Random walks
 are completely determined by their trace on the positive half-line

Mateusz Kwaśnicki

Wrocław University of Science and Technology mateusz.kwasnicki@pwr.edu.pl

Guanajuato, Nov 29, 2017

Main Theorem

Random walks are completely determined by their trace
 on the positive half-line

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.
- SPA 2017 conference
(The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24-28, 2017)

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.
- SPA 2017 conference
(The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24-28, 2017)

圄 Loïc Chaumont, Ron Doney
On distributions determined by their upward, space-time Wiener-Hopf factor arXiv:1702.00067

A few remarks

- Acknowledgement: Loïc Chaumont from Angers, France.
- SPA 2017 conference
(The 39th Conference on Stochastic Processes and their Applications, Moscow, Jul 24-28, 2017)

固 Loïc Chaumont, Ron Doney
On distributions determined by their upward, space-time Wiener-Hopf factor
arXiv:1702.00067
园 V. Vigon
Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf
PhD thesis, INSA de Rouen, 2001

Random walks

- A random walk X_{n} is a sequence of partial sums of i.i.d. random variables:

$$
X_{n}=\Delta X_{1}+\Delta X_{2}+\ldots+\Delta X_{n},
$$

where $\Delta X_{1}, \Delta X_{2}, \ldots$ are independent and identically distributed on \mathbb{R}.

Random walks

- A random walk X_{n} is a sequence of partial sums of i.i.d. random variables:

$$
X_{n}=\Delta X_{1}+\Delta X_{2}+\ldots+\Delta X_{n}
$$

where $\Delta X_{1}, \Delta X_{2}, \ldots$ are independent and identically distributed on \mathbb{R}.

- We say that a random walk X_{n} is non-trivial if

$$
\mathbb{P}\left(X_{1}>0\right) \neq 0 .
$$

Random walks

- A random walk X_{n} is a sequence of partial sums of i.i.d. random variables:

$$
X_{n}=\Delta X_{1}+\Delta X_{2}+\ldots+\Delta X_{n}
$$

where $\Delta X_{1}, \Delta X_{2}, \ldots$ are independent and identically distributed on \mathbb{R}.

- We say that a random walk X_{n} is non-trivial if

$$
\mathbb{P}\left(X_{1}>0\right) \neq 0 .
$$

- We write $A \stackrel{\mathrm{~d}}{=} B$ if $\mathbb{P}(A>t)=\mathbb{P}(B>t)$ for all $t \in \mathbb{R}$.

Random walks

- A random walk X_{n} is a sequence of partial sums of i.i.d. random variables:

$$
X_{n}=\Delta X_{1}+\Delta X_{2}+\ldots+\Delta X_{n}
$$

where $\Delta X_{1}, \Delta X_{2}, \ldots$ are independent and identically distributed on \mathbb{R}.

- We say that a random walk X_{n} is non-trivial if

$$
\mathbb{P}\left(X_{1}>0\right) \neq 0 .
$$

- We write $A \stackrel{\mathrm{~d}}{=} B$ if $\mathbb{P}(A>t)=\mathbb{P}(B>t)$ for all $t \in \mathbb{R}$.
- Of course if $X_{1} \stackrel{\text { d }}{=} Y_{1}$, then $X_{n} \stackrel{\text { d }}{=} Y_{n}$ for all $n=1,2, \ldots$; in this case we say that X_{n} and Y_{n} are identical.

Main theorem

Theorem

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\mathbb{P}\left(X_{n}>t\right)=\mathbb{P}\left(Y_{n}>t\right)
$$

for all $n=1,2, \ldots$ and all $t \in(0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_{n} and Y_{n} are identical).

Main theorem

Theorem

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\mathbb{P}\left(X_{n}>t\right)=\mathbb{P}\left(Y_{n}>t\right)
$$

for all $n=1,2, \ldots$ and all $t \in(0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_{n} and Y_{n} are identical).

- This was proved by Chaumont and Doney under additional conditions on X_{n} and Y_{n} :
- if X_{1} has exponential moments; or
- if $\mathbb{P}\left(X_{1}>t\right)$ is completely monotone on $(0, \infty)$; or
- if X_{1} has analytic density function on $(0, \infty)$.

Main theorem

Theorem

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\mathbb{P}\left(X_{n}>t\right)=\mathbb{P}\left(Y_{n}>t\right)
$$

for all $n=1,2, \ldots$ and all $t \in(0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_{n} and Y_{n} are identical).

- This was proved by Chaumont and Doney under additional conditions on X_{n} and Y_{n} :
- if X_{1} has exponential moments; or
- if $\mathbb{P}\left(X_{1}>t\right)$ is completely monotone on $(0, \infty)$; or
- if X_{1} has analytic density function on $(0, \infty)$.
- This covers a majority of interesting examples.

Main theorem

Theorem

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\mathbb{P}\left(X_{n}>t\right)=\mathbb{P}\left(Y_{n}>t\right)
$$

for all $n=1,2, \ldots$ and all $t \in(0, \infty)$, then the same is true for all $t \in \mathbb{R}$ (that is, X_{n} and Y_{n} are identical).

- This was proved by Chaumont and Doney under additional conditions on X_{n} and Y_{n} :
- if X_{1} has exponential moments; or
- if $\mathrm{P}\left(X_{1}>t\right)$ is completely monotone on $(0, \infty)$; or - if X_{1} has analytic density function on $(0, \infty)$.
- This covers a majority of interesting examples.
- It is often enough to take $n=1,2$ in the assumption.

Simple reformulation

Theorem (equivalent version)

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\max \left\{0, X_{n}\right\} \stackrel{\mathrm{d}}{=} \max \left\{0, Y_{n}\right\}
$$

for all $n=1,2, \ldots$, then

$$
X_{n} \stackrel{\mathrm{~d}}{=} Y_{n}
$$

for all $n=1,2, \ldots$

Some fluctuation theory

- Define $\bar{X}_{n}=\max \left\{0, X_{1}, X_{2}, \ldots, X_{n}\right\}$.

Some fluctuation theory

- Define $\bar{X}_{n}=\max \left\{0, X_{1}, X_{2}, \ldots, X_{n}\right\}$.
- Spitzer's formula: if $|w|<1$ and $\operatorname{Im} z \geqslant 0$, then

$$
\sum_{n=0}^{\infty}\left(\operatorname{Eexp}\left(i z \bar{X}_{n}\right)\right) w^{n}=\exp \left(\sum_{n=0}^{\infty} \frac{\operatorname{Eexp}\left(i z \max \left\{0, X_{n}\right\}\right)}{n} w^{n}\right) .
$$

Some fluctuation theory

- Define $\bar{X}_{n}=\max \left\{0, X_{1}, X_{2}, \ldots, X_{n}\right\}$.
- Spitzer's formula: if $|w|<1$ and $\operatorname{Im} z \geqslant 0$, then

$$
\sum_{n=0}^{\infty}\left(\mathbb{E} \exp \left(i z \bar{X}_{n}\right)\right) w^{n}=\exp \left(\sum_{n=0}^{\infty} \frac{\mathbb{E} \exp \left(i z \max \left\{0, X_{n}\right\}\right)}{n} w^{n}\right) .
$$

- Knowing the distributions of \bar{X}_{n} is thus equivalent to knowing the distributions of $\max \left\{0, X_{n}\right\}$.

Another reformulation

Theorem (equivalent version)

If X_{n} and Y_{n} are non-trivial random walks, and

$$
\bar{X}_{n} \stackrel{\mathrm{~d}}{=} \bar{Y}_{n}
$$

for all $n=1,2, \ldots$, then

$$
X_{n} \stackrel{\mathrm{~d}}{=} Y_{n}
$$

for all $n=1,2, \ldots$

Some more fluctuation theory

- Let N be the smallest number n such that $\bar{X}_{n}>0$
(the first ladder time).

Some more fluctuation theory

- Let N be the smallest number n such that $\bar{X}_{n}>0$ (the first ladder time).
- Let H be the the value of \bar{X}_{n} for $n=N$ (the first ladder height).

Some more fluctuation theory

- Let N be the smallest number n such that $\bar{X}_{n}>0$ (the first ladder time).
- Let H be the the value of \bar{X}_{n} for $n=N$ (the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \bar{X}_{n} for $n=1,2, \ldots$

Some more fluctuation theory

- Let N be the smallest number n such that $\bar{X}_{n}>0$ (the first ladder time).
- Let H be the the value of \bar{X}_{n} for $n=N$ (the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \bar{X}_{n} for $n=1,2, \ldots$
- The characteristic function of (N, H) is essentially the upward space-time Wiener-Hopf factor.

Some more fluctuation theory

- Let N be the smallest number n such that $\bar{X}_{n}>0$ (the first ladder time).
- Let H be the the value of \bar{X}_{n} for $n=N$
(the first ladder height).
- Knowing the joint distribution of N and H, one can reconstruct the distributions of \bar{X}_{n} for $n=1,2, \ldots$
- The characteristic function of (N, H) is essentially the upward space-time Wiener-Hopf factor.

Theorem (equivalent version)

If X_{n} and Y_{n} are non-trivial random walks with equal upward space-time Wiener-Hopf factors, then X_{n} and Y_{n} are identical.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_{t} is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_{t} is a Lévy process if it has independent and stationary increments, and càdlàg paths.
Corollary
If X_{t} and Y_{t} are non-trivial Lévy processes, and

$$
\max \left\{0, X_{t}\right\} \stackrel{\mathrm{d}}{=} \max \left\{0, Y_{t}\right\}
$$

for all $t>0$, then

$$
X_{t} \stackrel{\mathrm{~d}}{=} Y_{t}
$$

for all $t>0$.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_{t} is a Lévy process if it has independent and stationary increments, and càdlàg paths.
Corollary
If X_{t} and Y_{t} are non-trivial Lévy processes, and

$$
\max \left\{0, X_{t}\right\} \stackrel{\mathrm{d}}{=} \max \left\{0, Y_{t}\right\} \quad\left(\text { or } \bar{X}_{t} \stackrel{\mathrm{~d}}{=} \bar{Y}_{t}\right)
$$

for all $t>0$, then

$$
X_{t} \stackrel{\mathrm{~d}}{=} Y_{t}
$$

for all $t>0$.

Lévy processes

- A Lévy process is, in some sense, a random walk in continuous time.
- Formally, X_{t} is a Lévy process if it has independent and stationary increments, and càdlàg paths.

Corollary

If X_{t} and Y_{t} are non-trivial Lévy processes, and

$$
\max \left\{0, X_{t}\right\} \stackrel{\mathrm{d}}{=} \max \left\{0, Y_{t}\right\} \quad\left(\text { or } \bar{X}_{t} \stackrel{\mathrm{~d}}{=} \bar{Y}_{t}\right)
$$

for all $t>0$, then

$$
X_{t} \stackrel{\mathrm{~d}}{=} Y_{t}
$$

for all $t>0$.

- Conjectured by Vigon, proved under extra assumptions by Chaumont and Doney

A variant for measures

- All measures below are finite signed Borel measures on \mathbb{R}.

A variant for measures

- All measures below are finite signed Borel measures on \mathbb{R}.
- The convolution of measures μ and ν is given by

$$
(\mu * \nu)(A)=\int_{\mathbb{R}} \mu(A-x) \nu(d x) .
$$

Convolutive powers of μ are denoted by μ^{n}.

A variant for measures

- All measures below are finite signed Borel measures on \mathbb{R}.
- The convolution of measures μ and ν is given by

$$
(\mu * \nu)(A)=\int_{\mathbb{R}} \mu(A-x) \nu(d x) .
$$

Convolutive powers of μ are denoted by μ^{n}.

- We say that a measure μ is non-trivial if the restriction of μ to $(0, \infty)$ is a non-zero measure.

A variant for measures

- All measures below are finite signed Borel measures on \mathbb{R}.
- The convolution of measures μ and ν is given by

$$
(\mu * \nu)(A)=\int_{\mathbb{R}} \mu(A-x) \nu(d x) .
$$

Convolutive powers of μ are denoted by μ^{n}.

- We say that a measure μ is non-trivial if the restriction of μ to $(0, \infty)$ is a non-zero measure.

Theorem (extended version)

If μ and ν are non-trivial measures and

$$
\mu^{n}(A)=\nu^{n}(A)
$$

for all Borel $A \subseteq(0, \infty)$ and $n=1,2, \ldots$, then $\mu=\nu$.

Change of notation

- We assume that

$$
\mu^{n}(A)=\nu^{n}(A)
$$

for all Borel $A \subseteq(0, \infty)$ and $n=1,2, \ldots$

Change of notation

- We assume that

$$
\mu^{n}(A)=\nu^{n}(A)
$$

for all Borel $A \subseteq(0, \infty)$ and $n=1,2, \ldots$

- Considering $n=1$, we see that the restrictions of μ and ν to $(0, \infty)$ agree.

Change of notation

- We assume that

$$
\mu^{n}(A)=\nu^{n}(A)
$$

for all Borel $A \subseteq(0, \infty)$ and $n=1,2, \ldots$

- Considering $n=1$, we see that the restrictions of μ and ν to $(0, \infty)$ agree.
- Denote:

$$
\begin{aligned}
\alpha & =\mathbb{1}_{(0, \infty)} \mu=\mathbb{1}_{(0, \infty)} \mu, \\
\beta & =\mathbb{1}_{(-\infty, 0]} \mu, \\
\gamma & =\mathbb{1}_{(-\infty, 0]} \nu .
\end{aligned}
$$

Change of notation

- We assume that

$$
\mu^{n}(A)=\nu^{n}(A)
$$

for all Borel $A \subseteq(0, \infty)$ and $n=1,2, \ldots$

- Considering $n=1$, we see that the restrictions of μ and ν to $(0, \infty)$ agree.
- Denote:

$$
\begin{aligned}
\alpha & =\mathbb{1}_{(0, \infty)} \mu=\mathbb{1}_{(0, \infty)} \mu, \\
\beta & =\mathbb{1}_{(-\infty, 0]} \mu, \\
\gamma & =\mathbb{1}_{(-\infty, 0]} \nu .
\end{aligned}
$$

- Now $\mu=\alpha+\beta$ and $\nu=\alpha+\gamma$.

Idea of the proof

- α is a non-zero measure concentrated on $(0, \infty), \beta$ and γ are concentrated on $(-\infty, 0]$.

Idea of the proof

- α is a non-zero measure concentrated on $(0, \infty), \beta$ and γ are concentrated on $(-\infty, 0]$.
- The proof consists of two steps:

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}(\alpha+\beta)^{n}=\mathbb{1}_{(0, \infty)}(\alpha+\gamma)^{n} \text { for all } n=1,2, \ldots \\
\Downarrow(\text { simple algebra }) \\
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma\right) \text { for all } n=0,1, \ldots
\end{gathered}
$$

Idea of the proof

- α is a non-zero measure concentrated on $(0, \infty), \beta$ and γ are concentrated on $(-\infty, 0]$.
- The proof consists of two steps:

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}(\alpha+\beta)^{n}=\mathbb{1}_{(0, \infty)}(\alpha+\gamma)^{n} \text { for all } n=1,2, \ldots \\
\Downarrow(\text { simple algebra }) \\
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma\right) \text { for all } n=0,1, \ldots \\
\Downarrow(\text { complex analysis }) \\
\beta=\gamma
\end{gathered}
$$

- We prove that

$$
\mathbb{1}_{(0, \alpha)}(\alpha+\beta)^{n}=\|_{(0,0)}(\alpha+\gamma) \text { for all } n=1,2, \ldots
$$

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for all } n=0,1, \ldots
$$

$$
\text { and } k=1,2, \ldots
$$

- We prove that

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}(\alpha+\beta)^{n}=\mathbb{1}_{(0, \infty)}(\alpha+\gamma)^{n} \text { for all } n=1,2, \ldots \\
& \mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for all } n=0,1, \ldots \\
& \text { and } k=1,2, \ldots
\end{aligned}
$$

- Induction with respect to n.
- We prove that

$$
\begin{array}{r}
\mathbb{1}_{(0, \infty)}(\alpha+\beta)^{n}=\mathbb{1}_{(0, \infty)}(\alpha+\gamma)^{n} \text { for all } n=1,2, \ldots \\
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for all } n=0,1, \ldots \\
\quad \text { and } k=1,2, \ldots
\end{array}
$$

- Induction with respect to n.
- For $n=0$:

$$
\mathbb{1}_{(0, \infty)}\left(\beta^{k}\right)=0=\mathbb{1}_{(0, \infty)}\left(\gamma^{k}\right)
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- By the binomial formula,

$$
\begin{aligned}
(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1} & \\
& =\alpha^{N+1}-\alpha^{N+1} \\
& +(j=0) \\
& +\sum_{j=2}^{N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right)}\binom{N+1}{j}\left(\alpha^{N+1-j} * \beta^{j}-\alpha^{N+1-j} * \gamma^{j}\right) \\
& +\beta^{N+1}-\gamma^{N+1} .
\end{aligned} \quad(j=N+2)
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- By the binomial formula,

$$
\begin{aligned}
& \text { zero on }(0, \infty) \text { by the assumption } \\
& \overbrace{(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}} \\
& =\alpha^{N+1}-\alpha^{N+1} \\
& +(N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right) \\
& (j=1) \\
& +\sum_{j=2}^{N}\binom{N+1}{j}\left(\alpha^{N+1-j} * \beta^{j}-\alpha^{N+1-j} * \gamma^{j}\right) \\
& +\beta^{N+1}-\gamma^{N+1} \text {. } \\
& (j=N+2)
\end{aligned}
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- By the binomial formula,

$$
\begin{array}{ll}
\overbrace{(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}}^{\text {zero on }(0, \infty) \text { by the assumption }} \\
& =\underbrace{\alpha^{N+1}-\alpha^{N+1}}_{\text {zero on } \mathbb{R}} \\
& +(N=0) \\
\left.\quad+\sum_{j=2}^{N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right)} \begin{array}{c}
N+1 \\
j
\end{array}\right)\left(\alpha^{N+1-j} * \beta^{j}-\alpha^{N+1-j} * \gamma^{j}\right) \\
& (j=1) \\
+\beta^{N+1}-\gamma^{N+1} . & (j=N+2)
\end{array}
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- By the binomial formula,

$$
\begin{aligned}
& \text { zero on }(0, \infty) \text { by the assumption } \\
& \overbrace{(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}} \\
& =\underbrace{\alpha^{N+1}-\alpha^{N+1}}_{\text {zero on } \mathbb{R}} \\
& (j=0) \\
& +(N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right) \\
& (j=1) \\
& +\sum_{j=2}^{N}\binom{N+1}{j}(\underbrace{\alpha^{N+1-j} * \beta^{j}-\alpha^{N+1-j} * \gamma^{j}}_{\text {zero on }(0, \infty) \text { by the induction hypothesis }}) \\
& +\beta^{N+1}-\gamma^{N+1} \text {. } \\
& (j=N+2)
\end{aligned}
$$

- Suppose that

$$
\begin{aligned}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma^{k}\right) \text { for } n & =0,1, \ldots, N-1 \\
\text { and } k & =1,2, \ldots
\end{aligned}
$$

- By the binomial formula,

$$
\begin{aligned}
& \overbrace{(\alpha+\beta)^{N+1}-(\alpha+\gamma)^{N+1}}^{\text {zero on }(0, \infty) \text { by the assumption }} \\
&=\underbrace{\alpha^{N+1}-\alpha^{N+1}}_{\text {zero on } \mathbb{R}} \\
&+(\begin{array}{c}
N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right) \quad(j=0) \\
\\
\\
+\sum_{j=2}^{N}\binom{N+1}{j}(\underbrace{\alpha^{N+1-j} * \beta^{j}-\alpha^{N+1-j} * \gamma^{j}}_{\text {zero on }(0, \infty) \text { by the induction hypothesis }}) \\
\\
\\
\end{array}+\underbrace{\beta^{N+1}-\gamma^{N+1}}_{\text {zero on }(0, \infty)} . \quad(j=N+2)
\end{aligned}
$$

- Thus, $0=(N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right)$ on $(0, \infty)$.
- Thus, $0=(N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right)$ on $(0, \infty)$.
- This is the desired result for $n=N, k=1$.
- Thus, $0=(N+1)\left(\alpha^{N} * \beta-\alpha^{N} * \gamma\right)$ on $(0, \infty)$.
- This is the desired result for $n=N, k=1$.
- Larger values of k : induction within induction.
- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Then,

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
\| \\
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)
\end{gathered}
$$

- Suppose that
$\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right)$ for $k=1,2, \ldots, K-1$.
- Then,

$$
\sigma * \beta=\left(\mathbb{1}_{(-\infty, 0]} \sigma\right) * \beta+\left(\mathbb{1}_{(0, \infty)} \sigma\right) * \beta
$$

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
\end{gathered}
$$

$$
\mathbb{1}_{(0, \infty)}((\underbrace{\alpha^{N} * \beta^{K-1}}_{\sigma}) * \beta)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1
$$

- Then,

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)= \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right) \\
& \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)
\end{aligned}
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1
$$

- Then,

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right) \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)
\end{aligned}
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1
$$

- Then,

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
\|
\end{gathered}
$$

$$
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)
$$

$$
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)
$$

$$
\|
$$

$\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Then,

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
\|
\end{gathered}
$$

$$
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)
$$

$$
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)
$$

$$
\|
$$

$$
\mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Then,

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)= \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)= \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)= \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right) \\
& \mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma\right) * \gamma^{K-1}\right)
\end{aligned}
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Then,

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right) \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma\right) * \gamma^{K-1}\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma\right) * \gamma^{K-1}\right)
\end{aligned}
$$

- Suppose that

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{k}\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{k}\right) \text { for } k=1,2, \ldots, K-1 .
$$

- Then,

$$
\begin{aligned}
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K}\right) \\
& \quad \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta^{K-1}\right) * \beta\right) \\
& \|_{(0, \infty)}\left(\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K-1}\right) * \beta\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \beta\right) * \gamma^{K-1}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\left(\alpha^{N} * \gamma\right) * \gamma^{K-1}\right)=\mathbb{1}_{(0, \infty)}\left(\mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma\right) * \gamma^{K-1}\right) \\
& \| \\
& \mathbb{1}_{(0, \infty)}\left(\alpha^{N} * \gamma^{K}\right) .
\end{aligned}
$$

- We prove that

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma\right) \text { for all } n=0,1, \ldots \\
\beta=\gamma
\end{gathered}
$$

- We prove that

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma\right) \text { for all } n=0,1, \ldots \\
\Downarrow \\
\beta=\gamma
\end{gathered}
$$

- Equivalently: it is not possible to have

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} *(\beta-\gamma)\right)=0 \text { for all } n=0,1, \ldots
$$

and $\alpha \neq 0, \beta-\gamma \neq 0$.

- We prove that

$$
\begin{gathered}
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \beta\right)=\mathbb{1}_{(0, \infty)}\left(\alpha^{n} * \gamma\right) \text { for all } n=0,1, \ldots \\
\beta=\gamma
\end{gathered}
$$

- Equivalently: it is not possible to have

$$
\mathbb{1}_{(0, \infty)}\left(\alpha^{n} *(\beta-\gamma)\right)=0 \text { for all } n=0,1, \ldots
$$

and $\alpha \neq 0, \beta-\gamma \neq 0$.

- We proceed by contradiction.
- We know that $\alpha^{n} *(\beta-\gamma)$ is concentrated on $(-\infty, 0]$ for all $n=1,2, \ldots$
- We know that $\alpha^{n} *(\beta-\gamma)$ is concentrated on $(-\infty, 0$] for all $n=1,2, \ldots$
- Define analytic extensions of characteristic functions:

$$
\begin{aligned}
& f(z)=\int_{(0, \infty)} e^{i z t} \alpha(d t) \\
& g(z)=\int_{(-\infty, 0]} e^{i z t}(\beta-\gamma)(d t) \\
& h_{n}(z)=\int_{(-\infty, 0]} e^{i z t}\left(\alpha^{n} *(\beta-\gamma)\right)(d t) \\
&(\operatorname{Im} z \leqslant 0) \\
&
\end{aligned}
$$

- We know that $\alpha^{n} *(\beta-\gamma)$ is concentrated on $(-\infty, 0]$ for all $n=1,2, \ldots$
- Define analytic extensions of characteristic functions:

$$
\begin{aligned}
& f(z)=\int_{(0, \infty)} e^{i z t} \alpha(d t) \\
& g(z)=\int_{(-\infty, 0]} e^{i z t}(\beta-\gamma)(d t) \\
& h_{n}(z)=\int_{(-\infty, 0]} e^{i z t}\left(\alpha^{n} *(\beta-\gamma)\right)(d t) \\
&(\operatorname{Im} z \leqslant 0) \\
&
\end{aligned}
$$

- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \text { for } z \in \mathbb{R} .
$$

- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \quad \text { for } z \in \mathbb{R}
$$

- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \quad \text { for } z \in \mathbb{R}
$$

- Let $\mathbb{C}_{ \pm}=\{z \in \mathbb{C}: \pm \operatorname{lm} z>0\}$ and

$$
\begin{aligned}
& A=\{z \in \mathbb{R}: g(z)=0\} \\
& B=\left\{z \in \mathbb{C}_{-}: g(z)=0\right\}
\end{aligned}
$$

(closed, null)
(discrete)

- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \quad \text { for } z \in \mathbb{R} .
$$

- Let $\mathbb{C}_{ \pm}=\{z \in \mathbb{C}: \pm \operatorname{lm} z>0\}$ and

$$
\begin{aligned}
& A=\{z \in \mathbb{R}: g(z)=0\} \\
& B=\left\{z \in \mathbb{C}_{-}: g(z)=0\right\}
\end{aligned}
$$

(closed, null)
(discrete)

- Define

$$
\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \quad \text { for } z \in \mathbb{R}
$$

- Let $\mathbb{C}_{ \pm}=\{z \in \mathbb{C}: \pm \operatorname{lm} z>0\}$ and

$$
\begin{aligned}
& A=\{z \in \mathbb{R}: g(z)=0\} \\
& B=\left\{z \in \mathbb{C}_{-}: g(z)=0\right\}
\end{aligned}
$$

(discrete)

- Define

$$
\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- Then φ_{n} is analytic in $\mathbb{C} \backslash(A \cup B)$, meromorphic in $\mathbb{C} \backslash A$.
- We know that

$$
(f(z))^{n} g(z)=h_{n}(z) \quad \text { for } z \in \mathbb{R}
$$

- Let $\mathbb{C}_{ \pm}=\{z \in \mathbb{C}: \pm \operatorname{lm} z>0\}$ and

$$
\begin{aligned}
& A=\{z \in \mathbb{R}: g(z)=0\} \\
& B=\left\{z \in \mathbb{C}_{-}: g(z)=0\right\}
\end{aligned}
$$

(closed, null)
(discrete)

- Define

$$
\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- Then φ_{n} is analytic in $\mathbb{C} \backslash(A \cup B)$, meromorphic in $\mathbb{C} \backslash A$.
- We have $\varphi_{n}(z)=\left(\varphi_{1}(z)\right)^{n}$ for $z \in \mathbb{C} \backslash(A \cup B)$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- Let $z \in B$ be a pole of φ_{1} of degree k.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- Let $z \in B$ be a pole of φ_{1} of degree k.
- Then z is a pole of φ_{n} of degree $n k$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- Let $z \in B$ be a pole of φ_{1} of degree k.
- Then z is a pole of φ_{n} of degree $n k$.
- Thus, z it is a zero of g of degree at least $n k$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- Let $z \in B$ be a pole of φ_{1} of degree k.
- Then z is a pole of φ_{n} of degree $n k$.
- Thus, z it is a zero of g of degree at least $n k$.
- This is not possible when $n \rightarrow \infty$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- Let $z \in B$ be a pole of φ_{1} of degree k.
- Then z is a pole of φ_{n} of degree $n k$.
- Thus, z it is a zero of g of degree at least $n k$.
- This is not possible when $n \rightarrow \infty$.
- Therefore, φ_{n} has no poles in \mathbb{C}_{-}: it is analytic in $\mathbb{C} \backslash A$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- The functions h_{n} and g are bounded in \mathbb{C}_{-}. Each of them can be uniquely written as a product of:
- an outer function $O(z)$,
- a singular inner function $S(z)$,
- a Blaschke product $B(z)$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- The functions h_{n} and g are bounded in \mathbb{C}_{-}. Each of them can be uniquely written as a product of:
- an outer function $O(z)$,
- a singular inner function $S(z)$,
- a Blaschke product $B(z)$.
- The function $\varphi_{n}=\left(\varphi_{1}\right)^{n}$ is of bounded type (a.k.a. Nevanlinna class) in \mathbb{C}_{-}, and thus it has a similar unique factorisation.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_{n} and φ_{n}, but $\lambda_{\varphi_{n}}$ is signed and $a_{\varphi_{n}} \in \mathbb{R}$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_{n} and φ_{n}, but $\lambda_{\varphi_{n}}$ is signed and $a_{\varphi_{n}} \in \mathbb{R}$.
- Necessarily, $\left|S_{\varphi_{1}}(z)\right|^{n}=\left|S_{\varphi_{n}}(z)\right|=\frac{\left|S_{h_{n}}(z)\right|}{\left|S_{g}(z)\right|}$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_{n} and φ_{n}, but $\lambda_{\varphi_{n}}$ is signed and $a_{\varphi_{n}} \in \mathbb{R}$.
- Necessarily, $\left|S_{\varphi_{1}}(z)\right|^{n}=\left|S_{\varphi_{n}}(z)\right|=\frac{\left|S_{h_{n}}(z)\right|}{\left|S_{g}(z)\right|}$.
- Thus, $n a_{\varphi_{1}}=a_{\varphi_{n}}=a_{h_{n}}-a_{g}$ and $n \lambda_{\varphi_{1}}=\lambda_{\varphi_{n}}=\lambda_{h_{n}}-\lambda_{g}$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_{n} and φ_{n}, but $\lambda_{\varphi_{n}}$ is signed and $a_{\varphi_{n}} \in \mathbb{R}$.
- Necessarily, $\left|S_{\varphi_{1}}(z)\right|^{n}=\left|S_{\varphi_{n}}(z)\right|=\frac{\left|S_{h_{n}}(z)\right|}{\left|S_{g}(z)\right|}$.
- Thus, $n a_{\varphi_{1}}=a_{\varphi_{n}}=a_{h_{n}}-a_{g}$ and $n \lambda_{\varphi_{1}}=\lambda_{\varphi_{n}}=\lambda_{h_{n}}-\lambda_{g}$.
- Taking $n \rightarrow \infty$, we see that $a_{\varphi_{1}} \geqslant 0$ and $\lambda_{\varphi_{1}} \geqslant 0$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- The singular inner function S_{g} corresponding to g satisfies

$$
\left|S_{g}(z)\right|=\exp \left(a_{g} \operatorname{lm} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{lm} z}{|z-x|^{2}} \lambda_{g}(d x)\right)
$$

for some singular measure $\lambda_{g} \geqslant 0$ and $a_{g} \geqslant 0$.

- Similarly for h_{n} and φ_{n}, but $\lambda_{\varphi_{n}}$ is signed and $a_{\varphi_{n}} \in \mathbb{R}$.
- Necessarily, $\left|S_{\varphi_{1}}(z)\right|^{n}=\left|S_{\varphi_{n}}(z)\right|=\frac{\left|S_{h_{n}}(z)\right|}{\left|S_{g}(z)\right|}$.
- Thus, $n a_{\varphi_{1}}=a_{\varphi_{n}}=a_{h_{n}}-a_{g}$ and $n \lambda_{\varphi_{1}}=\lambda_{\varphi_{n}}=\lambda_{h_{n}}-\lambda_{g}$.
- Taking $n \rightarrow \infty$, we see that $a_{\varphi_{1}} \geqslant 0$ and $\lambda_{\varphi_{1}} \geqslant 0$.
- That is, $S_{\varphi_{1}}$ is bounded on \mathbb{C}_{-}.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- An outer function $O_{\varphi_{1}}$ in the factorisation of φ_{1} satisfies

$$
\left|O_{\varphi_{1}}(z)\right|=\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{lm} z}{|z-x|^{2}} \log \left|\varphi_{1}(x)\right| d x\right)
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R} \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- An outer function $O_{\varphi_{1}}$ in the factorisation of φ_{1} satisfies

$$
\left|O_{\varphi_{1}}(z)\right|=\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{lm} z}{|z-x|^{2}} \log \left|\varphi_{1}(x)\right| d x\right)
$$

- Since $\varphi_{1}(x)=\frac{h_{1}(x)}{g(x)}=f(x)$ a.e. $(o n x \in \mathbb{R} \backslash A)$, $O_{\varphi_{1}}(z)$ is bounded.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- An outer function $O_{\varphi_{1}}$ in the factorisation of φ_{1} satisfies

$$
\left|O_{\varphi_{1}}(z)\right|=\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{lm} z}{|z-x|^{2}} \log \left|\varphi_{1}(x)\right| d x\right) .
$$

- Since $\varphi_{1}(x)=\frac{h_{1}(x)}{g(x)}=f(x)$ a.e. (on $x \in \mathbb{R} \backslash A$), $O_{\varphi_{1}}(z)$ is bounded.
- It follows that φ_{1} is a bounded analytic function in \mathbb{C}_{-}.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We know that φ_{1} is a bounded analytic function in \mathbb{C}_{-}and in \mathbb{C}_{+}, and hence in $\mathbb{C} \backslash A$.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B .\end{cases}
$$

- We know that φ_{1} is a bounded analytic function in \mathbb{C}_{-}and in \mathbb{C}_{+}, and hence in $\mathbb{C} \backslash A$.
- Painlevé's theorem asserts that φ_{1} extends to a bounded entire function.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- We know that φ_{1} is a bounded analytic function in \mathbb{C}_{-}and in \mathbb{C}_{+}, and hence in $\mathbb{C} \backslash A$.
- Painlevé's theorem asserts that φ_{1} extends to a bounded entire function.
- As a consequence, φ_{1} is constant.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- We know that φ_{1} is a bounded analytic function in \mathbb{C}_{-}and in \mathbb{C}_{+}, and hence in $\mathbb{C} \backslash A$.
- Painlevé's theorem asserts that φ_{1} extends to a bounded entire function.
- As a consequence, φ_{1} is constant.
- Thus, f is constant.
- We have

$$
\left(\varphi_{1}(z)\right)^{n}=\varphi_{n}(z)= \begin{cases}(f(z))^{n} & \text { for } z \in \mathbb{C}_{+} \cup \mathbb{R}, \\ \frac{h_{n}(z)}{g(z)} & \text { for } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

- We know that φ_{1} is a bounded analytic function in \mathbb{C}_{-}and in \mathbb{C}_{+}, and hence in $\mathbb{C} \backslash A$.
- Painlevé's theorem asserts that φ_{1} extends to a bounded entire function.
- As a consequence, φ_{1} is constant.
- Thus, f is constant.
- But f is the characteristic function of a measure α concentrated on $(0, \infty)$, it cannot be constant.

