Math-algebra. Polynomials and rational functions

1. Divide P by Q if
(a) $P(x)=3 x^{6}+x^{3}+x+1, Q(x)=x^{3}-x+1$,
(b) $P(x)=x^{2}+5 x+1, Q(x)=-2 x^{2}+5$,
(c) $P(x)=2 x^{3}+x^{2}+x-7, Q(x)=3 x+5$,
(d) $P(x)=x^{3}-3 x+2, Q(x)=x+2$.
2. (a) $P(x)=4 x^{211}+c x^{3}-x^{2}+1$ is divisible by $Q(x)=x+1$. Find c.
(b) $P(x)=a x^{3}+b x^{2}+x-2$ has a root $x=1$ and leaves a reminder -5 when divided by $Q(x)=x-2$.

Find a and b.
3. The following polynomials have integer repeated roots. Find their multiplicity.
(a) $P(x)=x^{5}-4 x^{4}+3 x^{3}+5 x^{2}-8 x+4$
(b) $P(x)=x^{5}-10 x^{4}+40 x^{3}-80 x^{2}+80 x-32$
(c) $P(x)=x^{6}-4 x^{5}+7 x^{4}-8 x^{3}+7 x^{2}-4 x+1$
(d) $P(x)=x^{7}+3 x^{6}+3 x^{5}+2 x^{4}+5 x^{3}+9 x^{2}+7 x+2$
4. Factorize the polynomials below over the

- real number field,
- complex number field.

Use any reasonable methods: finding integer/rational/complex roots, grouping suitable terms, substituting a new variable etc.
(a) $-x^{3}+19 x-30$
(b) $2 x^{3}+3 x^{2}+2 x+1$
(c) $-\frac{1}{2} x^{3}+x-\frac{1}{2}$
(d) $5 x^{3}-24 x^{2}+36 x-16$
(e) $\frac{1}{9} x^{3}-x^{2}+3 x-3$
(f) $x^{4}-3 x^{3}-4 x^{2}+18 x-12$
(g) $x^{4}+x^{3}-x-1$
(h) $-9 x^{4}-3 x^{3}+23 x^{2}-13 x+2$
(i) $8 x^{4}+20 x^{3}-42 x^{2}+23 x-4$
(j) $16 x^{4}+32 x^{3}+24 x^{2}+8 x+1$
(k) $x^{5}-2 x^{4}-4 x^{3}+4 x^{2}-5 x+6$
(l) $x^{5}-x^{4}-2 x^{3}+5 x^{2}-5 x+2$
(m) $x^{6}+5 x^{5}+7 x^{4}-2 x^{3}-13 x^{2}-11 x-3$
(n) $\left(^{\star}\right) x^{5}+2$
(o) $\left(^{\star}\right) x^{7}-1$
5. Factorize the following quartic polynomials over the real number field.
(a) $x^{4}-7 x^{2}+5$
(b) $-x^{4}-x^{2}+2$
(c) $2 x^{4}+3 x^{2}+1$
(d) $x^{4}-6 x^{2}+9$
(e) $\frac{1}{2} x^{4}+x^{2}+\frac{1}{2}$
(f) $x^{4}+9$
(g) $x^{4}-x^{2}+25$
(h) $3 x^{4}+5 x^{2}+9$
6. ($\left.{ }^{*}\right)$
(a) Prove that if z is a root of a polynomial with real coefficients then \bar{z} is also a root of this polynomial.
(b) Prove that the multiplicities of z and \bar{z} are the same.
7. $x=-2+i$ is a root of $P(x)=-x^{4}-3 x^{3}-3 x^{2}-3 x-10$. Factorize P over the

- real number field,
- complex number field.

8. $x=i \sqrt{3}$ is a double root of $P(x)=2 x^{6}+x^{5}+13 x^{4}+6 x^{3}+24 x^{2}+9 x+9$. Factorize P over the

- real number field,
- complex number field.

9. (a) Using the formula $\sin (5 x)=16 \sin ^{5} x-20 \sin ^{3} x+5 \sin x$ (see List 1) find the exact values of $\sin \frac{\pi}{5}, \sin \frac{2 \pi}{5}, \sin \frac{3 \pi}{5}$ and $\sin \frac{4 \pi}{5}$.
(b) Deduce that $\cos \frac{\pi}{5}=\frac{1+\sqrt{5}}{4}$ and state in a similar form $\cos \frac{2 \pi}{5}, \cos \frac{3 \pi}{5}$ oraz $\cos \frac{4 \pi}{5}$.
10. Using the factor form of real polynomials prove that every real polynomial has at least one real root. Deduce then that the range of such polynomials is \mathbf{R}.
11. Let $P=P(x)$ be a complex polynomial. Let $Q=Q(x)=x-x_{0}, x_{0} \in \mathbf{C}$, be its factor of multiplicity $k \in \mathbf{N}_{+}$. Let $W(x)=P^{\prime}(x)$ be the derivative of P (the definition of derivative, derivatives of basic functions and rules of differentiation are he same as in real case). Prove the followin theorem.
(a) $k=1 \Longleftrightarrow Q$ is not a factor of W.
(b) $k>1 \Longleftrightarrow Q$ is a factor of W, with multiplicity $k-1$.
12. (*) Using the previous task prove the following theorem.

Let $P=P(x)$ be a complex polynomial and let $x_{0} \in \mathbf{C}$ be its root. Then
x_{0} is of multiplicity $k \in \mathbf{N}_{+} \Longleftrightarrow P\left(x_{0}\right)=P^{\prime}\left(x_{0}\right)=P^{\prime \prime}\left(x_{0}\right)=\ldots=P^{(k-1)}\left(x_{0}\right)=0$ oraz $P^{(k)}\left(x_{0}\right) \neq 0$
(the first derivative that is not equal to 0 at x_{0} is the k th one).
This theorem enables us to find multiplicity of x_{0} without repeated division. Furthermore, it allows to fint this multiplicity in case when x_{0} cannot be calculated explicitely.
13. Find the remainder when $P(x)=2 x^{151}+4 x-1$ is divided by
(a) $Q(x)=x^{2}+x-2$,
(b) $Q(x)=x^{3}-4 x$,
(c) $Q(x)=x^{2}+1$,
(d) $Q(x)=x^{2}+2 x+2$,
(e) $Q(x)=x^{2}+x \sqrt{3}+1$,
(f) $Q(x)=x^{2}-2 x+4$,
(g) $\left(^{\star}\right) Q(x)=x^{3}-3 x+2$,
(h) $\left(^{\star}\right) Q(x)=x^{4}-3 x^{3}+3 x^{2}-x$.
14. Represent the functions below as a sum of partial fractions, without calculating their coefficients.
(a) $f(x)=\frac{x-3}{(x-1)^{3}(2 x-1)\left(x^{2}+x+3\right)\left(x^{2}+3\right)^{2}}$
(b) $f(x)=\frac{x^{2}}{\left(x^{2}+4 x+3\right)\left(x^{2}+4 x+4\right)\left(x^{2}+4 x+5\right)}$
(c) $f(x)=\frac{x^{3}}{\left(x^{2}-5\right)^{3}\left(x^{2}+5\right)^{3}}$
15. Decompose the functions below into real partial fractions.
(a) $f(x)=\frac{2 x+1}{x^{2}-4 x+3}$
(b) $f(x)=\frac{x^{2}}{x^{3}+2 x^{2}-x-2}$
(c) $f(x)=\frac{5}{x^{3}-3 x+2}$
(d) $f(x)=\frac{x^{2}-4 x-3}{x^{3}+x+2}$
(e) $f(x)=\frac{-4 x^{2}+26 x-34}{x^{4}-8 x^{3}+18 x^{2}-27}$
(f) $f(x)=\frac{2 x^{3}+4 x^{2}+6 x+9}{x^{4}+5 x^{2}+6}$
(g) $f(x)=\frac{x^{3}+2 x+1}{x^{4}+2 x^{2}+1}$
16. Represent the functions below as a sum of a polynomial and real partial fractions.
(a) $f(x)=\frac{5 x^{5}+x-1}{x^{3}+x^{2}}$
(b) $f(x)=\frac{4 x^{2}+x-1}{x^{2}-3 x+2}$
17. (*) Consider a proper rational function $f(x)=\frac{P(x)}{Q(x)}$ such that polynomials P and Q don't have common factors.
(a) Prove that its partial fraction decomposition must contain the fractions with the highest possible power of the denominator.
For example, in case of $\frac{P(x)}{x^{3}\left(x^{2}+1\right)^{2}}$ the fractions $\frac{A}{x^{3}}$ and $\frac{a x+b}{\left(x^{2}+1\right)^{2}}$ must occur while $\frac{B}{x^{2}}, \frac{C}{x}$ and $\frac{D x+E}{x^{2}+1}$ need not appear.
(b) Prove that for a partial fraction with a denominator that is a linear function to the highest possible power, a popular method of finding its numerator - multiply the equation $\frac{P(x)}{Q(x)}=$ sum of partial fractions
by Q and input at x a suitable root of Q - always leads to a linear equation with one variable and this variable is the desider numerator.
Using that approach derive the formula of such a partial fraction.

