2. Series.

1. Using the form of telescoping series find, exactly, the sums below. Simplify your answers as far as possible.
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}+1}-\frac{1}{(n+1)^{2}+1}\right)$.
(b) $\sum_{n=0}^{\infty}\left(\arccos \left(\frac{1}{n+1}\right)-\arccos \left(\frac{1}{n+3}\right)\right)$.
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n}$.
(d) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}+(n+1) \sqrt{n}}$.
(e) $\sum_{n=2}^{\infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\ln (n+1) \cdot \ln n}$.
2. (*) Consider two numbers $x, y \in \mathbf{R}$ such that $x y \neq-1$.
(a) Prove that x and y are of the same sign then
$\operatorname{arctg} x-\operatorname{arctg} y=\operatorname{arctg}\left(\frac{x-y}{1+x y}\right)$,
and show such x and y for which the formula is false.
(b) Using this formula find, exactly, the sum of $\sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{2}{n^{2}}\right)$, simplifying your answers as far as possible.
3. Using adequate tests, test convergence of the following series.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{2 n^{2}+n-3}+\sqrt[3]{n^{5}}}{n^{3}+2}$.
(b) $\sum_{n=1}^{\infty} \frac{\left(2 n^{2}+n+3\right)^{30}+1}{n!}$.
(c) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{2^{n}+n^{2} \cdot 3^{n}}$.
(d) $\sum_{n=1}^{\infty}\left(\frac{2 n+1}{5 n+2}\right)^{n}$.
(e) $\sum_{n=1}^{\infty}\left(\frac{5 n+1}{5 n+2}\right)^{n}$.
(f) $\sum_{n=1}^{\infty}\left(\arccos \left(\frac{5 n+1}{5 n+2}\right)\right)^{n}$.
(g) $\sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{1}{\sqrt{n}}\right)$.
(h) $\sum_{n=1}^{\infty} \frac{3+\cos \left(n^{2}\right)}{\sqrt[5]{n^{3}}}$.
(i) $\sum_{n=1}^{\infty} \frac{\cos \left(n^{2}\right)}{(\ln 2)^{n}+(\ln 3)^{n}}$.
(j) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot n}{n^{2}+200}$.
(k) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot n}{n^{3}+200}$.
(1) $\sum_{n=1}^{\infty}(-1)^{n} \cdot(\sqrt[3]{n+7}-\sqrt[3]{n})$.
(m) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n)}{\sqrt{2^{n}-1}}$.
4. (previous problem continued) Test convergence of the following series.
(a) $\sum_{n=1}^{\infty} \sqrt{\sin \frac{1}{n^{2}}}$.
(b) $\sum_{n=1}^{\infty} 7^{n} \arcsin ^{2}\left(\frac{1}{3^{n}}\right)$.
(c) $\sum_{n=2}^{\infty} \sqrt[4]{n} \cdot \operatorname{tg}\left(\frac{1}{\sqrt[3]{n}}\right) \cdot(\sqrt[n]{5}-1)$.
(d) (*) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt[3]{n}}-\operatorname{arctg}\left(\frac{1}{\sqrt[3]{n}}\right)\right)$.
5. Using the following estimate for natural logarithm

$$
\forall p>0 \exists C>0 \forall n>21 \leq \ln n \leq C n^{p}
$$

test convergence of the following series.
(a) $\sum_{n=3}^{\infty} \frac{1}{n^{2} \ln n}$.
(b) $\sum_{n=3}^{\infty} \frac{\ln ^{2} n}{n \cdot \sqrt[3]{n^{4}}}$.
(c) $\sum_{n=3}^{\infty} \frac{\sqrt{n}-\sqrt{\ln n}}{n^{2}}$.
(d) $\sum_{n=3}^{\infty} \frac{\ln ^{p} n}{n^{q}}$ dla $p, q>0$.
(e) $\sum_{n=3}^{\infty} \frac{1}{\ln ^{p} n \cdot n^{q}}$ dla $p, q>0, q \neq 1$.
6. (missing case of the previous problem) Show that for

$$
\sum_{n=3}^{\infty} \frac{1}{n \cdot \ln ^{p} n}, p>0
$$

it is not possible to use the method of the previous problem.
Test convergence of this series using another test.
7. Niech $a>1$ oraz $p \in \mathbf{R}$. Analysing suitable series prove that $\frac{a^{n}}{n!}$ and $\frac{n^{p}}{a^{n}}$ tend to 0 .

Conclude that also $\frac{n^{p}}{n!}$ tends to 0 while $\frac{n!}{a^{n}}, \frac{a^{n}}{n^{p}}$ and $\frac{n!}{n^{p}}$ tend to ∞.
8. (*) Using Raabe's test (individual investigation expected) show that
(a) $\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!\cdot(2 n+1)}$ is a convergent series,
(b) szereg $\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!}$ is a dinvergent series,
where $(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)$ and $(2 n)!!=2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)$.
The result in (a) gives convergence for the power series of $\arcsin x$ at $x= \pm 1$.
9. Show that $\sum_{n=2}^{\infty} \frac{1+2 \cdot(-1)^{n}}{n}$ is an alternating series whose general term tends to 0 but the sum of this series is infinite

Conclude that the general term of this series is not monotonic.
10. (*) Prove the folowing theorem.

Consider an alternating series $\sum_{n=n_{0}}^{\infty}(-1)^{n} a_{n}, a_{n}>0$. If a_{n} is non-decreasing then the sum of the series does not exist.

This implies that if for a given alternating series ratio test gives divergence then the sum of the series does not exist.

