2. Series.

1. Using the form of telescoping series find, exactly, the sums below. Simplify your answers as far as
possible.
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2. (*) Consider two numbers z,y € R such that zy # —1.

(a) Prove that z and y are of the same sign then
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and show such x and y for which the formula is false.
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(b) Using this formula find, exactly, the sum of Z arctg (ﬁ) ,
n=1
simplifying your answers as far as possible.

3. Using adequate tests, test convergence of the following series.
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4. (previous problem continued) Test convergence of the following series.
(a) Z sin .
n=1
(b) f:?" arcsin® 1
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(c) ;\/ﬁtg(%) - (\/3—1).
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5. Using the following estimate for natural logarithm

Vp>03dC >0Vn>2 1<Inn<Cn?

test convergence of the following series.
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(e) Zm dla p,q >0, ¢ # 1.
n=3

(missing case of the previous problem) Show that for

[e.9]
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it is not possible to use the method of the previous problem.

Test convergence of this series using another test.
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Niech a > 1 oraz p € R. Analysing suitable series prove that —~ and — tend to 0.
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Conclude that also — tends to 0 while —, — and — tend to oc.
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(*) Using Raabe’s test (individual investigation expected) show that
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(a) Z 2 ()”n @ )+ ) is a convergent series,
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where (2n — 1)1=1-3-5-...-(2n—1) and 2n)!! =2-4-6-...- (2n).

The result in (a) gives convergence for the power series of arcsinz at x = +1.
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Show that is an alternating series whose general term tends to 0 but the sum of

n
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this series is infinite

Conclude that the general term of this series is not monotonic.

(*) Prove the folowing theorem.

[e.e]
Consider an alternating series Z (—1)"an, a,, > 0. If a,, is non-decreasing then the sum of the series

n=ng
does not exist.

This implies that if for a given alternating series ratio test gives divergence then the sum of the series
does not exist.
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