Lista $0 . \Sigma$ notation and the binomial expansion.

1. Using sigma notation $\sum_{n=\ldots}^{\cdots} \ldots$ write down the sums
(a) $4+7+10+13+16+\ldots+40$,
(b) $\frac{2^{2}+2+1}{\ln 2}+\frac{3^{2}+3+1}{\ln 3}+\frac{4^{2}+4+1}{\ln 4}+\ldots+\frac{70^{2}+70+1}{\ln 70}$,
(c) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots+\frac{1}{111}$,
(d) $1+3+3^{2}+3^{3}+3^{4}+\ldots+3^{20}$,
(e) $\frac{1}{2}-\frac{1}{2^{2}}+\frac{1}{2^{3}}-\frac{1}{2^{4}}+\frac{1}{2^{5}}-\frac{1}{2^{6}}+\ldots$,
in the way that the first value of index n is

- $n=1$,
- $n=0$,
- $n=4$.

2. Using sigma notation write down as a sigle sum Σ (so in a form $\sum_{n=\ldots} \ldots$) the sums below. Simplify your answer as far as possible.
(a) $\sum_{k=1}^{15}(k+3)^{2}-3 \sum_{k=1}^{15}(2 k+3)$,
(b) $\sum_{n=0}^{9} 2^{n}+\sum_{n=1}^{10} 2^{n}$,
(c) $30+x^{2} \sum_{k=1}^{10} x^{k}$,
(d) $x \sum_{n=0}^{10}(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\sum_{n=1}^{11}(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}, x \neq 0$.
3. Expand and simplify
(a) $(2 x+3)^{4}$,
(b) $\left(3 x-\frac{1}{3 x^{2}}\right)^{5}$,
(c) $\left(\sqrt{y}+\frac{2}{y}\right)^{6}$,
(d) $(a-1)^{8}$.
4. In the expansion of $\left(x^{4}-\frac{2}{x}\right)^{135}$ find
(a) the coefficient of x^{15},
(b) the coefficient of $\frac{1}{x^{10}}$,
(c) the constant term (independent of x).
5. In the expansion of $(1+4 x)^{n}, n \in \mathbf{N}$, the coefficient of x^{2} is 336 . Find n.
6. In the expansion of $(1+a x)^{n}, n \in \mathbf{N}$, the first three terms are $1,24 x$ and $252 x^{2}$. Find a and n.
7. Find an approximation of 1.02^{38} by taking the sum of the first four terms in the expansion of $(1+0.02)^{38}$. Find the percentage error of this approximation.
8. Using the expansion of $(1+x)^{n}$ show that for all $n \in \mathbf{N}_{+}$
(a) $8^{n}+6$ is divisible by 7 ,
(b) $4^{n}+2$ is divisible by 6 ,
(c) $6^{n}+3 \cdot 11^{n}+1$ is divisible by 5 ,
(d) $4^{n}+6 n-1$ is divisible by 9 ,
(e) $5^{n}+12 n+15$ is divisible by 16 ,
(f) $3^{n}-2 n^{2}+7$ is divisible by 8 .
9. (*) Give an example of a polynomial P such that for all $n \in \mathbf{N}_{+}$the sum $14^{n}+W(n)$ is divisible by
(a) 13,
(b) 169,
(c) 2197 .
10. For $n \in \mathbf{N}_{+}$define the double factorial as
$(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot(2 n-1)$,
$(2 n)!!=2 \cdot 4 \cdot 6 \cdot 8 \cdot \ldots \cdot(2 n)$.
(a) Show that $(2 n-1)!!\cdot(2 n)!!=(2 n)!$ and $(2 n)!!=n!\cdot 2^{n}$.
(b) Simplify $\frac{(2 n+1)!!}{(2 n-1)!!}, \frac{(2 n)!!}{(2 n+2)!!}$ and $\frac{(2 n-1)!!}{(2 n+3)!!}$.
11. For $x \in \mathbf{R}$ and $k \in \mathbf{N}$ define the generalized binomial coefficient as
$\binom{x}{0}=1$ and $\binom{x}{k}=\frac{x \cdot(x-1) \cdot(x-2) \cdot \ldots \cdot(x-(k-1))}{k!}, k>0$.
(a) Show that for $x=n \in \mathbf{N}, n \geq k$, this definition is an extension of the basic definition of $\binom{n}{k}$.
(b) For a given k find all x for which $\binom{x}{k}=0$.
(c) Calculate $\binom{-1}{k}$. Simplify your answer as far as possible.
(d) For $x>0$ and $k>0$ show that $\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}$.
(e) Prove that $\binom{\frac{1}{2}}{k}=(-1)^{k-1} \frac{(2 k-3)!!}{(2 k)!!}, k \geq 2$,
and derive a similar formula for $\binom{-\frac{1}{2}}{k}$.
12. The Fibonacci sequence $f_{n}=(1,1,2,3,5,8,13, \ldots)$ is constructed by a well-known rule - the first two elements are equal to 1 and each next is a sum of the two preceeding ones. This sequence has a general formula and this formula look complicated and it is not clear, at first glance, that the elements are natural numbers:
$f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
Using sigma notation write down this formula as a sigle sum Σ so that the terms added are rational elements (in particular, $\sqrt{5}$ must not appear).
