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Let X; denote the isotropic x-stable Lévy process.
Let —L = —(—A)*? be the generator of X;:

E,. f(X;) —
—Lf(x) = lim Xy f(x).
t—0+ t
Equivalently:
fly)—~
—Lf(X) = Cd,oc lim J Ld-(:()
e=0" Jravp, [y — x|
Remarks:

e We always assume that d =1,2,... and « € (0, 2).
e B, =B(0,7r), B=B(0,1).
e Above definitions are pointwise; throughout the talk

we ignore (important and delicate) questions about
domains of unbounded operators.
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Eigenvalue problem

Lo.(x) = A @n(x) for x € B,
en(x) =0 otherwise.

Classical theorem

Solutions ¢, form an orthonormal basis in L?(B),
0<7\0<7\1 <A <.,

and @y(x) > 0 for x € B.

Let T be the time of first exit from B:
T=inf{t > 0: X, € B}.
Then:
E, (on(X)1ian) = € ™ on(x).
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Theorem (consequence of Bochner’s relation)

Let V(x) be a solid harmonic polynomial of degree (.
Then:

LIV f(Ix))] = V(x) g(Ix])  in R
if and only if
L{f(ly)] = g(ly)  in RT*

Remarks:

e True for arbitrary convolution operators L
with isotropic kernels.

e Here ‘solid’ = ‘homogeneous’.
e Examples of V(x): 1, x1, X1X2, X1X2 ... X4, X3 — X3.

e Solid harmonic polynomials span L?(0B).
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We choose V¢ ;(x) so that
e V;;(x) is a solid harmonic polynomial of degree ¢,
© 0>0,j=1,2,...,]as where Jq, = $2=2 (412,

a2
e V,;i(x) form the basis of L?(0B).

Corollary

Let Ao and ¢ia(|x|) be the n-th radial eigenvalue and
eigenfunction.

The eigenvalues A, are given by Agfze)n, where n,{ > 0.
The corresponding eigenfunctions are
d
Ve,j(X) fﬁze,nUXDa

where j =1,2,..., Ja..
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The eigenvalues A, can thus be arranged in the table:

}\rad }\rad }\rad
rad rad rad
Ad+2,0 }\d+2,1 }\d+2,2
rad rad rad
)\d+4,0 }\d+4,1 }\d+4,2

(with £-th row repeated J4, times).
We have Ag = A7§. Which one is A?
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The eigenvalues A, can thus be arranged in the table:
}\rad < }\rad < }\rad <
VAN
Niho < ANifhn < AFS, <
VAN

rad rad rad
Ao < Agan S Ay <
AN

(with £-th row repeated J4, times).
We have Ag = A7§. Which one is A?

The only possible values are A; = AF{ and A = A7 .
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rad rad
Agra0 < Ad

Equivalently: A\ = ?\fffz’o, or: @, is antisymmetric.
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Ifd<2,orifx=1and d <9, then indeed

rad rad
Agia0 < Ads-

Remarks:
e Otherwise this is still an open problem...
e ...strongly supported by numerical bounds.

e Our method: find two-sided bounds for A7
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Let PP (1) be the Jacobi polynomial and
x4y

(X)) = piP2 (ZIXI2 —1),
JTE+n+NN(EE +n)
n!l“(%—l—n) '

rad

“Ldn_2

Theorem

L[(1— P2 e5d(x)] = upd wd(lxl)  for x € B.

Remark: some special cases have been known before.
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Theorem
The eigenvalues of the operator

L[(1 = k)Y £(x)]
are given by ufd, ., where n,¢ > 0.

The corresponding eigenfunctions are

( o« d+2¢

7)771
Pujn(x) = Ve () P 2 (22— 1),
where j =1,2,...,Jae-

These eigenfunctions form an orthogonal basis in
weighted [2(B) space with weight (1 — [x[*)*/% dx.
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Once it is proved that in B:

L{(1— x|?)5/2 f(x)] maps polynomials (%)
of degree n to polynomials of degree n,
it follows easily that:
e the eigenfunctions are polynomials;
e they are orthogonal with respect to (1 — lez)f’ﬁ/zdx;
e they have the form given in the theorem.

(The actual proof follows a completely different path).

Open problem
Is there a soft proof of (¥)?
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operator eigenfunction eigenvalue
(1) Lf(x) Pat20jn NEfan
(2) | L[ =P ()] Ve HEon
(3) | (1=K Lex) (1= P i | 1

These operators are generators of:

(1) XB, the process X, killed upon exiting B;
(3) time-changed X5;

(2) time-changed Doob h-transform of X®
(corresponding to h(x) = E, T = cq (1 — [x[)*/?).
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The two operators on L?(B):
—(1=xHY*L and (1—xPA-(2—-x)V
have identical eigenfunctions!

These operators are generators of:
e time-changed X?;

e d-dimensional Jacobi diffusion.

Question

Is time-changed XP a subordinate Jacobi diffusion?

To answer this, one needs to see whether
Har2en = F((2n+ a)(2n+d) + (4n + 2 + x)()

for some Bernstein function f.
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Do these dots lie on a graph
of a Bernstein function?

Yes!
The corresponding Bernstein function is

f2) PG+ o+ /(1 — o) +4z))

(0 —at+ /(T — ) +42))
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d=1, x=0.5,{=0 (blue) and { =1 (yellow)
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‘L Problems
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Bounds
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[ele] Yo

2, C
(1= x5
0000

Do these dots lie on a graph
of a Bernstein function?
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2 There is one for each series (fixed ¢),
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Is time-changed XP a subordinate Jacobi diffusion?

Disappointing theorem

Yesifd=1. No if d > 2.

Time-changed |X®|, however, is a subordinate Jacobi
diffusion in any dimension!

Open problem

Consider time-changed asymmetric 1-dimensional stable
process, with clock running at rate (1 + x)°%(1 — x)P*. Is
this process a subordinate Jacobi diffusion?
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For x € B we have:
L{oTa(x)] = A era(lx)
L{(1 = XP)*2Pa(ix])] = ufabia ().

Definition

24 (x) = (1 — ) e (Ix)).

We fix d and restrict attention to radial functions.
Drop §¢ from the notation: w, = s, f, = 75 etc.
Thus, for x € B we have:

“ - |X|2)(X/2 Lfn(x) = unfn(x)-
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Rayleigh—Ritz variational method gives upper bounds.

The values of

Aln,m) = L ) Lin(x) dx,

B(n,m) = J fa(x) fin(x) dx
B
are given by closed-form expressions.

Fix N and let A, B be N x N matrices with entries
A(n,m), B(n, m), respectively.

Theorem

Let A, be the solutions of the eigenvalue problem
AV =ABv.
Then A, <A, forn=0,1,...,N—1.
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Remarks:
e Since f,, are orthogonal in weighted [?(B) with weight
(1 — [x|?)~*/? dx, in the problem
AV = ABV.
the matrix A is diagonal:

An,m) = L falx) L (x) dx

=t | £a(3) () (1 = ) dy
B
the matrix B with entries B(n,m) = [ f, B x) dx
is not diagonal.
e Quality of the bounds improve rapidly as N grows.

e Numerical methods work for relatively large N.
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Aronszajn method of intermediate problems gives
lower bounds.
Two eigenvalue problems in B:

Lf(x) = Af(x),

Lf(x) = p (1 — )~ f(x)

correspond to Rayleigh quotientS'

g fx x) dx
Qi) = 2 R
B f x) dx
Qo(f) = IRG B 1—|x|2) Ty

Clearly, Qo(f) < Q(f), and hence pu, < A,.



Bounds
00000000

The basic bound u, < A, is poor.

Improved bounds come from intermediate problems,
corresponding to Reyleigh quotient

Jg f(x) Lf(x) dx
(F())2 (1 = [xPP)=/2 dx — [, (Pnf(x))2 w(x) dx’

Qn(f) =
J
where
wix) = ((1T =[x~ =1)
and Py is the orthogonal projection in weighted [*(B)
space with weight w(x) dx onto the linear span of

o1 (x) = Falx)
T— (1= X2

n=01,...,N—2.
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Recall that
g fx x) dx

) = 175 k)2 dx— jB Py f(x))2w(x) dx
It is rather clear that Qo( <Qi(f) <... = Q(f)

Theorem

The eigenvalues A,, corresponding to Qy satisfy
An < }\n-

Surprise: one can actually calculate A,!
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Remarks:
e The only non-closed-form expressions here are
J (1= xP)*2(0 = [x™)
51— (1= )2
e The eigenvalues A, of the intermediate problem

are equal to either u,, or zeros of a polynomial W,,,
which is the determinant of an N x N matrix

dx.

(Weinstein—Aronszajn determinant).
e Quality of the bounds improve rapidly as N grows.

e Numerical methods work well for relatively small N;
larger N leads to ill-conditioned matrices.
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We prove the middle inequality in
7‘?—320 7‘?—320 < 7‘rad Arad
analytically using N = 2 (that is, 2 x 2 matrices).
Our method could work for d < 9 and any « € (0, 2).
We managed to work out the technical details only when

d<2ora=1.
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Problems

Open problem 1

Is there a soft proof of the statement:

L[(1- [x|?)5/2 f(x)] maps polynomials

of degree n to polynomials of degree n?

Open problem 2

Consider an asymmetric 1-dimensional stable process,
time-changed with clock running at rate (1 —x)%(1+x)%.
Is it a subordinate Jacobi diffusion?

Open problem 3

/2
+

Explain why the spectrum of (1 — [x[?)7" L is so simple.

Open problem 4
Prove that ¢; is antisymmetric when d < 9.
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