Math-algebra. Complex numbers

1. Simplify the following expressions and give the final answer in cartesian form.
(a) $\frac{(1+2 i)^{2}}{2+i}$.
(b) $(2-i)^{3}+(2+i)^{3}$.
(c) $i^{n}, n \in \mathbf{N}$.
(d) $3 i+(3 i)^{2}+(3 i)^{3}+\ldots+(3 i)^{51}$.
(e) $\operatorname{Re}(1-5 i)^{4}+\operatorname{Im}\left(\frac{i}{1+i}\right)$.
2. Find the modulus of the numbers below.
(a) $-5+12 i$
(b) $\frac{1-2 i}{3+i}$
(c) $(3+i)^{110}$
(d) $z+1-3 i$, where $z=x+y i, x, y \in \mathbf{R}$
3. Prove that the following formulas are true for all complex z and w.
(a) $\operatorname{Re}(z+w)=\operatorname{Re}(z)+\operatorname{Re}(w), \operatorname{Re}(z-w)=\operatorname{Re}(z)-\operatorname{Re}(w), \operatorname{Im}(z+w)=\operatorname{Im}(z)+\operatorname{Im}(w)$ and $\operatorname{Im}(z-w)=\operatorname{Im}(z)-\operatorname{Im}(w)$.
(b) $z+\bar{z}=2 \operatorname{Re}(z), z-\bar{z}=2 i \operatorname{Im}(z)$ and $z \cdot \bar{z}=|z|^{2}$.
(c) If $z \in \mathbf{R}$ then $\operatorname{Re}(z \cdot w)=z \cdot \operatorname{Re}(w)$ and $\operatorname{Im}(z \cdot w)=z \cdot \operatorname{Im}(w)$.
(d) $\overline{z+w}=\bar{z}+\bar{w}, \overline{z-w}=\bar{z}-\bar{w}, \overline{z \cdot w}=\bar{z} \cdot \bar{w}$, and if $w \neq 0$ then $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}$.

Then deduce that for $n \in \mathbf{N}_{+}$we get $\overline{z^{n}}=(\bar{z})^{n}$.
(e) $-|z| \leq \operatorname{Re}(z) \leq|z|,-|z| \leq \operatorname{Im}(z) \leq|z|$ and $z \in \mathbf{R} \Leftrightarrow z=\bar{z}= \pm|z|$.
(f) $|z \cdot w|=|z| \cdot|w|$, and if $w \neq 0$ to $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.

Then deduce that for $n \in \mathbf{N}_{+}$we get $\left|z^{n}\right|=|z|^{n}$.
(g) $|z+w|^{2}=|z|^{2}+|w|^{2}+2 \operatorname{Re}(z \cdot \bar{w})$.
(h) $|z+w| \leq|z|+|w|$.
(i) $|z+w|=|z|+|w| \Leftrightarrow z=0 \vee w=0 \vee \frac{z}{w}>0$.
4. Solve the following complex equations and inequalities. In case of infinitely many solutions plot them in the complex plane.
(a) $\bar{z}+2-i=(3+2 i) z$.
(b) $\operatorname{Re}(2 i z)=4 \operatorname{Im}((1-i) \bar{z})$.
(c) $\operatorname{Re}\left(z^{2}\right) \leq 0$.
(d) $\operatorname{Im}\left(z^{3}\right)=0$.
(e) $R e\left(\frac{2}{z}\right)=0$.
(f) $\operatorname{Im}\left(\frac{2}{z}\right)=1$.
(g) $\operatorname{Im}\left(\frac{1+2 i}{z+1}\right) \geq 0$.
(h) $|z+5-3 i|=2$.
(i) $|i z+3+2 i|>1$.
(j) $|z+1-i|=|z+4|$.
(k) $|i \bar{z}-2+3 i| \leq|z-3|$.
(l) $\left|z^{2}-4\right|<5|z+2|$.
(m) $3|z-2 i|<\left|z^{2}+4\right| \leq 2|z+2 i|$.
(n) $2|z+3|=|z+6 i|$.
(o) $2|z+1| \leq|\bar{z}+10+12 i|$.
5. (${ }^{*}$
(a) Let z_{1}, z_{2} be two distinct complex numbers and let $c>0, c \neq 1$. Prove that the set of all $z \in \mathbf{C}$ for which $\frac{\left|z-z_{1}\right|}{\left|z-z_{2}\right|}=c$ is a circle. Find its center and radius.
(b) What kind of curve appears for $c=1$?
6. Represent the numbers below in polar and trigonometric form.
(a) $3+3 i$
(b) $-\frac{\sqrt{3}}{2}+\frac{1}{2} i$
(c) $-1-i \sqrt{3}$
(d) $\sqrt{5}-i \sqrt{5}$
(e) $z \in \mathbf{R}, z \notin 0$
(f) $z=y i, y \in \mathbf{R}, y \notin 0$
7. Find the polar and the cartesian form of the numbers below.
(a) $(1-i)^{23}$.
(b) $-(-1+i \sqrt{3})^{-14}$.
(c) $\frac{(1+i)^{39}}{1-i \sqrt{3}}$.
(d) $\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{33} \cdot(\sqrt{3}-i)^{7}$.
8. Using the basic version of de Moivre's theorem prove its alternative version: for $z \in \mathbf{C}$ and $n \in \mathbf{Z}$ we have $(|z|(\cos \alpha-i \sin \alpha))^{n}=|z|^{n}(\cos n \alpha-i \sin n \alpha)$.
9. Let $z=x+y i$ and $z_{0}=x_{0}+y_{0} i, x, y, x_{0}, y_{0} \in \mathbf{R}$.
(a) For $\alpha \neq \frac{\pi}{2}, \alpha \neq \frac{3 \pi}{2}$, find an equation of the half-line $\arg \left(z-z_{0}\right)=\alpha$. State it in a form $y=f(x), x \in S$, where S is and adequate set to be found.
(b) Which half-line do we have for $\alpha=\frac{\pi}{2}$, and which for $\alpha=\frac{3 \pi}{2}$?
10. (Task 4 continued). Solve the following complex equations and inequalities. In case of infinitely many solutions plot them in the complex plane.
(a) $\operatorname{Re}\left(z(1+i \sqrt{3})^{8}\right)=128$.
(b) $\operatorname{Im}\left((\bar{z}+1)(-\sqrt{3}+i)^{9}\right)<256$.
(c) $\left|z\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{15}+2\right| \leq 5$.
(d) $\arg (z+2-3 i)=\frac{\pi}{4}$.
(e) $\frac{\pi}{3}<\arg (z-2 i) \leq \frac{5 \pi}{6}$.
(f) $\arg (i z)=\frac{\pi}{3}$.
(g) $\frac{\pi}{4} \leq \arg ((1+i)(z+2)) \leq \frac{5 \pi}{4}$.
(h) $\arg \left(\frac{-1+i}{z}\right)=\frac{\pi}{4}$.
(i) $\arg \left(z^{3}\right)=\frac{\pi}{2}$.
(j) $\arg \left(-2 i z^{4}\right)=\pi$.
(k) $\frac{\pi}{2} \leq \arg \left(z^{4}\right) \leq \frac{3 \pi}{4}$.
(l) $\left\{\begin{array}{l}|z-3 i|=1, \\ \arg (z)=\frac{\pi}{2}\end{array}\right.$
(m) $\left\{\begin{array}{l}|z-1|=3, \\ \arg (z+i)=\frac{\pi}{4}\end{array}\right.$.
(n) $\left\{\begin{array}{l}|z+1|=5, \\ \arg (z+3-3 i)=\frac{3 \pi}{4} .\end{array}\right.$
(o) $\left\{\begin{array}{l}\arg (z+7)=\frac{3 \pi}{2}, \\ \arg (z+5-i)=\frac{4 \pi}{3} .\end{array}\right.$
(p) $\left\{\begin{array}{l}\arg (z-2 i)=\frac{\pi}{6}, \\ \arg (z-1-3 i)=\frac{\pi}{3}\end{array}\right.$.
11. Using polar form of complex numbers solve the equations below. State the solutions in cartesian form, simplifying your answers as far as possible.
(a) $z^{4}=|z|$.
(b) $(\sqrt{3}+i)(\bar{z})^{3}=z$.
(c) $|z|^{5}=i z^{5}$.
12. (*) Assume that $z, w \in \mathbf{C} \backslash\{0\}, z+w \neq 0$ and $|z|=|w|$.
(a) Show that it is always possible to find such an argument α of z and argument β of w that $|\alpha-\beta|<\pi$ (they need not be principal arguments).
(b) Prove by any method that for such α and β the angle $\varphi=\frac{\alpha+\beta}{2}$ is an argument of $z+w$.
13. Using the previous task represent the numbers below in cartesian and polar form.
(a) $-\sqrt{2}+1+i$.
(b) $1+i(\sqrt{3}+2)$.
(c) $1+i(\sqrt{3}-2)$.
(d) $1+i(2-\sqrt{3})$.
(e) $\sqrt{2}+1+i(\sqrt{2}+\sqrt{3})$.
(f) $\cos \frac{\pi}{9}+\cos \frac{\pi}{7}+i\left(\sin \frac{\pi}{9}+i \sin \frac{\pi}{7}\right)$.
(g) $\cos \frac{\pi}{9}-\cos \frac{\pi}{7}+i\left(\sin \frac{\pi}{9}-i \sin \frac{\pi}{7}\right)$.
14. Find the following roots of complex numbers. State the answers in cartesian form.
(a) $\sqrt{-3+4 i}$
(b) $\sqrt{7+i}$
(c) $\sqrt[3]{8 i}$
(d) $\sqrt[3]{-27}$
(e) $\sqrt[4]{-1}$
(f) $\sqrt[4]{-1+i \sqrt{3}}$
(g) $\sqrt[5]{1}$
(h) $\sqrt[4]{i}$
(i) $\sqrt[3]{1+i}$
(j) $\sqrt[4]{(1+2 i)^{4}}$
(k) $\sqrt[3]{(1+2 i)^{6}}$
(l) $\sqrt[n]{z^{n}}, z \in \mathbf{C}, n \in \mathbf{N}_{+}$
15. (*) Verify that
(a) if $z<0$ then $\sqrt{z}= \pm i \sqrt{|z|}= \pm i \sqrt{-z}$,
(b) if $z \notin \mathbf{R}$ then $\sqrt{z}= \pm \sqrt{|z|} \cdot \frac{z+|z|}{|z+|z||}$.
16. Let $z \in \mathbf{C}, z \neq 0$, and $m, n \in \mathbf{N}, m, n>1$. Show that the set $\sqrt[n]{z}$ is a subset of the set $\sqrt[m n]{z^{m}}$ but these sets are not the same.
17. Using complex roots solve the equations below.
(a) $a z^{2}+b z+c=0, a, b, c \in \mathbf{R}, a \neq 0, \Delta=b^{2}-4 a c<0$
(b) $z^{2}+(1+i) z-2-i=0$
(c) $i z^{2}+(2+i) z+5-i=0$
(d) $z^{3}=(2 z+i)^{3}$
(e) $z^{4}=-4(z+1)^{4}$
18. (${ }^{\star}$ Let $z, z_{0} \in \mathbf{C}, \alpha \in \mathbf{R}$. Define two complex functions f, g as $w=f(z)=z e^{i \alpha}$ and $w=g(z)=$ $z_{0}+\left(z-z_{0}\right) e^{i \alpha}$. Prove their geometrical properties:
(a) f is a rotation around the center, by angle α,
(b) g is a rotation around the point represented by z_{0}, by angle α.

As usually, for $\alpha>0$ the rotations are anticlockwise, and clockwise for $\alpha<0$.
Using this method find the image of $P=(1,3)$ when P is rotated
(a) around the origin by $\alpha=30^{\circ}$ anticlockwise,
(b) around $Q=(2,-1)$ by $\alpha=135^{\circ}$ clockwise.
19. (*) Recall that $\arctan A$ is the angle $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which $\tan \alpha=A$.

Using complex numbers show that

$$
\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239}
$$

This result, combined with a Maclaurin's series of $\arctan x$, enables us to find, effectively, an approximation of π, with high accuracy.
20. Using complex numbers derive the formula of $\sin (5 x)$ in terms of $\sin x$ only.
21. Using complex numbers find a formula of
(a) $\cos x+\cos (2 x)+\ldots+\cos (n x)$,
(b) $2 \sin x+4 \sin (2 x)+\ldots+2^{n} \sin (n x)$.

