Lista 0. Σ notation and the binomial expansion.

1. Using sigma notation
$$\sum_{n=...}^{m}$$
 ... write down the sums
(a) $4 + 7 + 10 + 13 + 16 + ... + 40$,
(b) $\frac{2^2 + 2 + 1}{\ln 2} + \frac{3^2 + 3 + 1}{\ln 3} + \frac{4^2 + 4 + 1}{\ln 4} + ... + \frac{70^2 + 70 + 1}{\ln 70}$,
(c) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + ... + \frac{1}{111}$,
(d) $1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^{20}$,
(e) $\frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \frac{1}{2^5} - \frac{1}{2^6} + ...,$

in the way that the first value of index n is

- n = 1,
- n = 0,
- n = 4.
- 2. Using sigma notation write down as a sigle sum Σ (so in a form $\sum_{n=...}^{\cdots}$...) the sums below. Simplify your answer as far as possible.

(a)
$$\sum_{k=1}^{15} (k+3)^2 - 3 \sum_{k=1}^{15} (2k+3),$$

(b) $\sum_{n=0}^{9} 2^n + \sum_{n=1}^{10} 2^n,$
(c) $30 + x^2 \sum_{k=1}^{10} x^k,$
(d) $x \sum_{n=0}^{10} (-1)^n \frac{x^{2n}}{(2n)!} + \sum_{n=1}^{11} (-1)^n \frac{x^{2n-1}}{(2n-1)!}, x \neq 0.$

3. Expand and simplify

(a)
$$(2x+3)^4$$
,
(b) $\left(3x - \frac{1}{3x^2}\right)^5$,
(c) $\left(\sqrt{y} + \frac{2}{y}\right)^6$,
(d) $(a-1)^8$.

- 4. In the expansion of $\left(x^4 \frac{2}{x}\right)^{135}$ find
 - (a) the coefficient of x^{15} ,
 - (b) the coefficient of $\frac{1}{r^{10}}$,
 - (c) the constant term (independent of x).
- 5. In the expansion of $(1+4x)^n$, $n \in \mathbf{N}$, the coefficient of x^2 is 336. Find n.
- 6. In the expansion of $(1 + ax)^n$, $n \in \mathbf{N}$, the first three terms are 1, 24x and $252x^2$. Find a and n.
- 7. Find an approximation of 1.02^{38} by taking the sum of the first four terms in the expansion of $(1+0.02)^{38}$. Find the percentage error of this approximation.
- 8. Using the expansion of $(1+x)^n$ show that for all $n \in \mathbf{N}_+$
 - (a) $8^n + 6$ is divisible by 7,
 - (b) $4^n + 2$ is divisible by 6,
 - (c) $6^n + 3 \cdot 11^n + 1$ is divisible by 5,
 - (d) $4^n + 6n 1$ is divisible by 9,
 - (e) $5^n + 12n + 15$ is divisible by 16,
 - (f) $3^n 2n^2 + 7$ is divisible by 8.
- 9. (*) Give an example of a polynomial P such that for all $n \in \mathbf{N}_+$ the sum $14^n + W(n)$ is divisible by
 - (a) 13,
 - (b) 169,
 - (c) 2197.
- 10. For $n \in \mathbf{N}_+$ define the double factorial as
 - $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1),$ $(2n)!! = 2 \cdot 4 \cdot 6 \cdot 8 \cdot \dots \cdot (2n).$
 - (a) Show that $(2n-1)!! \cdot (2n)!! = (2n)!$ and $(2n)!! = n! \cdot 2^n$.
 - (b) Simplify $\frac{(2n+1)!!}{(2n-1)!!}$, $\frac{(2n)!!}{(2n+2)!!}$ and $\frac{(2n-1)!!}{(2n+3)!!}$.
- 11. For $x \in \mathbf{R}$ and $k \in \mathbf{N}$ define the generalized binomial coefficient as $\binom{x}{0} = 1 \text{ and } \binom{x}{k} = \frac{x \cdot (x-1) \cdot (x-2) \cdot \dots \cdot (x-(k-1))}{k!}, k > 0.$

(a) Show that for $x = n \in \mathbf{N}$, $n \ge k$, this definition is an extension of the basic definition of $\binom{n}{k}$. (b) For a given k find all x for which $\binom{x}{k} = 0$. (c) Calculate $\binom{-1}{k}$. Simplify your answer as far as possible.

(d) For
$$x > 0$$
 and $k > 0$ show that $\binom{-x}{k} = (-1)^k \binom{x+k-1}{k}$
(e) Prove that $\binom{\frac{1}{2}}{k} = (-1)^{k-1} \frac{(2k-3)!!}{(2k)!!}, k \ge 2,$
and derive a similar formula for $\binom{-\frac{1}{2}}{k}$.

12. The Fibonacci sequence $f_n = (1, 1, 2, 3, 5, 8, 13, ...)$ is constructed by a well-known rule - the first two elements are equal to 1 and each next is a sum of the two preceeding ones. This sequence has a general formula and this formula look complicated and it is not clear, at first glance, that the elements are natural numbers:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Using sigma notation write down this formula as a sigle sum Σ so that the terms added are rational elements (in particular, $\sqrt{5}$ must not appear).

Krzysztof "El Profe" Michalik