7. Double integrals.

1. Evaluate double integrals of given functions f over the rectangles indicated below.
(a) $f(x, y)=x y e^{2 x y^{2}}, D=[0,2] \times[1,2]$.
(b) $f(x, y)=\frac{1}{(2 x-y)^{3}}+\frac{1}{2 x-y}, D=[1,2] \times[-1,0]$.
(c) $f(x, t)=\frac{1}{\sqrt{\left(x-t^{2}\right)^{3}}}, D=\left\{(x, t): 0 \leq x \leq 4,0 \leq t \leq \frac{1}{2}\right\}$.
(d) $f(r, \varphi)=r\left(r^{2} \cos ^{2} \varphi+r \sin (2 \varphi)+\tan \varphi\right), D=\left\{(r, \varphi): 1 \leq r \leq 3,0 \leq \varphi \leq \frac{\pi}{3}\right\}$.
2. Let g be a function that is integrable over $[a, b]$ and let h be a function that is integrable over $[c, d]$. Show that if $f=f(x, y)$ can be represented as their product, that is, $f(x, y)=g(x) \cdot h(y)$, then over the rectangle $D=[a, b] \times[c, d]$ the integral of f may be decomposed into a product of two definite integrals, that is,
$\iint_{D} f(x, y) d x d y=\int_{a}^{b} g(x) d x \cdot \int_{c}^{d} h(y) d y$.
Use this formula to evaluate $\iint_{D} e^{x^{2}+y^{3}} \sin x d x d y$ na $D=[-\pi, \pi] \times[1,2]$.
3. Consider the sets D that are bounded by the graphs of the curves given below. Represent $\iint_{D} f(x, y) d x d y$ as an iterate integral or a sum of iterated integrals.

Use both orders of integration and, hence, give both results.
(a) $y=\frac{1}{2}(x+1), x=1, y=2$.
(b) $y=\sqrt{6-x^{2}}, y=x^{2}$.
(c) $y=\sqrt{x^{2}-4}, y=0, y=1$.
(d) $y=2 x-1, y=-5-x, y=2$.
4. Evaluate double integrals of given functions f over the sets indicated below.
(a) $f(x, y)=x y^{10}, D$ is bounded by the graphs of the curves $y=x$ and $y=2-x^{2}$.
(b) $f(x, y)=2^{x^{3}} y, D$ is a triangle with vertices $(0,0),(1,-1)$ and $(1,0)$.
(c) $f(x, y)=\frac{1}{y} e^{\frac{x}{y^{2}}}, D=\left\{(x, y): \frac{1}{4} \leq x \leq 2, \sqrt[3]{\frac{1}{2}} \leq y \leq 1\right\}$.
(d) $f(x, y)=x+2 y, D$ is bounded by the graphs of the curves $x=0, x=\frac{\pi}{3}, y=\cos (2 x)$ i $y=-2$.
(e) $f(x, y)=\frac{x}{(x y+3)^{2}}, D$ is bounded by the X-axis and the graphs of the lines $x=3$ i $y=x$.
(f) $f(x, y)=x \sqrt[3]{y}, D=\left\{(x, y): 1 \leq y \leq \sqrt{4-x^{2}}\right\}$.
5. Using polar coordinates calculate double integrals of given functions f over the sets indicated below.
(a) $f(x, y)=\frac{x}{y^{4}}, D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 3,0 \leq y \leq-x\right\}$.
(b) $f(x, y)=\frac{3}{y}, D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 2 y\right\}$.
(c) $f(x, y)=y, D=\left\{(x, y): x^{2}+y^{2} \leq 2 x, 0 \leq y \leq x\right\}$.
(d) $f(x, y)=x^{4}+y^{4}, D$ is bounded by the graphs of the curves $y=\frac{1}{2}(x+|x|)$ and $y=\sqrt{4-x^{2}}$.
(e) $f(x, y)=3 x+2 y, D$ is bounded by the graphs of the curves $y=3+\sqrt{11-4 x-x^{2}}, x=-2$ and $y=x+5$.
(f) $f(x, y)=\frac{1}{\sqrt{\left(x^{2}+y^{2}\right)^{3}}}, D=\left\{(x, y): 1 \leq y \leq \sqrt{2-x^{2}}\right\}$.
6. In polar coordinates the image of a set $D \subset \mathbf{R}^{2}$ is a rectangle. What kind of set may D be in cartesian coordinates? Describe its shape, position and parameters.

