Fractional Laplace operator in the unit ball

Mateusz Kwaśnicki

Wrocław University of Science and Technology
mateusz.kwasnicki@pwr.edu.pl

Stable processes conference
Oaxaca, November 10, 2016

Outline

(1) Eigenvalues λ_{n} of $(-\Delta)^{\alpha / 2}$ in a ball
(2) Eigenvalues μ_{n} of $\left(1-|x|^{2}\right)_{+}^{\alpha / 2}(-\Delta)^{\alpha / 2}$
(3) Detour: Jacobi diffusions
(4) Bounds for λ_{n}.

Based on joint work with:

- Bartłomiej Dyda (Wrocław)
- Alexey Kuznetsov (Toronto)

Definition

Let X_{t} denote the isotropic α-stable Lévy process. Let $-\mathrm{L}=-(-\Delta)^{\alpha / 2}$ be the generator of X_{t} :

$$
-L f(x)=\lim _{t \rightarrow 0^{+}} \frac{E_{x} f\left(X_{t}\right)-f(x)}{t} .
$$

Equivalently:

$$
-\mathbf{L} f(x)=c_{d, \alpha} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbf{R}^{\mathrm{d}} \backslash B_{\varepsilon}} \frac{f(y)-f(x)}{|y-x|^{d+\alpha}} d y .
$$

Remarks:

- We always assume that $d=1,2, \ldots$ and $\alpha \in(0,2)$.
- $B_{r}=B(0, r), B=B(0,1)$.
- Above definitions are pointwise; throughout the talk we ignore (important and delicate) questions about domains of unbounded operators.

Eigenvalue problem

$$
\begin{cases}\mathrm{L} \varphi_{n}(x)=\lambda_{n} \varphi_{n}(x) & \text { for } x \in B \\ \varphi_{n}(x)=0 & \text { otherwise }\end{cases}
$$

Classical theorem

Solutions φ_{n} form an orthonormal basis in $L^{2}(B)$,

$$
0<\lambda_{0}<\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots
$$

and $\varphi_{0}(x)>0$ for $x \in B$.
Let τ be the time of first exit from B :

$$
\tau=\inf \left\{t \geqslant 0: X_{t} \notin B\right\} .
$$

Then:

$$
\mathbf{E}_{x}\left(\varphi_{n}\left(X_{t}\right) \mathbf{1}_{\{t<\tau\}}\right)=e^{-\lambda_{n} t} \varphi_{n}(x) .
$$

Theorem (consequence of Bochner's relation)

Let $V(x)$ be a solid harmonic polynomial of degree ℓ. Then:

$$
\mathrm{L}[\mathrm{~V}(\mathrm{x}) \mathrm{f}(|\mathrm{x}|)]=\mathrm{V}(\mathrm{x}) \mathrm{g}(|\mathrm{x}|) \quad \text { in } \mathbf{R}^{\mathrm{d}}
$$

if and only if

$$
\mathrm{L}[\mathrm{f}(|\mathrm{y}|)]=\mathrm{g}(|\mathrm{y}|) \quad \text { in } \mathbf{R}^{\mathrm{d}+2 \ell} .
$$

Remarks:

- True for arbitrary convolution operators \mathbf{L} with isotropic kernels.
- Here 'solid' = 'homogeneous'.
- Examples of $V(x): 1, x_{1}, x_{1} x_{2}, x_{1} x_{2} \ldots x_{d}, x_{1}^{2}-x_{2}^{2}$.
- Solid harmonic polynomials span $L^{2}(\partial B)$.

We choose $V_{\ell, j}(x)$ so that

- $V_{\ell, j}(x)$ is a solid harmonic polynomial of degree ℓ,
- $\ell \geqslant 0, j=1,2, \ldots, J_{\mathrm{d}, \ell}$, where $\mathrm{J}_{\mathrm{d}, \ell}=\frac{\mathrm{d}+2 \ell-2}{\mathrm{~d}+\ell-2}\binom{\mathrm{~d}+\ell-2}{\ell}$,
- $V_{\ell, j}(x)$ form the basis of $\mathrm{L}^{2}(\partial \mathrm{~B})$.

Corollary

Let $\lambda_{d, n}^{\text {rad }}$ and $\phi_{d, n}^{\text {rad }}(|x|)$ be the n-th radial eigenvalue and eigenfunction.

The eigenvalues λ_{n} are given by $\lambda_{d+2, n}^{\text {rad }}$, where $n, \ell \geqslant 0$.
The corresponding eigenfunctions are

$$
V_{\ell, j}(x) \phi_{d+2 \ell, n}^{\mathrm{rad}}(|x|),
$$

where $\mathfrak{j}=1,2, \ldots, \mathrm{~J}_{\mathrm{d}, \ell}$.

The eigenvalues λ_{n} can thus be arranged in the table:

$$
\begin{array}{ccc}
\lambda_{\mathrm{d}, 0}^{\mathrm{rad}} & \lambda_{\mathrm{d}, 1}^{\mathrm{rad}} & \lambda_{\mathrm{d}, 2}^{\mathrm{rad}} \\
\lambda_{\mathrm{d}+2,0}^{\mathrm{rad}} & \lambda_{\mathrm{d}+2,1}^{\mathrm{rad}} & \lambda_{\mathrm{d}+2,2}^{\mathrm{rad}} \\
\lambda_{\mathrm{d}+4,0}^{\mathrm{rad}} & \lambda_{\mathrm{d}+4,1}^{\mathrm{rad}} & \lambda_{\mathrm{d}+4,2}^{\mathrm{rad}} \\
\vdots & &
\end{array}
$$

(with ℓ-th row repeated $\mathrm{J}_{\mathrm{d}, \ell}$ times).
We have $\lambda_{0}=\lambda_{\mathrm{d}, 0}^{\mathrm{rad}}$. Which one is λ_{1} ?

The eigenvalues λ_{n} can thus be arranged in the table:

$$
\begin{aligned}
& \lambda_{\mathrm{d}, 0}^{\mathrm{rad}}<\lambda_{\mathrm{d}, 1}^{\mathrm{rad}} \leqslant \lambda_{\mathrm{d}, 2}^{\mathrm{rad}} \leqslant \cdots \\
& \wedge_{\lambda_{\mathrm{d}+2,0}^{\mathrm{rad}}}^{\wedge_{\mathrm{rad}}^{\mathrm{rad}}}<\lambda_{\mathrm{d}+2,1}^{\mathrm{rad}} \leqslant \lambda_{\mathrm{d}+2,2}^{\mathrm{rad}} \leqslant \cdots \\
& \hat{d d+4,0}_{\mathrm{rad}}^{\wedge_{d+4,1}^{\mathrm{rad}} \leqslant \lambda_{d+4,2}^{\mathrm{rad}} \leqslant \cdots}
\end{aligned}
$$

(with ℓ-th row repeated $\mathrm{J}_{\mathrm{d}, \ell}$ times).
We have $\lambda_{0}=\lambda_{d, 0}^{\text {rad. }}$. Which one is λ_{1} ?
The only possible values are $\lambda_{1}=\lambda_{d, 1}^{\text {rad }}$ and $\lambda_{1}=\lambda_{d+2,0}^{\text {rad }}$.

Conjecture

$$
\lambda_{d+2,0}^{\mathrm{rad}}<\lambda_{\mathrm{d}, 1}^{\mathrm{rad}}
$$

Equivalently: $\lambda_{1}=\lambda_{d+2,0}^{\text {rad }}$, or: φ_{1} is antisymmetric.

Theorem
If $d \leqslant 2$, or if $\alpha=1$ and $d \leqslant 9$, then indeed

$$
\lambda_{d+2,0}^{\mathrm{rad}}<\lambda_{\mathrm{d}, 1}^{\mathrm{rad}}
$$

Remarks:

- Otherwise this is still an open problem...
- ...strongly supported by numerical bounds.
- Our method: find two-sided bounds for $\lambda_{d, n}^{\mathrm{rad}}$.

Definition

Let $P_{n}^{(\alpha, \beta)}(r)$ be the Jacobi polynomial and

$$
\begin{aligned}
\psi_{d, n}^{\mathrm{rad}}(|x|) & =P_{n}^{\left(\frac{\alpha}{2}, \frac{d}{2}-1\right)}\left(2|x|^{2}-1\right) \\
\mu_{d, n}^{\mathrm{rad}} & =2^{\alpha} \frac{\Gamma\left(\frac{\alpha}{2}+n+1\right) \Gamma\left(\frac{\mathrm{d}+\alpha}{2}+n\right)}{n!\Gamma\left(\frac{d}{2}+n\right)}
\end{aligned}
$$

Theorem

$$
\mathbf{L}\left[\left(1-|x|^{2}\right)_{+}^{\alpha / 2} \psi_{\mathrm{d}, n}^{\mathrm{rad}}(|x|)\right]=\mu_{\mathrm{d}, \mathrm{n}}^{\mathrm{rad}} \psi_{\mathrm{d}, n}^{\mathrm{rad}}(|x|) \quad \text { for } x \in \mathrm{~B}
$$

Remark: some special cases have been known before.

Theorem

The eigenvalues of the operator

$$
\mathbf{L}\left[\left(1-|x|^{2}\right)_{+}^{\alpha / 2} f(x)\right]
$$

are given by $\mu_{d+2 \ell, n}^{\mathrm{rad}}$, where $n, \ell \geqslant 0$.
The corresponding eigenfunctions are

$$
\psi_{\ell, \mathrm{j}, \mathrm{n}}(\mathrm{x})=\mathrm{V}_{\ell, \mathrm{j}}(\mathrm{x}) \mathrm{P}_{\mathrm{n}}^{\left(\frac{\alpha}{\left(\frac{\alpha}{2}, \frac{\mathrm{~d}+2 \ell}{2}-1\right)}\right.}\left(2|x|^{2}-1\right),
$$

where $j=1,2, \ldots, J_{d, \ell}$.
These eigenfunctions form an orthogonal basis in weighted $L^{2}(B)$ space with weight $\left(1-|x|^{2}\right)^{\alpha / 2} d x$.

Once it is proved that in B:

$$
\begin{aligned}
& \mathbf{L}\left[\left(1-|x|^{2}\right)_{+}^{\alpha / 2} f(x)\right] \text { maps polynomials } \\
& \text { of degree } n \text { to polynomials of degree } n,
\end{aligned}
$$

it follows easily that:

- the eigenfunctions are polynomials;
- they are orthogonal with respect to $\left(1-|x|^{2}\right)_{+}^{\alpha / 2} d x$;
- they have the form given in the theorem.
(The actual proof follows a completely different path).

Open problem

Is there a soft proof of $(\boldsymbol{\star})$?

	operator	eigenfunction	eigenvalue
(1)	$\operatorname{Lf}(x)$	$\varphi_{d+2 \ell, j, n}$	$\lambda_{d+2 \ell, n}^{\mathrm{rad}}$
(2)	$\mathrm{L}\left[\left(1-\|x\|^{2}\right)_{+}^{\alpha / 2} f(x)\right]$	$\psi_{\ell, j, n}$	$\mu_{d+2 \ell, n}^{\mathrm{rad}}$
(3)	$\left(1-\|x\|^{2}\right)_{+}^{\alpha / 2} \mathrm{Lf}(x)$	$\left(1-\|x\|^{2}\right)_{+}^{\alpha / 2} \psi_{\ell, j, n}$	$\mu_{d+2 \ell, n}^{\mathrm{rad}}$

These operators are generators of:
(1) X_{t}^{B}, the process X_{t} killed upon exiting B;
(3) time-changed X_{t}^{B};
(2) time-changed Doob h-transform of X_{t}^{B} (corresponding to $h(x)=\mathbf{E}_{x} \tau=c_{d, \alpha}\left(1-|x|^{2}\right)^{\alpha / 2}$).

The two operators on $\mathrm{L}^{2}(\mathrm{~B})$:

$$
-\left(1-|x|^{2}\right)_{+}^{\alpha / 2} \mathbf{L} \quad \text { and } \quad\left(1-|x|^{2}\right) \Delta-(2-\alpha) \nabla
$$

have identical eigenfunctions!
These operators are generators of:

- time-changed X_{t}^{B};
- d-dimensional Jacobi diffusion.

Question

Is time-changed X_{t}^{B} a subordinate Jacobi diffusion?
To answer this, one needs to see whether

$$
\mu_{d+2 \ell, n}=f((2 n+\alpha)(2 n+d)+(4 n+2+\alpha) \ell)
$$

for some Bernstein function f.

Do these dots lie on a graph of a Bernstein function?

$$
d=1, \alpha=0.5, \ell=0 \text { (blue }) \text { and } \ell=1(\text { yellow })
$$

Do these dots lie on a graph of a Bernstein function?

Yes!
The corresponding Bernstein function is

$$
f(z)=\frac{\Gamma\left(\frac{1}{2}\left(1+\alpha+\sqrt{(1-\alpha)^{2}+4 z}\right)\right)}{\Gamma\left(\frac{1}{2}\left(1-\alpha+\sqrt{(1-\alpha)^{2}+4 z}\right)\right)}
$$

200
400

$$
\mathrm{d}=1, \alpha=0.5, \ell=0 \text { (blue) and } \ell=1 \text { (yellow) }
$$

There is one for each series (fixed ℓ), but they are all different!

$$
\mathrm{d}=3, \alpha=0.5, \text { colours correspond to } \ell=0,1,2,3,4, \ldots
$$

Question

Is time-changed X_{t}^{B} a subordinate Jacobi diffusion?
Disappointing theorem

$$
\text { Yes if } d=1 . \quad \text { No if } d \geqslant 2 .
$$

Time-changed $\left|X_{t}^{B}\right|$, however, is a subordinate Jacobi diffusion in any dimension!

Open problem

Consider time-changed asymmetric 1 -dimensional stable process, with clock running at rate $(1+x)^{\rho \alpha}(1-x)^{\rho \alpha}$. Is this process a subordinate Jacobi diffusion?

For $x \in B$ we have:

$$
\begin{aligned}
\mathbf{L}\left[\varphi_{d, n}^{\mathrm{rad}}(|x|)\right] & =\lambda_{d, n}^{\mathrm{rad}} \varphi_{\mathrm{d}, n}^{\mathrm{rad}}(|x|) \\
\mathbf{L}\left[\left(1-|x|^{2}\right)^{\alpha / 2} \psi_{d, n}^{\mathrm{rad}}(|x|)\right] & =\mu_{\mathrm{d}, \mathrm{n}}^{\mathrm{rad}} \psi_{\mathrm{d}, \mathrm{n}}^{\mathrm{rad}}(|x|) .
\end{aligned}
$$

Definition

$$
\mathrm{f}_{\mathrm{d}, \mathrm{n}}^{\mathrm{rad}}(x)=\left(1-|x|^{2}\right)_{+}^{\alpha / 2} \psi_{\mathrm{d}, n}^{\mathrm{rad}}(|x|) .
$$

We fix d and restrict attention to radial functions.
Drop ${ }_{d,}^{\text {rad }}$ from the notation: $\mu_{n}=\mu_{d, n}^{\text {rad }}, f_{n}=f_{d, n}^{\text {rad }}$ etc.
Thus, for $x \in B$ we have:

$$
\left(1-|x|^{2}\right)^{\alpha / 2} L f_{n}(x)=\mu_{n} f_{n}(x) .
$$

Rayleigh-Ritz variational method gives upper bounds.
The values of

$$
\begin{aligned}
& A(n, m)=\int_{B} f_{n}(x) L f_{m}(x) d x \\
& B(n, m)=\int_{B} f_{n}(x) f_{m}(x) d x
\end{aligned}
$$

are given by closed-form expressions.
Fix N and let \mathbb{A}, \mathbb{B} be $N \times N$ matrices with entries $A(n, m), B(n, m)$, respectively.

Theorem

Let $\bar{\lambda}_{n}$ be the solutions of the eigenvalue problem

$$
\mathbb{A} \vec{v}=\lambda \mathbb{B} \vec{v} .
$$

Then $\lambda_{n} \leqslant \bar{\lambda}_{n}$ for $n=0,1, \ldots, N-1$.

Remarks:

- Since f_{n} are orthogonal in weighted $L^{2}(B)$ with weight $\left(1-|x|^{2}\right)^{-\alpha / 2} \mathrm{dx}$, in the problem

$$
\mathbb{A} \vec{v}=\lambda \mathbb{B} \vec{v} .
$$

the matrix \mathbb{A} is diagonal:

$$
\begin{aligned}
A(n, m) & =\int_{B} f_{n}(x) L f_{m}(x) d x \\
& =\mu_{m} \int_{B} f_{n}(x) f_{m}(x)\left(1-|x|^{2}\right)^{-\alpha / 2} d x
\end{aligned}
$$

the matrix \mathbb{B} with entries $B(n, m)=\int_{B} f_{n}(x) f_{m}(x) d x$ is not diagonal.

- Quality of the bounds improve rapidly as N grows.
- Numerical methods work for relatively large N .

Aronszajn method of intermediate problems gives lower bounds.

Two eigenvalue problems in B:

$$
\begin{aligned}
& \mathbf{L f}(x)=\lambda f(x), \\
& \operatorname{Lf}(x)=\mu\left(1-|x|^{2}\right)^{-\alpha / 2} f(x)
\end{aligned}
$$

correspond to Rayleigh quotients:

$$
\begin{aligned}
Q(f) & =\frac{\int_{B} f(x) L f(x) d x}{\int_{B}(f(x))^{2} d x}, \\
Q_{0}(f) & =\frac{\int_{B} f(x) L f(x) d x}{\int_{B}(f(x))^{2}\left(1-|x|^{2}\right)^{-\alpha / 2} d x} .
\end{aligned}
$$

Clearly, $\mathrm{Q}_{0}(\mathrm{f}) \leqslant \mathrm{Q}(\mathrm{f})$, and hence $\mu_{\mathrm{n}} \leqslant \lambda_{\mathrm{n}}$.

The basic bound $\mu_{n} \leqslant \lambda_{n}$ is poor.
Improved bounds come from intermediate problems, corresponding to Reyleigh quotient

$$
Q_{N}(f)=\frac{\int_{\mathrm{B}} f(x) L f(x) d x}{\int_{B}(f(x))^{2}\left(1-|x|^{2}\right)^{-\alpha / 2} d x-\int_{B}\left(\mathbf{P}_{\mathrm{N}} f(x)\right)^{2} w(x) d x},
$$

where

$$
w(x)=\left(\left(1-|x|^{2}\right)^{-\alpha / 2}-1\right)
$$

and \mathbf{P}_{N} is the orthogonal projection in weighted $\mathrm{L}^{2}(\mathrm{~B})$ space with weight $w(x) d x$ onto the linear span of

$$
\frac{f_{n+1}(x)-f_{n}(x)}{1-\left(1-|x|^{2}\right)^{\alpha / 2}}, \quad n=0,1, \ldots, N-2
$$

Recall that

$$
Q_{N}(f)=\frac{\int_{B} f(x) L f(x) d x}{\int_{B}(f(x))^{2}\left(1-|x|^{2}\right)^{-\alpha / 2} d x-\int_{B}\left(\mathbf{P}_{N} f(x)\right)^{2} w(x) d x}
$$

It is rather clear that $Q_{0}(f) \leqslant Q_{1}(f) \leqslant \ldots \rightarrow Q(f)$.

Theorem

The eigenvalues $\underline{\lambda}_{n}$ corresponding to Q_{N} satisfy

$$
\underline{\lambda}_{n} \leqslant \lambda_{n} .
$$

Surprise: one can actually calculate $\underline{\lambda}_{n}$!

Remarks:

- The only non-closed-form expressions here are

$$
\int_{B} \frac{\left(1-|x|^{2}\right)^{\alpha / 2}\left(1-|x|^{2 n}\right)}{1-\left(1-|x|^{2}\right)^{\alpha / 2}} d x
$$

- The eigenvalues $\underline{\lambda}_{n}$ of the intermediate problem are equal to either μ_{m} or zeros of a polynomial W_{n}, which is the determinant of an $\mathrm{N} \times \mathrm{N}$ matrix (Weinstein-Aronszajn determinant).
- Quality of the bounds improve rapidly as N grows.
- Numerical methods work well for relatively small N; larger N leads to ill-conditioned matrices.

We prove the middle inequality in

$$
\lambda_{d+2,0}^{\mathrm{rad}} \leqslant \bar{\lambda}_{d+2,0}^{\mathrm{rad}}<\underline{\lambda}_{d, 1}^{\mathrm{rad}} \leqslant \lambda_{\mathrm{d}, 1}^{\mathrm{rad}}
$$

analytically using $\mathrm{N}=2$ (that is, 2×2 matrices).
Our method could work for $d \leqslant 9$ and any $\alpha \in(0,2)$.
We managed to work out the technical details only when $\mathrm{d} \leqslant 2$ or $\alpha=1$.

$$
\begin{aligned}
& \begin{array}{lll}
10
\end{array} \\
& \left(\bar{\lambda}_{\mathrm{d}, 1}^{\mathrm{rad}}\right)^{1 / \alpha}-\left(\bar{\lambda}_{\mathrm{d}+2,0}^{\mathrm{rad}}\right)^{1 / \alpha}
\end{aligned}
$$

Open problem 1

Is there a soft proof of the statement:

$$
\begin{aligned}
& \mathrm{L}\left[\left(1-|x|^{2}\right)_{+}^{\alpha / 2} \mathrm{f}(\mathrm{x})\right] \text { maps polynomials } \\
& \text { of degree } \mathrm{n} \text { to polynomials of degree } n \text { ? }
\end{aligned}
$$

Open problem 2

Consider an asymmetric 1-dimensional stable process, time-changed with clock running at rate $(1-x)^{\alpha+}(1+x)^{\alpha-}$. Is it a subordinate Jacobi diffusion?

Open problem 3
Explain why the spectrum of $\left(1-|x|^{2}\right)_{+}^{\alpha / 2} \mathrm{~L}$ is so simple.
Open problem 4
Prove that φ_{1} is antisymmetric when $d \leqslant 9$.

