Random walks are completely determined by their trace on the positive half-line

Mateusz Kwaśnicki

Wrocław University of Science and Technology mateusz.kwasnicki@pwr.edu.pl

Guanajuato, Nov 29, 2017

Random walks are completely determined by their trace on the positive half-line

• Acknowledgement: Loïc Chaumont from Angers, France.

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.
- SPA 2017 conference (The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24-28, 2017)

• Acknowledgement: Loïc Chaumont from Angers, France.

Idea of the proof

- SPA 2017 conference
 (The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24–28, 2017)
- Loïc Chaumont, Ron Doney
 On distributions determined by their upward, space-time
 Wiener-Hopf factor
 arXiv:1702.00067

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.
- SPA 2017 conference
 (The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24–28, 2017)
- Loïc Chaumont, Ron Doney
 On distributions determined by their upward, space-time
 Wiener-Hopf factor
 arXiv:1702.00067
- V. Vigon
 Simplifiez vos Lévy en titillant la factorisation de
 Wiener-Hopf
 PhD thesis, INSA de Rouen, 2001

Introduction

• A random walk X_n is a sequence of partial sums of i.i.d. random variables:

$$X_n = \Delta X_1 + \Delta X_2 + \ldots + \Delta X_n,$$

where $\Delta X_1, \Delta X_2, \dots$ are independent and identically distributed on R.

Introduction

• A random walk X_n is a sequence of partial sums of i.i.d. random variables:

$$X_n = \Delta X_1 + \Delta X_2 + \ldots + \Delta X_n,$$

where $\Delta X_1, \Delta X_2, \dots$ are independent and identically distributed on R.

• We say that a random walk X_n is non-trivial if $\mathbb{P}(X_1 > 0) \neq 0.$

Introduction

• A random walk X_n is a sequence of partial sums of i.i.d. random variables:

$$X_n = \Delta X_1 + \Delta X_2 + \ldots + \Delta X_n$$

where $\Delta X_1, \Delta X_2, \dots$ are independent and identically distributed on R.

• We say that a random walk X_n is non-trivial if $\mathbb{P}(X_1 > 0) \neq 0.$

• We write $A \stackrel{d}{=} B$ if $\mathbb{P}(A > t) = \mathbb{P}(B > t)$ for all $t \in \mathbb{R}$.

Introduction

• A random walk X_n is a sequence of partial sums of i.i.d. random variables:

$$X_n = \Delta X_1 + \Delta X_2 + \ldots + \Delta X_n$$

where $\Delta X_1, \Delta X_2, \dots$ are independent and identically distributed on R.

- We say that a random walk X_n is non-trivial if $\mathbb{P}(X_1 > 0) \neq 0.$
- We write $A \stackrel{\mathrm{d}}{=} B$ if $\mathbb{P}(A > t) = \mathbb{P}(B > t)$ for all $t \in \mathbb{R}$.
- Of course if $X_1 \stackrel{\mathrm{d}}{=} Y_1$, then $X_n \stackrel{\mathrm{d}}{=} Y_n$ for all $n = 1, 2, \ldots$; in this case we say that X_n and Y_n are identical.

$\mathsf{Theorem}$

Introduction

If X_n and Y_n are non-trivial random walks, and

$$\mathbb{P}(X_n > t) = \mathbb{P}(Y_n > t)$$

for all $n=1,2,\ldots$ and all $t\in(0,\infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_n and Y_n are identical).

Theorem

Introduction

If X_n and Y_n are non-trivial random walks, and

$$\mathbb{P}(X_n > t) = \mathbb{P}(Y_n > t)$$

for all n = 1, 2, ... and all $t \in (0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_n and Y_n are identical).

- This was proved by Chaumont and Doney under additional conditions on X_n and Y_n :
 - if X_1 has exponential moments; or
 - if $\mathbb{P}(X_1 > t)$ is completely monotone on $(0, \infty)$; or
 - if X_1 has analytic density function on $(0, \infty)$.

Theorem

Introduction

If X_n and Y_n are non-trivial random walks, and

$$\mathbb{P}(X_n > t) = \mathbb{P}(Y_n > t)$$

for all n = 1, 2, ... and all $t \in (0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_n and Y_n are identical).

Idea of the proof

- This was proved by Chaumont and Doney under additional conditions on X_n and Y_n :
 - ▶ if X₁ has exponential moments; or
 - if $\mathbb{P}(X_1 > t)$ is completely monotone on $(0, \infty)$; or
 - if X_1 has analytic density function on $(0, \infty)$.
- This covers a majority of interesting examples.

Theorem

Introduction

If X_n and Y_n are non-trivial random walks, and

$$\mathbb{P}(X_n > t) = \mathbb{P}(Y_n > t)$$

for all $n=1,2,\ldots$ and all $t\in(0,\infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_n and Y_n are identical).

- This was proved by Chaumont and Doney under additional conditions on X_n and Y_n :
 - \triangleright if X_1 has exponential moments; or
 - if $\mathbb{P}(X_1 > t)$ is completely monotone on $(0, \infty)$; or
 - if X_1 has analytic density function on $(0, \infty)$.
- This covers a majority of interesting examples.
- It is often enough to take n = 1, 2 in the assumption.

Simple reformulation

Introduction

Theorem (equivalent version)

If X_n and Y_n are non-trivial random walks, and

$$\max\{0, X_n\} \stackrel{\mathrm{d}}{=} \max\{0, Y_n\}$$

for all $n = 1, 2, \ldots$, then

$$X_n \stackrel{\mathrm{d}}{=} Y_n$$

for all n = 1, 2, ...

Some fluctuation theory

Introduction

• Define $\overline{X}_n = \max\{0, X_1, X_2, \dots, X_n\}$.

Some fluctuation theory

- Define $X_n = \max\{0, X_1, X_2, \dots, X_n\}$.
- Spitzer's formula: if |w| < 1 and $|m| \ge 0$, then

$$\sum_{n=0}^{\infty} \left(\mathbb{E} \exp(iz\overline{X}_n) \right) w^n = \exp\left(\sum_{n=0}^{\infty} \frac{\mathbb{E} \exp(iz \max\{0, X_n\})}{n} \, w^n \right).$$

- Define $\overline{X}_n = \max\{0, X_1, X_2, \dots, X_n\}$.
- Spitzer's formula: if |w| < 1 and $\text{Im } z \geqslant 0$, then

$$\sum_{n=0}^{\infty} \left(\mathbb{E} \exp(iz\overline{X}_n) \right) w^n = \exp\left(\sum_{n=0}^{\infty} \frac{\mathbb{E} \exp(iz \max\{0, X_n\})}{n} w^n \right).$$

• Knowing the distributions of \overline{X}_n is thus equivalent to knowing the distributions of max $\{0, X_n\}$.

Another reformulation

Introduction

Theorem (equivalent version)

If X_n and Y_n are non-trivial random walks, and

$$\overline{X}_n \stackrel{\mathrm{d}}{=} \overline{Y}_n$$

for all $n = 1, 2, \ldots$, then

$$X_n \stackrel{\mathrm{d}}{=} Y_n$$

for all n = 1, 2, ...

Some more fluctuation theory

• Let N be the smallest number n such that $\overline{X}_n > 0$ (the first ladder time).

- - Let N be the smallest number n such that $\overline{X}_n > 0$ (the first ladder time).
 - Let H be the value of X_n for n = N (the first ladder height).

- Let N be the smallest number n such that $\overline{X}_n > 0$ (the first ladder time).
- Let H be the value of \overline{X}_n for n = N (the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \overline{X}_n for n = 1, 2, ...

- Let N be the smallest number n such that $\overline{X}_n > 0$ (the first ladder time).
- Let H be the value of \overline{X}_n for n = N (the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \overline{X}_n for n = 1, 2, ...
- The characteristic function of (N, H) is essentially the upward space-time Wiener-Hopf factor.

Some more fluctuation theory

- Let N be the smallest number n such that $\overline{X}_n > 0$ (the first ladder time).
- Let H be the value of \overline{X}_n for n = N (the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \overline{X}_n for n = 1, 2, ...
- The characteristic function of (N, H) is essentially the upward space-time Wiener-Hopf factor.

Theorem (equivalent version)

If X_n and Y_n are non-trivial random walks with equal upward space-time Wiener-Hopf factors, then X_n and Y_n are identical.

Algebra 0000

Lévy processes

Introduction

 A Lévy process is, in some sense, a random walk in continuous time.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_t is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Lévy processes

Introduction

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_t is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Corollary

If X_t and Y_t are non-trivial Lévy processes, and

$$\max\{0, X_t\} \stackrel{\mathrm{d}}{=} \max\{0, Y_t\}$$

for all t > 0, then

$$X_t \stackrel{\mathrm{d}}{=} Y_t$$

for all t > 0.

Lévy processes

Introduction

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_t is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Corollary

If X_t and Y_t are non-trivial Lévy processes, and

$$\max\{0, X_t\} \stackrel{\mathrm{d}}{=} \max\{0, Y_t\} \qquad (\text{or } \overline{X}_t \stackrel{\mathrm{d}}{=} \overline{Y}_t)$$

for all t > 0, then

$$X_t \stackrel{\mathrm{d}}{=} Y_t$$

for all t > 0.

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_t is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Corollary

If X_t and Y_t are non-trivial Lévy processes, and

$$\max\{0, X_t\} \stackrel{\mathrm{d}}{=} \max\{0, Y_t\} \qquad (\text{or } \overline{X}_t \stackrel{\mathrm{d}}{=} \overline{Y}_t)$$

for all t > 0, then

$$X_t \stackrel{\mathrm{d}}{=} Y_t$$

for all t > 0.

 Conjectured by Vigon, proved under extra assumptions by Chaumont and Doney

Introduction

ullet All measures below are finite signed Borel measures on $\mathbb R.$

Introduction

- ullet All measures below are finite signed Borel measures on ${\mathbb R}$.
- The convolution of measures μ and ν is given by

$$(\mu * \nu)(A) = \int_{\mathbb{R}} \mu(A - x) \nu(dx).$$

Convolutive powers of μ are denoted by μ^n .

Introduction

- ullet All measures below are finite signed Borel measures on ${\mathbb R}.$
- The convolution of measures μ and ν is given by

$$(\mu * \nu)(A) = \int_{\mathbb{R}} \mu(A - x) \nu(dx).$$

Convolutive powers of μ are denoted by μ^n .

• We say that a measure μ is non-trivial if the restriction of μ to $(0,\infty)$ is a non-zero measure.

Introduction

- ullet All measures below are finite signed Borel measures on ${\mathbb R}.$
- The convolution of measures μ and ν is given by

$$(\mu * \nu)(A) = \int_{\mathbb{R}} \mu(A - x) \nu(dx).$$

Convolutive powers of μ are denoted by μ^n .

• We say that a measure μ is non-trivial if the restriction of μ to $(0,\infty)$ is a non-zero measure.

Theorem (extended version)

If μ and ν are non-trivial measures and

$$\mu^n(A) = \nu^n(A)$$

for all Borel $A \subseteq (0, \infty)$ and $n = 1, 2, \ldots$, then $\mu = \nu$.

Change of notation

Introduction

We assume that

$$\mu^n(A) = \nu^n(A)$$

for all Borel $A \subseteq (0, \infty)$ and n = 1, 2, ...

Change of notation

Introduction

We assume that

$$\mu^n(A) = \nu^n(A)$$

for all Borel $A \subseteq (0, \infty)$ and n = 1, 2, ...

• Considering n=1, we see that the restrictions of μ and ν to $(0, \infty)$ agree.

We assume that

$$\mu^n(A) = \nu^n(A)$$

for all Borel $A \subseteq (0, \infty)$ and n = 1, 2, ...

- Considering n=1, we see that the restrictions of μ and ν to $(0,\infty)$ agree.
- Denote:

$$\alpha = \mathbb{1}_{(0,\infty)}\mu = \mathbb{1}_{(0,\infty)}\mu,
\beta = \mathbb{1}_{(-\infty,0]}\mu,
\gamma = \mathbb{1}_{(-\infty,0]}\nu.$$

Introduction

We assume that

$$\mu^n(A) = \nu^n(A)$$

for all Borel $A \subseteq (0, \infty)$ and n = 1, 2, ...

- Considering n=1, we see that the restrictions of μ and ν to $(0,\infty)$ agree.
- Denote:

$$\alpha = \mathbb{1}_{(0,\infty)}\mu = \mathbb{1}_{(0,\infty)}\mu,$$

$$\beta = \mathbb{1}_{(-\infty,0]}\mu,$$

$$\gamma = \mathbb{1}_{(-\infty,0]}\nu.$$

• Now $\mu = \alpha + \beta$ and $\nu = \alpha + \gamma$.

Idea of the proof

Introduction

• α is a non-zero measure concentrated on $(0,\infty)$, β and γ are concentrated on $(-\infty, 0]$.

Idea of the proof

ldea of the proof

- α is a non-zero measure concentrated on $(0,\infty)$, β and γ are concentrated on $(-\infty, 0]$.
- The proof consists of two steps:

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma)$$
 for all $n = 0, 1, \dots$

Introduction

- α is a non-zero measure concentrated on $(0, \infty)$, β and γ are concentrated on $(-\infty, 0]$.
- The proof consists of two steps:

$$\mathbb{1}_{(0,\infty)}(\alpha+\beta)^n = \mathbb{1}_{(0,\infty)}(\alpha+\gamma)^n \text{ for all } n=1,2,\dots$$

$$\downarrow \text{ (simple algebra)}$$

$$\mathbb{1}_{(0,\infty)}(\alpha^n*\beta) = \mathbb{1}_{(0,\infty)}(\alpha^n*\gamma) \text{ for all } n=0,1,\dots$$

$$\downarrow \text{ (complex analysis)}$$

$$\beta = \gamma.$$

• We prove that

$$\mathbb{1}_{(0,\infty)}(\alpha+\beta)^n=\mathbb{1}_{(0,\infty)}(\alpha+\gamma)^n$$
 for all $n=1,2,\ldots$

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k)$$
 for all $n = 0, 1, \dots$

and
$$k = 1, 2, ...$$

We prove that

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha+\beta)^n = \mathbb{1}_{(0,\infty)}(\alpha+\gamma)^n \text{ for all } n=1,2,\dots$$

$$\downarrow \downarrow$$

$$\mathbb{1}_{(0,\infty)}(\alpha^n*\beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n*\gamma^k) \text{ for all } n=0,1,\dots$$
and $k=1,2,\dots$

• Induction with respect to n.

We prove that

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha+\beta)^n = \mathbb{1}_{(0,\infty)}(\alpha+\gamma)^n \text{ for all } n=1,2,\dots$$

$$\downarrow \downarrow$$

$$\mathbb{1}_{(0,\infty)}(\alpha^n*\beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n*\gamma^k) \text{ for all } n=0,1,\dots$$
and $k=1,2,\dots$

- Induction with respect to n.
- For n = 0:

$$\mathbb{1}_{(0,\infty)}(\beta^k) = 0 = \mathbb{1}_{(0,\infty)}(\gamma^k).$$

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

$$(\alpha + \beta)^{N+1} - (\alpha + \gamma)^{N+1}$$

$$= \alpha^{N+1} - \alpha^{N+1} \qquad (j = 0)$$

$$+ (N+1)(\alpha^{N} * \beta - \alpha^{N} * \gamma) \qquad (j = 1)$$

$$+ \sum_{j=2}^{N} {N+1 \choose j} (\alpha^{N+1-j} * \beta^{j} - \alpha^{N+1-j} * \gamma^{j})$$

$$+ \beta^{N+1} - \gamma^{N+1}. \qquad (j = N+2)$$

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

zero on
$$(0,\infty)$$
 by the assumption
$$(\alpha+\beta)^{N+1} - (\alpha+\gamma)^{N+1}$$

$$= \alpha^{N+1} - \alpha^{N+1} \qquad (j=0)$$

$$+ (N+1)(\alpha^N * \beta - \alpha^N * \gamma) \qquad (j=1)$$

$$+ \sum_{j=2}^{N} \binom{N+1}{j} (\alpha^{N+1-j} * \beta^j - \alpha^{N+1-j} * \gamma^j)$$

$$+ \beta^{N+1} - \gamma^{N+1} \qquad (j=N+2)$$

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

zero on
$$(0,\infty)$$
 by the assumption
$$(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}$$

$$=\underbrace{\alpha^{N+1}-\alpha^{N+1}}_{\text{zero on }\mathbb{R}} \qquad (j=0)$$

$$+(N+1)(\alpha^N*\beta-\alpha^N*\gamma) \qquad (j=1)$$

$$+\sum_{j=2}^N\binom{N+1}{j}(\alpha^{N+1-j}*\beta^j-\alpha^{N+1-j}*\gamma^j)$$

$$+\beta^{N+1}-\gamma^{N+1}. \qquad (j=N+2)$$

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

zero on
$$(0,\infty)$$
 by the assumption
$$(\alpha+\beta)^{N+1} - (\alpha+\gamma)^{N+1}$$

$$= \underbrace{\alpha^{N+1} - \alpha^{N+1}}_{\text{zero on } \mathbb{R}} \qquad (j=0)$$

$$+ (N+1)(\alpha^N * \beta - \alpha^N * \gamma) \qquad (j=1)$$

$$+ \sum_{j=2}^{N} \binom{N+1}{j} (\underbrace{\alpha^{N+1-j} * \beta^j - \alpha^{N+1-j} * \gamma^j}_{\text{zero on } (0,\infty)})$$

$$+ \beta^{N+1} - \gamma^{N+1}. \qquad (j=N+2)$$

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma^k) \text{ for } n = 0, 1, \dots, N-1$$

and $k = 1, 2, \dots$

zero on
$$(0,\infty)$$
 by the assumption
$$(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}$$

$$=\underbrace{\alpha^{N+1}-\alpha^{N+1}}_{\text{zero on }\mathbb{R}} \qquad \qquad (j=0)$$

$$+(N+1)(\alpha^N*\beta-\alpha^N*\gamma) \qquad \qquad (j=1)$$

$$+\sum_{j=2}^N\binom{N+1}{j}\underbrace{(\alpha^{N+1-j}*\beta^j-\alpha^{N+1-j}*\gamma^j)}_{\text{zero on }(0,\infty)}$$
 by the induction hypothesis
$$+\underbrace{\beta^{N+1}-\gamma^{N+1}}_{\text{zero on }(0,\infty)}. \qquad \qquad (j=N+2)$$

• Thus, $0 = (N+1)(\alpha^N * \beta - \alpha^N * \gamma)$ on $(0, \infty)$.

- Thus, $0 = (N+1)(\alpha^N * \beta \alpha^N * \gamma)$ on $(0, \infty)$.
- This is the desired result for n = N, k = 1.

- Thus, $0 = (N+1)(\alpha^N * \beta \alpha^N * \gamma)$ on $(0, \infty)$.
- This is the desired result for n = N, k = 1.
- Larger values of k: induction within induction.

Algebra 0000

Complex analysis

Suppose that

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

Algebra

Suppose that

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

• Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^K)$$

$$\parallel$$

$$\mathbb{1}_{(0,\infty)}((\alpha^N * \beta^{K-1}) * \beta)$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

 $\sigma * \beta = (\mathbb{1}_{(-\infty,0]}\sigma) * \beta + (\mathbb{1}_{(0,\infty)}\sigma) * \beta$ Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^K)$$

$$\mathbb{1}_{(0,\infty)}\big(\big(\underbrace{\alpha^{N} * \beta^{K-1}}_{}\big) * \beta\big) = \mathbb{1}_{(0,\infty)}\big(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta\big)$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

• Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

• Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

• Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\parallel
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta) * \gamma^{K-1})$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

Then,

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\parallel
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta) * \gamma^{K-1})
\mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma) * \gamma^{K-1})$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

Then,

Introduction

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta) * \gamma^{K-1})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma) * \gamma^{K-1})$$

$$\mathbb{1}_{(0,\infty)}(\alpha^N * \beta^k) = \mathbb{1}_{(0,\infty)}(\alpha^N * \gamma^k) \text{ for } k = 1, 2, \dots, K - 1.$$

• Then,

$$\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma^{K-1}) * \beta) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma^{K-1}) * \beta)
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \beta) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \beta) * \gamma^{K-1})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma) * \gamma^{K-1})
\mathbb{1}_{(0,\infty)}((\alpha^{N} * \gamma) * \gamma^{K-1}) = \mathbb{1}_{(0,\infty)}(\mathbb{1}_{(0,\infty)}(\alpha^{N} * \gamma) * \gamma^{K-1})$$

• We prove that

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma) \text{ for all } n = 0, 1, \dots$$

We prove that

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma) \text{ for all } n = 0, 1, \dots$$

$$\downarrow \downarrow$$

$$\beta = \gamma.$$

• Equivalently: it is not possible to have

$$\mathbb{1}_{(0,\infty)}(\alpha^n * (\beta - \gamma)) = 0 \text{ for all } n = 0, 1, \dots$$

and $\alpha \neq 0$, $\beta - \gamma \neq 0$.

• We prove that

$$\mathbb{1}_{(0,\infty)}(\alpha^n * \beta) = \mathbb{1}_{(0,\infty)}(\alpha^n * \gamma) \text{ for all } n = 0, 1, \dots$$

$$\downarrow \downarrow$$

$$\beta = \gamma$$

• Equivalently: it is not possible to have

$$\mathbb{1}_{(0,\infty)}(\alpha^n*(\beta-\gamma))=0 \text{ for all } n=0,1,\dots$$
 and $\alpha\neq 0$, $\beta-\gamma\neq 0$.

We proceed by contradiction.

• We know that $\alpha^n * (\beta - \gamma)$ is concentrated on $(-\infty, 0]$ for all n = 1, 2, ...

Introduction

- We know that $\alpha^n * (\beta \gamma)$ is concentrated on $(-\infty, 0]$ for all n = 1, 2, ...
- Define analytic extensions of characteristic functions:

$$f(z) = \int_{(0,\infty)} e^{izt} \alpha(dt) \qquad (\operatorname{Im} z \geqslant 0)$$

$$g(z) = \int_{(-\infty,0]} e^{izt} (\beta - \gamma)(dt) \qquad (\operatorname{Im} z \leqslant 0)$$

$$h_n(z) = \int_{(-\infty,0]} e^{izt} (\alpha^n * (\beta - \gamma))(dt) \quad (\operatorname{Im} z \leqslant 0).$$

$$h_n(z) = \int_{(-\infty,0]} e^{izt} (\alpha^n * (\beta - \gamma))(dt) \quad (\text{Im } z \leq 0)$$

Introduction

- Define analytic extensions of characteristic functions:

$$f(z) = \int_{(0,\infty)} e^{izt} \alpha(dt) \qquad (\operatorname{Im} z \geqslant 0)$$

$$g(z) = \int_{(-\infty,0]} e^{izt} (\beta - \gamma)(dt) \qquad (\operatorname{Im} z \leq 0)$$

$$h_n(z) = \int_{(-\infty,0]} e^{izt} (\alpha^n * (\beta - \gamma))(dt) \quad (\operatorname{Im} z \leq 0).$$

$$h_n(z) = \int_{(-\infty,0]} e^{izt} (\alpha^n * (\beta - \gamma)) (dt) \quad (\operatorname{Im} z \leqslant 0).$$

We know that

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

Idea of the proof

Introduction

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

• Let $\mathbb{C}_{\pm}=\{z\in\mathbb{C}:\pm\operatorname{Im}z>0\}$ and

$$A=\{z\in\mathbb{R}:g(z)=0\},$$
 (closed, null) $B=\{z\in\mathbb{C}_{-}:g(z)=0\}.$ (discrete)

Introduction

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

• Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \pm \operatorname{Im} z > 0\}$ and

$$\begin{aligned} A &= \{z \in \mathbb{R} : g(z) = 0\}, \\ B &= \{z \in \mathbb{C}_- : g(z) = 0\}. \end{aligned} \qquad \text{(closed, null)}$$

Define

$$arphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

Introduction

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

Idea of the proof

• Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \pm \operatorname{Im} z > 0\}$ and

$$A = \{z \in \mathbb{R} : g(z) = 0\},$$
 (closed, null)
 $B = \{z \in \mathbb{C}_- : g(z) = 0\}.$ (discrete)

Define

$$\varphi_n(z) = \begin{cases} (f(z))^n & \text{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \\ \frac{h_n(z)}{g(z)} & \text{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• Then φ_n is analytic in $\mathbb{C} \setminus (A \cup B)$, meromorphic in $\mathbb{C} \setminus A$.

Algebra

We know that

Introduction

$$(f(z))^n g(z) = h_n(z)$$
 for $z \in \mathbb{R}$.

Idea of the proof

• Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \pm \operatorname{Im} z > 0\}$ and

$$A = \{z \in \mathbb{R} : g(z) = 0\},$$
 (closed, null)
 $B = \{z \in \mathbb{C}_- : g(z) = 0\}.$ (discrete)

Define

$$\varphi_n(z) = \begin{cases} (f(z))^n & \text{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \\ \frac{h_n(z)}{g(z)} & \text{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- Then φ_n is analytic in $\mathbb{C} \setminus (A \cup B)$, meromorphic in $\mathbb{C} \setminus A$.
- We have $\varphi_n(z) = (\varphi_1(z))^n$ for $z \in \mathbb{C} \setminus (A \cup B)$.

• We have

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• We have

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• Let $z \in B$ be a pole of φ_1 of degree k.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- Let $z \in B$ be a pole of φ_1 of degree k.
- Then z is a pole of φ_n of degree nk.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- Let $z \in B$ be a pole of φ_1 of degree k.
- Then z is a pole of φ_n of degree nk.
- Thus, z it is a zero of g of degree at least nk.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- Let $z \in B$ be a pole of φ_1 of degree k.
- Then z is a pole of φ_n of degree nk.
- Thus, z it is a zero of g of degree at least nk.
- This is not possible when $n \to \infty$.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- Let $z \in B$ be a pole of φ_1 of degree k.
- Then z is a pole of φ_n of degree nk.
- Thus, z it is a zero of g of degree at least nk.
- This is not possible when $n \to \infty$.
- Therefore, φ_n has no poles in \mathbb{C}_- : it is analytic in $\mathbb{C}\setminus A$.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- The functions h_n and g are bounded in \mathbb{C}_- . Each of them can be uniquely written as a product of:
 - ▶ an outer function O(z),
 - \triangleright a singular inner function S(z),
 - \triangleright a Blaschke product B(z).

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- The functions h_n and g are bounded in \mathbb{C}_- . Each of them can be uniquely written as a product of:
 - ▶ an outer function O(z),
 - \triangleright a singular inner function S(z),
 - a Blaschke product B(z).
- The function $\varphi_n = (\varphi_1)^n$ is of bounded type (a.k.a. Nevanlinna class) in \mathbb{C}_- , and thus it has a similar unique factorisation.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• The singular inner function S_g corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_g\geqslant 0$ and $a_g\geqslant 0$.

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• The singular inner function S_g corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_g \geqslant 0$ and $a_g \geqslant 0$.

• Similarly for h_n and φ_n , but λ_{φ_n} is signed and $a_{\varphi_n} \in \mathbb{R}$.

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

ullet The singular inner function S_g corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_g \geqslant 0$ and $a_g \geqslant 0$.

- Similarly for h_n and φ_n , but λ_{φ_n} is signed and $a_{\varphi_n} \in \mathbb{R}$.
- Necessarily, $|S_{\varphi_1}(z)|^n=|S_{\varphi_n}(z)|=rac{|S_{h_n}(z)|}{|S_{\sigma}(z)|}.$

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• The singular inner function S_g corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_g \geqslant 0$ and $a_g \geqslant 0$.

- Similarly for h_n and φ_n , but λ_{φ_n} is signed and $a_{\varphi_n} \in \mathbb{R}$.
- Necessarily, $|S_{\varphi_1}(z)|^n = |S_{\varphi_n}(z)| = \frac{|S_{h_n}(z)|}{|S_{\sigma}(z)|}$.
- Thus, $na_{\varphi_1}=a_{\varphi_n}=a_{h_n}-a_g$ and $n\lambda_{\varphi_1}=\lambda_{\varphi_n}=\lambda_{h_n}-\lambda_g$.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• The singular inner function S_g corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_g \geqslant 0$ and $a_g \geqslant 0$.

- Similarly for h_n and φ_n , but λ_{φ_n} is signed and $a_{\varphi_n} \in \mathbb{R}$.
- Necessarily, $|S_{\varphi_1}(z)|^n = |S_{\varphi_n}(z)| = \frac{|S_{h_n}(z)|}{|S_{\varrho}(z)|}$
- Thus, $na_{arphi_1}=a_{arphi_n}=a_{h_n}-a_{g}$ and $n\lambda_{arphi_1}=\lambda_{arphi_n}=\lambda_{h_n}-\lambda_{g}$.
- Taking $n \to \infty$, we see that $a_{\omega_1} \ge 0$ and $\lambda_{\omega_1} \ge 0$.

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• The singular inner function S_{σ} corresponding to g satisfies

$$|S_g(z)| = \exp\left(a_g \operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \lambda_g(dx)\right)$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_n and φ_n , but λ_{φ_n} is signed and $a_{\varphi_n} \in \mathbb{R}$.
- Necessarily, $|S_{\varphi_1}(z)|^n = |S_{\varphi_n}(z)| = \frac{|S_{h_n}(z)|}{|S_{\sigma}(z)|}$.
- Thus, $na_{\varphi_1}=a_{\varphi_n}=a_{h_n}-a_g$ and $n\lambda_{\varphi_1}=\lambda_{\varphi_n}=\lambda_{h_n}-\lambda_g$.
- Taking $n \to \infty$, we see that $a_{\varphi_1} \geqslant 0$ and $\lambda_{\varphi_1} \geqslant 0$.
- That is, S_{ω_1} is bounded on \mathbb{C}_- .

• We have

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• An outer function O_{φ_1} in the factorisation of φ_1 satisfies

$$|O_{\varphi_1}(z)| = \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\ln z}{|z-x|^2} \log |\varphi_1(x)| \, dx\right).$$

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• An outer function O_{φ_1} in the factorisation of φ_1 satisfies

$$|O_{\varphi_1}(z)| = \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z - x|^2} \log |\varphi_1(x)| \, dx\right).$$

• Since $\varphi_1(x) = \frac{h_1(x)}{\varphi(x)} = f(x)$ a.e. (on $x \in \mathbb{R} \setminus A$), $O_{(z)}(z)$ is bounded.

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

• An outer function O_{φ_1} in the factorisation of φ_1 satisfies

$$|O_{\varphi_1}(z)| = \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^2} \log|\varphi_1(x)| dx\right).$$

- Since $\varphi_1(x) = \frac{h_1(x)}{\varphi(x)} = f(x)$ a.e. (on $x \in \mathbb{R} \setminus A$), $O_{(0)}(z)$ is bounded.
- It follows that φ_1 is a bounded analytic function in \mathbb{C}_- .

• We have

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

ullet We know that $arphi_1$ is a bounded analytic function in \mathbb{C}_- and in \mathbb{C}_+ , and hence in $\mathbb{C}\setminus \mathcal{A}$.

Introduction

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

Idea of the proof

- We know that φ_1 is a bounded analytic function in \mathbb{C}_- and in \mathbb{C}_+ , and hence in $\mathbb{C} \setminus A$.
- Painlevé's theorem asserts that φ_1 extends to a bounded entire function.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- ullet We know that $arphi_1$ is a bounded analytic function in \mathbb{C}_- and in \mathbb{C}_+ , and hence in $\mathbb{C}\setminus \mathcal{A}$.
- Painlevé's theorem asserts that φ_1 extends to a bounded entire function
- As a consequence, φ_1 is constant.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- ullet We know that $arphi_1$ is a bounded analytic function in \mathbb{C}_- and in \mathbb{C}_+ , and hence in $\mathbb{C}\setminus \mathcal{A}$.
- Painlevé's theorem asserts that φ_1 extends to a bounded entire function
- As a consequence, φ_1 is constant.
- Thus, f is constant.

$$(\varphi_1(z))^n = \varphi_n(z) = egin{cases} (f(z))^n & ext{for } z \in \mathbb{C}_+ \cup \mathbb{R}, \ rac{h_n(z)}{g(z)} & ext{for } z \in \mathbb{C}_- \setminus B. \end{cases}$$

- ullet We know that $arphi_1$ is a bounded analytic function in \mathbb{C}_- and in \mathbb{C}_+ , and hence in $\mathbb{C}\setminus \mathcal{A}$.
- Painlevé's theorem asserts that φ_1 extends to a bounded entire function.
- As a consequence, φ_1 is constant.
- Thus, f is constant.
- But f is the characteristic function of a measure α concentrated on $(0, \infty)$, it cannot be constant.