5. Derivatives and differentiability of multivariable functions.

- 1. Calculate all second order partial derivatives of the functions below and verify validity of Schwarz's theorem.
 - (a) $f(x,y) = (2x + y^2 + 3)^7$. (b) $f(x,y) = \sqrt{(x-1)^2 + y^2}$. (c) $f(x,y) = x \ln(xy^2 + y + 1)$. (d) $f(x,y,z) = \frac{1}{x^4 + y^4 + z^4}$. (e) $f(x,y,z) = \frac{x}{\sqrt[3]{y}} + \frac{y}{\sqrt[3]{z}} + \frac{z}{\sqrt[3]{x}}$.
- 2. Using Schwarz's theorem find all
 - (a) third order partial derivatives of $f(x, y) = \cos(xy^2)$,
 - (b) third order partial derivatives of $f(x, y, z) = x^2 \cdot \sqrt[4]{y} \cdot z$,
 - (c) fourth order partial derivatives of $f(x,y) = \frac{y^3}{x^2}$,
 - (d) *n*th order partial derivatives of $f(x, y) = e^{2x-y}$.
- 3. Verify that
 - (a) $f(x,y) = \log(x^2 + y^2 2x 2y + 2)$ is a solution to the equation $f_{xx} + f_{yy} = 0$, (b) $f(x,y,z) = \sqrt[3]{(2 + \sin(x - z)) \cdot (y - 2z)^4}$ is a solution to the equation $f_x + 2f_y + f_z = 0$.
- 4. Let $f(x,y) = \ln(2y+8-x^2-y^2)$. Identify and draw the set of all points (x,y) for which $f_{xy}(x,y) \leq 0$.
- 5. (*) All *n*th order partial derivatives of some function f of k variables are to be calculated, on a given open subset of the domain of f. How many formulas, maximally, may we obtain if all these derivatives are continuous on this set?
- 6. Find an equation of the tangent plane to the graph of
 - (a) f(x,y) = tg(x+2y), at P = (0,0, f(0,0)),
 - (b) $f(x,y) = \operatorname{arctg}(x^2 y)$, at its intersection point with the Y-axis,
 - (c) $f(x,y) = (2x + y 1)^5$, at its intersection point with the line

$$L: \left\{ \begin{array}{l} x = 1+t\\ y = -1+2t\\ z = -t \end{array} \right., t \in \mathbf{R},$$

(d) $f(x,y) = (x+3y+1)^4 + (x-y)^2$, at its common point with the XY-plane.

Prove that these planes are really tangent planes by testing differentiability of these functions at suitable points.

7. A surface is represented by the equation $z = \sqrt{2x - y^2}$. Find its all points at which the tangent plane

- (a) is perpendicular to the line $L: \begin{cases} x = 3t \\ y = -t \\ z = 1 2t \end{cases}$, $t \in \mathbf{R}$,
- (b) is parallel to the plane $\Pi : -2x + 3z + 1 = 0$,
- (c) is parallel to the plane $\Pi: x + 2y + 3z = 0$,
- 8. (*) The graph of f = f(x, y) is a surface of revolution around the Z-axis. Assume that some neighbourhood of P = (0, 0) is included in the domain of f.
 - (a) Show that a given point P either both derivatives f_x , f_y exist or none of them. In the first case find the values of these derivatives at P.
 - (b) Show that existence of $f_x(P)$ implies differentiability of fat P and find the tangent plane to the graph of f at P.

9. Let
$$f(x,y) = |x| \cdot |y|$$
 and $\vec{v} = \left[-\frac{\sqrt{3}}{2}, \frac{1}{2}\right]$. Evaluate $\frac{\partial f}{\partial \vec{v}}(0,2)$.

10. Evaluate directional derivatives of the functions below, at given points, in the directions of give vectors \vec{v} .

(a)
$$f(x,y) = x^{xy}, P = (2,1), \vec{v} = \left[-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right].$$

(b) $f(x,y) = \sin(2\pi\cos(x\mathrm{tg}y))), P = \left(\frac{\pi}{3}, -\frac{\pi}{4}\right), \vec{v} = \left[-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right].$
(c) $f(x,y,z) = (y+2z)^x, P = (2,2,0), \vec{v} = \left[-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right].$

11. Let $f(x,y) = \frac{3x+y}{x^2+1}$ and P = (1,1).

- (a) Find all unit vectors \vec{v} along which $\frac{\partial f}{\partial \vec{v}}(P)$ attains its greatest value. Find this value.
- (b) Find all unit vectors \vec{v} along which $\frac{\partial f}{\partial \vec{v}}(P)$ attains its least value. Find this value.
- (c) Find all unit vectors \vec{v} along which $\frac{\partial f}{\partial \vec{v}}(P) = 0$.
- (d) For $\vec{v} = \left[\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right]$ idenfity and draw the set of all points (x, y) at which $\frac{\partial f}{\partial \vec{v}}(x, y) = 0$.

Krzysztof "El Profe" Michalik