Fractional Laplace operator in the unit ball

Mateusz Kwaśnicki

Wrocław University of Science and Technology
mateusz.kwasnicki@pwr.edu.pl

Stable processes conference

Oaxaca, November 10, 2016

Outline

- (1) Eigenvalues λ_n of $(-\Delta)^{\alpha/2}$ in a ball
- (2) Eigenvalues μ_n of $(1-|x|^2)_+^{\alpha/2}(-\Delta)^{\alpha/2}$
- (3) Detour: Jacobi diffusions
- (4) Bounds for λ_n .

Based on joint work with:

- Bartłomiej Dyda (Wrocław)
- Alexey Kuznetsov (Toronto)

Definition

Let X_t denote the isotropic α -stable Lévy process.

Let $-L = -(-\Delta)^{\alpha/2}$ be the generator of X_t :

$$-\mathbf{L}f(x) = \lim_{t \to 0^+} \frac{\mathbf{E}_x f(X_t) - f(x)}{t}.$$

Equivalently:

$$-\mathbf{L}f(x) = c_{d,\alpha} \lim_{\epsilon \to 0^+} \int_{\mathbf{R}^{d \setminus B_{\epsilon}}} \frac{f(y) - f(x)}{|y - x|^{d + \alpha}} \, dy.$$

Remarks:

- We always assume that d = 1, 2, ... and $\alpha \in (0, 2)$.
- $B_r = B(0, r), B = B(0, 1).$
- Above definitions are pointwise; throughout the talk we ignore (important and delicate) questions about domains of unbounded operators.

Eigenvalue problem

$$\begin{cases} \mathbf{L} \phi_n(x) = \lambda_n \phi_n(x) & \text{for } x \in B, \\ \phi_n(x) = 0 & \text{otherwise}. \end{cases}$$

Classical theorem

Solutions ϕ_n form an orthonormal basis in $L^2(B),\,$

$$0<\lambda_0<\lambda_1\leqslant\lambda_2\leqslant\dots$$

and $\varphi_0(x) > 0$ for $x \in B$.

Let τ be the time of first exit from B:

$$\tau = \inf\{t \geqslant 0 : X_t \notin B\}.$$

Then:

$$\mathbf{E}_{\mathbf{x}}(\varphi_{\mathbf{n}}(\mathbf{X}_{t})\mathbf{1}_{\{t<\tau\}}) = e^{-\lambda_{\mathbf{n}}t}\varphi_{\mathbf{n}}(\mathbf{x}).$$

Theorem (consequence of Bochner's relation)

Let V(x) be a solid harmonic polynomial of degree ℓ . Then:

$$L[V(x) f(|x|)] = V(x) g(|x|)$$
 in \mathbb{R}^d

if and only if

$$\mathbf{L}\big[\mathsf{f}(|\mathsf{y}|)\big] = \mathsf{g}(|\mathsf{y}|) \qquad \text{in } \mathbf{R}^{d+2\ell}.$$

Remarks:

- True for arbitrary convolution operators L with isotropic kernels.
- Here 'solid' = 'homogeneous'.
- Examples of V(x): 1, x_1 , x_1x_2 , x_1x_2 ... x_d , $x_1^2 x_2^2$.
- Solid harmonic polynomials span $L^2(\partial B)$.

We choose $V_{\ell,i}(x)$ so that

- $V_{\ell,j}(x)$ is a solid harmonic polynomial of degree ℓ ,
- $\ell \geqslant 0$, $j = 1, 2, \dots, J_{d,\ell}$, where $J_{d,\ell} = \frac{d+2\ell-2}{d+\ell-2} \binom{d+\ell-2}{\ell}$,
- $V_{\ell,j}(x)$ form the basis of $L^2(\partial B)$.

Corollary

Let $\lambda_{d,n}^{rad}$ and $\varphi_{d,n}^{rad}(|x|)$ be the n-th radial eigenvalue and eigenfunction.

The eigenvalues λ_n are given by $\lambda_{d+2\ell,n}^{rad}$, where $n,\ell\geqslant 0$.

The corresponding eigenfunctions are

$$V_{\ell,j}(x) \, \varphi_{d+2\ell,n}^{rad}(|x|),$$

where $j = 1, 2, ..., J_{d,\ell}$.

Bounds

The eigenvalues λ_n can thus be arranged in the table:

(with ℓ -th row repeated $J_{d,\ell}$ times).

We have $\lambda_0 = \lambda_{d,0}^{\text{rad}}$. Which one is λ_1 ?

Bounds 00000000

The eigenvalues λ_n can thus be arranged in the table:

(with ℓ -th row repeated $J_{d,\ell}$ times).

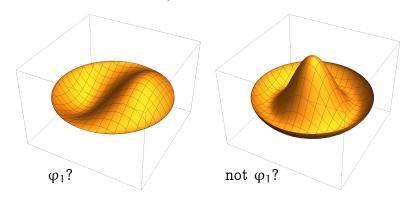
We have $\lambda_0 = \lambda_{d,0}^{rad}$. Which one is λ_1 ?

The only possible values are $\lambda_1=\lambda_{d,1}^{rad}$ and $\lambda_1=\lambda_{d+2,0}^{rad}.$

Conjecture

$$\lambda_{d+2,0}^{rad} < \lambda_{d,1}^{rad}$$

Equivalently: $\lambda_1 = \lambda_{d+2,0}^{rad}$, or: ϕ_1 is antisymmetric.



Bounds 00000000

Theorem

If $d \leq 2$, or if $\alpha = 1$ and $d \leq 9$, then indeed

$$\lambda_{d+2,0}^{rad} < \lambda_{d,1}^{rad}$$
.

Remarks:

- Otherwise this is still an open problem...
- ...strongly supported by numerical bounds.
- Our method: find two-sided bounds for $\lambda_{d,n}^{rad}$.

Bounds 00000000

Definition

Let $P_n^{(\alpha,\beta)}(r)$ be the Jacobi polynomial and

$$\begin{split} \psi^{\text{rad}}_{d,n}(|x|) &= P_n^{(\frac{\alpha}{2},\frac{d}{2}-1)}(2|x|^2-1),\\ \mu^{\text{rad}}_{d,n} &= 2^{\alpha}\,\frac{\Gamma(\frac{\alpha}{2}+n+1)\Gamma(\frac{d+\alpha}{2}+n)}{n!\,\Gamma(\frac{d}{2}+n)}\,. \end{split}$$

Theorem

$$\mathbf{L}\big[(1-|x|^2)_+^{\alpha/2}\psi_{d,n}^{rad}(|x|)\big] = \mu_{d,n}^{rad}\psi_{d,n}^{rad}(|x|) \qquad \text{for } x \in B.$$

Remark: some special cases have been known before.

Bounds 00000000

Theorem

The eigenvalues of the operator

$$\mathbf{L}\left[(1-|\mathbf{x}|^2)_+^{\alpha/2}\,\mathsf{f}(\mathbf{x})\right]$$

are given by $\mu_{d+2\ell,n}^{rad}$, where $n, \ell \geqslant 0$.

The corresponding eigenfunctions are

$$\psi_{\ell,j,n}(x) = V_{\ell,j}(x) \, P_n^{(\frac{\alpha}{2}, \frac{d+2\ell}{2}-1)}(2|x|^2 - 1),$$

where $j = 1, 2, ..., J_{d,\ell}$.

These eigenfunctions form an orthogonal basis in weighted $L^2(B)$ space with weight $(1-|x|^2)^{\alpha/2} dx$.

 $(1-|x|^2)_+^{\alpha/2} L$

Jacobi 0000 Bounds 00000000

Once it is proved that in B:

$$L\left[(1-|x|^2)_+^{\alpha/2}f(x)\right] \text{ maps polynomials}$$
 of degree n to polynomials of degree n,

it follows easily that:

- the eigenfunctions are polynomials;
- they are orthogonal with respect to $(1 |x|^2)_+^{\alpha/2} dx$;
- they have the form given in the theorem.

(The actual proof follows a completely different path).

Open problem

Is there a soft proof of (\bigstar) ?

	operator	eigenfunction	eigenvalue
(1)	$\mathbf{Lf}(\mathbf{x})$	$\phi_{d+2\ell,j,n}$	$\lambda^{rad}_{d+2\ell,n}$
(2)		$\psi_{\ell, \mathfrak{j}, \mathfrak{n}}$	$\mu^{rad}_{d+2\ell,n}$
(3)	$(1- \mathbf{x} ^2)_+^{\alpha/2} \mathbf{L} f(\mathbf{x})$	$(1- x ^2)_+^{\alpha/2}\psi_{\ell,j,n}$	$\mu^{rad}_{d+2\ell,n}$

These operators are generators of:

- (1) X_{+}^{B} , the process X_{t} killed upon exiting B;
- (3) time-changed X_{+}^{B} ;
- (2) time-changed Doob h-transform of X_{+}^{B} (corresponding to $h(x) = \mathbf{E}_x \tau = c_{d,\alpha} (1 - |x|^2)^{\alpha/2}$).

The two operators on $L^2(B)$:

$$-(1-|x|^2)_+^{\alpha/2} \mathbf{L}$$
 and $(1-|x|^2)\Delta - (2-\alpha)\nabla$

have identical eigenfunctions!

These operators are generators of:

- time-changed X_t^B ;
- d-dimensional Jacobi diffusion.

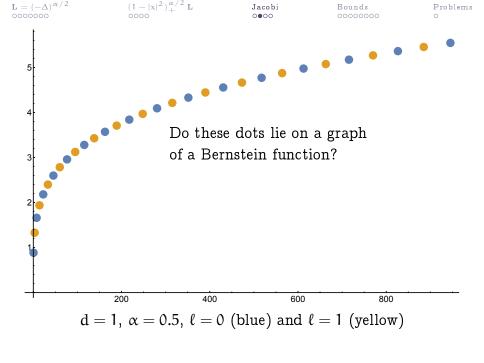
Question

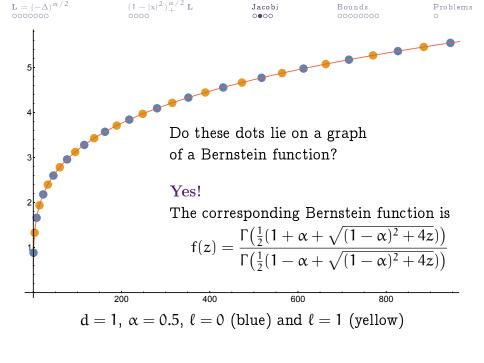
Is time-changed X_t^B a subordinate Jacobi diffusion?

To answer this, one needs to see whether

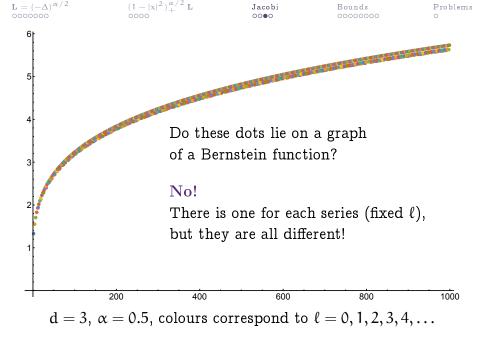
$$\mu_{d+2\ell,n} = \mathsf{f}((2n+\alpha)(2n+d) + (4n+2+\alpha)\ell)$$

for some Bernstein function f.









 $(1-|x|^2)_+^{\alpha/2}$ L

Jacobi 000● Bounds 00000000

Question

Is time-changed X_t^B a subordinate Jacobi diffusion?

Disappointing theorem

Yes if d = 1. No if $d \ge 2$.

Time-changed $|X_t^B|$, however, is a subordinate Jacobi diffusion in any dimension!

Open problem

Consider time-changed asymmetric 1-dimensional stable process, with clock running at rate $(1+x)^{\rho\alpha}(1-x)^{\hat{\rho}\alpha}$. Is this process a subordinate Jacobi diffusion?

Bounds •0000000

For $x \in B$ we have:

$$\begin{split} \mathbf{L}\big[\phi_{d,n}^{rad}(|x|)\big] &= \lambda_{d,n}^{rad}\phi_{d,n}^{rad}(|x|)\\ \mathbf{L}\big[(1-|x|^2)^{\alpha/2}\psi_{d,n}^{rad}(|x|)\big] &= \mu_{d,n}^{rad}\psi_{d,n}^{rad}(|x|). \end{split}$$

Definition

$$f_{d,n}^{rad}(x) = (1 - |x|^2)_+^{\alpha/2} \psi_{d,n}^{rad}(|x|).$$

We fix d and restrict attention to radial functions.

Drop $_{d,}^{rad}$ from the notation: $\mu_n = \mu_{d,n}^{rad}$, $f_n = f_{d,n}^{rad}$ etc.

Thus, for $x \in B$ we have:

$$(1-|x|^2)^{\alpha/2} \mathbf{L} f_n(x) = \mu_n f_n(x).$$

Rayleigh-Ritz variational method gives upper bounds.

The values of

$$A(n, m) = \int_{B} f_{n}(x) L f_{m}(x) dx,$$

$$B(n, m) = \int_{B} f_{n}(x) f_{m}(x) dx$$

are given by closed-form expressions.

Fix N and let \mathbb{A} , \mathbb{B} be N × N matrices with entries A(n,m), B(n,m), respectively.

Theorem

Let $\overline{\lambda}_n$ be the solutions of the eigenvalue problem

$$\mathbb{A}\vec{\mathsf{v}} = \lambda \, \mathbb{B}\vec{\mathsf{v}}.$$

Then $\lambda_n \leqslant \overline{\lambda}_n$ for n = 0, 1, ..., N-1.

Remarks:

• Since f_n are orthogonal in weighted $L^2(B)$ with weight $(1-|x|^2)^{-\alpha/2} dx$, in the problem

$$\mathbb{A}\vec{v} = \lambda \mathbb{B}\vec{v}$$
.

the matrix \mathbb{A} is diagonal:

$$\begin{split} A(n,m) &= \int_{B} f_{n}(x) \, \mathbf{L} f_{m}(x) \, dx \\ &= \mu_{m} \int_{B} f_{n}(x) \, f_{m}(x) \, (1 - |x|^{2})^{-\alpha/2} \, dx; \end{split}$$

the matrix $\mathbb B$ with entries $B(n,m)=\int_B f_n(x)\, f_m(x)\, dx$ is not diagonal.

- Quality of the bounds improve rapidly as N grows.
- Numerical methods work for relatively large N.

Aronszajn method of intermediate problems gives lower bounds.

Two eigenvalue problems in B:

$$\begin{split} \mathbf{L}f(x) &= \lambda \, f(x), \\ \mathbf{L}f(x) &= \mu \, (1-|x|^2)^{-\alpha/2} \, f(x) \end{split}$$

correspond to Rayleigh quotients:

$$Q(f) = \frac{\int_{B} f(x) Lf(x) dx}{\int_{B} (f(x))^{2} dx},$$

$$Q_{0}(f) = \frac{\int_{B} f(x) Lf(x) dx}{\int_{B} (f(x))^{2} (1 - |x|^{2})^{-\alpha/2} dx}.$$

Clearly, $Q_0(f) \leqslant Q(f)$, and hence $\mu_n \leqslant \lambda_n$.

The basic bound $\mu_n \leq \lambda_n$ is poor.

Improved bounds come from intermediate problems, corresponding to Reyleigh quotient

$$Q_{N}(f) = \frac{\int_{B} f(x) Lf(x) dx}{\int_{B} (f(x))^{2} (1 - |x|^{2})^{-\alpha/2} dx - \int_{B} (\mathbf{P}_{N} f(x))^{2} w(x) dx},$$

where

$$w(x) = ((1 - |x|^2)^{-\alpha/2} - 1)$$

and P_N is the orthogonal projection in weighted $L^2(B)$ space with weight w(x) dx onto the linear span of

$$\frac{f_{n+1}(x) - f_n(x)}{1 - (1 - |x|^2)^{\alpha/2}}, \qquad n = 0, 1, \dots, N - 2.$$

Recall that

$$Q_N(f) = \frac{\int_B f(x) \, \mathbf{L} f(x) \, dx}{\int_B (f(x))^2 \, (1-|x|^2)^{-\alpha/2} \, dx - \int_B (\mathbf{P}_N f(x))^2 \, w(x) \, dx} \, .$$

It is rather clear that $Q_0(f)\leqslant Q_1(f)\leqslant\ldots\to Q(f).$

Theorem

The eigenvalues $\underline{\lambda}_n$ corresponding to Q_N satisfy

$$\underline{\lambda}_n \leqslant \lambda_n$$
.

Surprise: one can actually calculate $\underline{\lambda}_n$!

Remarks:

• The only non-closed-form expressions here are

$$\int_{B} \frac{(1-|x|^2)^{\alpha/2}(1-|x|^{2n})}{1-(1-|x|^2)^{\alpha/2}} dx.$$

- The eigenvalues <u>λ</u>_n of the intermediate problem are equal to either μ_m or zeros of a polynomial W_n, which is the determinant of an N × N matrix (Weinstein-Aronszajn determinant).
- Quality of the bounds improve rapidly as N grows.
- Numerical methods work well for relatively small N; larger N leads to ill-conditioned matrices.

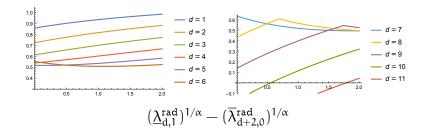
We prove the middle inequality in

$$\lambda_{d+2,0}^{\text{rad}} \leqslant \overline{\lambda}_{d+2,0}^{\text{rad}} < \underline{\lambda}_{d,1}^{\text{rad}} \leqslant \lambda_{d,1}^{\text{rad}}$$

analytically using N = 2 (that is, 2×2 matrices).

Our method could work for $d \leq 9$ and any $\alpha \in (0,2)$.

We managed to work out the technical details only when $d \leq 2$ or $\alpha = 1$.



 (\bigstar)

Open problem 1

Is there a **soft** proof of the statement:

$$L[(1-|x|^2)_+^{\alpha/2} f(x)]$$
 maps polynomials of degree n to polynomials of degree n?

Open problem 2

Consider an **asymmetric** 1-dimensional stable process, time-changed with clock running at rate $(1-x)^{\alpha_+}(1+x)^{\alpha_-}$. Is it a subordinate Jacobi diffusion?

Open problem 3

Explain why the spectrum of $(1 - |x|^2)_+^{\alpha/2} L$ is so simple.

Open problem 4

Prove that φ_1 is antisymmetric when $d \leq 9$.