2. Series.

1. Using the form of telescoping series find, exactly, the sums below. Simplify your answers as far as possible.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 1} - \frac{1}{(n+1)^2 + 1} \right).$$

(b) $\sum_{n=0}^{\infty} \left(\arccos\left(\frac{1}{n+1}\right) - \arccos\left(\frac{1}{n+3}\right) \right).$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n}.$
(d) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}.$
(e) $\sum_{n=2}^{\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln(n+1) \cdot \ln n}.$

- 2. (*) Consider two numbers $x, y \in \mathbf{R}$ such that $xy \neq -1$.
 - (a) Prove that x and y are of the same sign then $\operatorname{arctg} x - \operatorname{arctg} y = \operatorname{arctg} \left(\frac{x - y}{1 + xy} \right)$, and show such x and y for which the formula is false.
 - (b) Using this formula find, exactly, the sum of $\sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{2}{n^2}\right)$, simplifying your answers as far as possible.
- 3. Using adequate tests, test convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n^2 + n - 3} + \sqrt[3]{n^5}}{n^3 + 2}$$
.
(b) $\sum_{n=1}^{\infty} \frac{(2n^2 + n + 3)^{30} + 1}{n!}$.
(c) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{2^n + n^2 \cdot 3^n}$.
(d) $\sum_{n=1}^{\infty} \left(\frac{2n + 1}{5n + 2}\right)^n$.
(e) $\sum_{n=1}^{\infty} \left(\frac{5n + 1}{5n + 2}\right)^n$.
(f) $\sum_{n=1}^{\infty} \left(\arccos\left(\frac{5n + 1}{5n + 2}\right)\right)^n$.

(g)
$$\sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{1}{\sqrt{n}}\right)$$
.
(h) $\sum_{n=1}^{\infty} \frac{3 + \cos(n^2)}{\sqrt[5]{n^3}}$.
(i) $\sum_{n=1}^{\infty} \frac{\cos(n^2)}{(\ln 2)^n + (\ln 3)^n}$.
(j) $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{n^2 + 200}$.
(k) $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{n^3 + 200}$.
(l) $\sum_{n=1}^{\infty} (-1)^n \cdot (\sqrt[3]{n+7} - \sqrt[3]{n})$.
(m) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos(n)}{\sqrt{2^n - 1}}$.

4. (previous problem continued) Test convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \sqrt{\sin \frac{1}{n^2}}.$$

(b)
$$\sum_{n=1}^{\infty} 7^n \arcsin^2 \left(\frac{1}{3^n}\right).$$

(c)
$$\sum_{n=2}^{\infty} \sqrt[4]{n} \cdot \operatorname{tg}\left(\frac{1}{\sqrt[3]{n}}\right) \cdot \left(\sqrt[n]{5} - 1\right).$$

(d) (*)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt[3]{n}} - \operatorname{arctg}\left(\frac{1}{\sqrt[3]{n}}\right)\right).$$

5. Using the following estimate for natural logarithm

$$\forall p > 0 \; \exists C > 0 \; \forall n > 2 \; 1 \le \ln n \le C n^p$$

test convergence of the following series.

(a)
$$\sum_{n=3}^{\infty} \frac{1}{n^2 \ln n}$$
.
(b)
$$\sum_{n=3}^{\infty} \frac{\ln^2 n}{n \cdot \sqrt[3]{n^4}}$$
.
(c)
$$\sum_{n=3}^{\infty} \frac{\sqrt{n} - \sqrt{\ln n}}{n^2}$$
.
(d)
$$\sum_{n=3}^{\infty} \frac{\ln^p n}{n^q} \text{ dla } p, q > 0.$$

(e)
$$\sum_{n=3}^{\infty} \frac{1}{\ln^p n \cdot n^q} \, \mathrm{dla} \, p, q > 0, \ q \neq 1.$$

6. (missing case of the previous problem) Show that for

$$\sum_{n=3}^{\infty} \frac{1}{n \cdot \ln^p n}, \ p > 0,$$

it is not possible to use the method of the previous problem. Test convergence of this series using another test.

- 7. Niech a > 1 oraz $p \in \mathbf{R}$. Analysing suitable series prove that $\frac{a^n}{n!}$ and $\frac{n^p}{a^n}$ tend to 0. Conclude that also $\frac{n^p}{n!}$ tends to 0 while $\frac{n!}{a^n}$, $\frac{a^n}{n^p}$ and $\frac{n!}{n^p}$ tend to ∞ .
- 8. (*) Using Raabe's test (individual investigation expected) show that

(a)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!! \cdot (2n+1)}$$
 is a convergent series,

(b) szereg
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$$
 is a dinvergent series,

where $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)$ and $(2n)!! = 2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)$.

The result in (a) gives convergence for the power series of $\arcsin x$ at $x = \pm 1$.

9. Show that $\sum_{n=2}^{\infty} \frac{1+2 \cdot (-1)^n}{n}$ is an alternating series whose general term tends to 0 but the sum of this series is infinite

Conclude that the general term of this series is not monotonic.

10. (*) Prove the following theorem.

Consider an alternating series $\sum_{n=n_0}^{\infty} (-1)^n a_n$, $a_n > 0$. If a_n is non-decreasing then the sum of the series does not exist.

This implies that if for a given alternating series ratio test gives divergence then the sum of the series does not exist.

Krzysztof "El Profe" Michalik