* (8 —7))=0foralln=0,1,...
and a #0, f—v #0.
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e We prove that
Loco)(@” * B) = Lig ooy (" %) forall n =0,1,...
B=r.
e Equivalently: it is not possible to have
Looe)(a”* (8 —7))=0foralln=0,1,...
and a #0, f—v #0.

e We proceed by contradiction.
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e We know that o” % (8 — ) is concentrated on (—o0, 0]
foralln=1,2,...

e Define analytic extensions of characteristic functions:

f(z) = /(0 )eiZta(dt) (Imz > 0)
s2)= [ @) (mz<0

ho(2) = /( [ () (e) (mz <)

e We know that
(f(2))"g(z) = ha(z) for z € R.
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e We know that
(f(2))"g(z) = hn(z) for z € R.



Introduction Detailed statement Idea of the proof Algebra Complex analysis
[o]e] 00000000 [e]e] 0000 00000000

e We know that
(f(2))"g(z) = hn(z) for z € R.
e letCL={zeC:+Imz>0}and

A={zeR:g(z) =0}, (closed, null)
B={zeC_:g(z)=0}. (discrete)
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e We know that
(f(2))"g(z) = hp(z) for z € R.
e letCL={z€C:+Ilmz >0} and
A={zeR:g(z) =0}, (closed, null)
B={zeC_:g(z) =0}. (discrete)

e Define
(f(z))" forze CyUR,

forze C_\B.
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We know that
(f(2))"g(2) = hn(z) for z € R.
Let CL ={z€ C:+Ilmz >0} and

A={zeR:g(z) =0}, (closed, null)
B={zeC_:g(z)=0} (discrete)
Define

(f(z))" forze CyUR,

forze C_\B.

Then ¢, is analytic in C \ (AU B), meromorphic in C \ A.
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(f(2))"g(2) = hn(z) for z € R.
Let CL ={z€ C:+Ilmz >0} and

A={zeR:g(z) =0}, (closed, null)
B={zeC_:g(z)=0} (discrete)
Define

(f(z))" forze CyUR,

forze C_\B.

Then ¢, is analytic in C \ (AU B), meromorphic in C \ A.
We have ¢,(z) = (¢1(2))" for z € C\ (AU B).

lysis
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e We have
(f(z))" forze C,UR,

(¢1(2))" = ¢n(2) = § hy(2)

g(2)

forze C_\B.

e Let z € B be a pole of p; of degree k.
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e We have

(f(z))" forze CLUR,
(21(2))" = ¢n(2) = { hn(2)

forze C_\ B.

e Let z € B be a pole of p; of degree k.
e Then z is a pole of ¢, of degree nk.
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We have

(f(z))" forze CLUR,
(21(2))" = ¢n(2) = { hn(2)

forze C_\ B.

Let z € B be a pole of ¢ of degree k.

Then z is a pole of ¢, of degree nk.

Thus, z it is a zero of g of degree at least nk.

This is not possible when n — co.

Therefore, o, has no poles in C_: it is analytic in C \ A.
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e We have

(f(z))" forze CLUR,
(#1(2))" = @n(2) = § ha(2)
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e We have

(f(z))" forze CLUR,
(¢1(2))" = ¢n(2) = { ha(2)

forze C_\B.

e The functions h, and g are bounded in C_. Each of them
can be uniquely written as a product of:

» an outer function O(z),
» a singular inner function 5(z),
» a Blaschke product B(z).
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e We have

(f(z))" forze CLUR,
(¢1(2))" = ¢n(2) = { ha(2)

forze C_\B.

e The functions h, and g are bounded in C_. Each of them
can be uniquely written as a product of:
» an outer function O(z),
» a singular inner function 5(z),
» a Blaschke product B(z).
e The function ¢, = (¢1)" is of bounded type
(a.k.a. Nevanlinna class) in C_, and thus it has
a similar unique factorisation.
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o We have

(f(z))" forze CLUR,
(#1(2))" = #n(2) = § ha(2)
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e We have
(f(z))" forze CLUR,

(1(2))" = ¢al2) = 4 ho(2)

8(z)

e The singular inner function S, corresponding to g satisfies

()

for some singular measure A\, > 0 and a; > 0.

forze C_\ B.

1 —Imz

|Sg(2)| = exp (ag Imz — =

™ Jr |z = x[?
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We have
(f(z))" forze CLUR,
(01(2))" = @n(2) = § ha(2)
8(z)
The singular inner function S, corresponding to g satisfies

5.2 = ewp(asmz = [ 5 (o)

™ Jr |z = x[?

forze C_\ B.

for some singular measure A\, > 0 and a; > 0.

Similarly for h, and ¢, but A, is signed and a,, € R.

n

Necessarily, |S,,(2)|" = |S,.,(z)] = 'ls’:(( ))||.
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We have
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The singular inner function S, corresponding to g satisfies
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We have
(f(z))" forze CLUR,

(1(2))" = ¢al2) = 4 ho(2)
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The singular inner function S, corresponding to g satisfies

()

for some singular measure A\, > 0 and a; > 0.
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Similarly for h, and ¢,, but A, is signed and a,, € R.
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Taking n — oo, we see that a,, > 0 and A\, > 0.
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We have
(f(z))" forze CLUR,

(01(2))" = @n(2) = § ha(2)
8(z)

The singular inner function S, corresponding to g satisfies

()

for some singular measure A\, > 0 and a; > 0.

forze C_\ B.

1 —
|S¢(2)] :exp(aglmz—— m2z

™ Jr |z = x[?
Similarly for h, and ¢,, but A, is signed and a,, € R.
: |, (2)]
Necessarily, |S,,(2)|" = |S,,(2)| = ==~
‘ 4P1( )l ‘Sg(Z)|

ThUS, na,, = a,, = ap, — ag and n)\wl = )\<Pn = )\hn - )\g-

Taking n — oo, we see that a,, > 0 and A\, > 0.
That is, S, is bounded on C_.
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Introduction Detailed statement Idea of the proof Algebra Complex analysis
[o]e] 00000000 [e]e] 0000 000000e0

e We have
(f(z))" forze C,UR,

(¢1(2))" = ¢n(2) = § hy(2)

g(2)

e An outer function O,, in the factorisation of ¢, satisfies

0,,(2)] = exp(% /Oo ;”’TQ log |01 (x))| dx) .
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e We have

(f(z))" forze CLUR,
(£1(2))" = ¢n(2) = { hn(2)

forze C_\ B.

e An outer function O,, in the factorisation of ¢, satisfies

0,,(2)] = exp(l /OO ;”’TQ log |01 (x))| dx) .

) o lz—x

e Since ¢1(x) = (x) = f(x) a.e. (onx € R\ A),

g(x)

O,, (2) is bounded.
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We have

(f(z))" forze CLUR,
(£1(2))" = ¢n(2) = { hn(2)

forze C_\ B.

An outer function O,, in the factorisation of ¢y satisfies

0,,(2)] = exp(l /Oo ;”’TQ log |01 (x))| dx) .

) o lz—x

Since p1(x) = /;((;())

O,, (2) is bounded.
It follows that ¢, is a bounded analytic function in C_.

= f(x) a.e. (on x € R\ A),
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o We have

(f(z))" forze C;LUR,
(1(2)" = ¢n(2) = { ho(2)

forze C_\ B.
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(f(z))" forze CLUR,
(@) =@ = bz
2(2) forze C_\ B.

e We know that ¢ is a bounded analytic function in C_ and
in C, and hence in C\ A.
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(f(z))" forze CLUR,
(1(2)" = 20(2) = { ho(2)

forze C_\ B.

e We know that ¢ is a bounded analytic function in C_ and
in C, and hence in C\ A.

e Painlevé’s theorem asserts that ¢; extends to a bounded
entire function.
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We have

(f(z))" forze CLUR,
(1(2)" = 20(2) = { ho(2)

forze C_\ B.

We know that ¢ is a bounded analytic function in C_ and
in C, and hence in C\ A.

Painlevé’s theorem asserts that ¢; extends to a bounded
entire function.

As a consequence, (; is constant.
Thus, f is constant.

But f is the characteristic function of a measure «
concentrated on (0, c0), it cannot be constant.
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