7. Double integrals.

1. Evaluate double integrals of given functions f over the rectangles indicated below.

(a)
$$f(x,y) = xye^{2xy^2}$$
, $D = [0,2] \times [1,2]$.
(b) $f(x,y) = \frac{1}{(2x-y)^3} + \frac{1}{2x-y}$, $D = [1,2] \times [-1,0]$.
(c) $f(x,t) = \frac{1}{\sqrt{(x-t^2)^3}}$, $D = \left\{ (x,t) : 0 \le x \le 4, \ 0 \le t \le \frac{1}{2} \right\}$.
(d) $f(r,\varphi) = r(r^2\cos^2\varphi + r\sin(2\varphi) + \tan\varphi)$, $D = \left\{ (r,\varphi) : 1 \le r \le 3, \ 0 \le \varphi \le \frac{\pi}{3} \right\}$.

2. Let g be a function that is integrable over [a, b] and let h be a function that is integrable over [c, d]. Show that if f = f(x, y) can be represented as their product, that is, $f(x, y) = g(x) \cdot h(y)$, then over the rectangle $D = [a, b] \times [c, d]$ the integral of f may be decomposed into a product of two definite integrals, that is,

$$\iint_{D} f(x,y) dx dy = \int_{a}^{b} g(x) dx \cdot \int_{c}^{d} h(y) dy.$$

Use this formula to evaluate
$$\iint_{D} e^{x^{2} + y^{3}} \sin x dx dy \text{ na } D = [-\pi, \pi] \times [1, 2].$$

3. Consider the sets D that are bounded by the graphs of the curves given below. Represent $\iint_{D} f(x, y) dx dy$ as an iterate integral or a sum of iterated integrals.

Use both orders of integration and, hence, give both results.

(a)
$$y = \frac{1}{2}(x+1), x = 1, y = 2.$$

(b) $y = \sqrt{6-x^2}, y = x^2.$
(c) $y = \sqrt{x^2-4}, y = 0, y = 1.$
(d) $y = 2x - 1, y = -5 - x, y = 2.$

- 4. Evaluate double integrals of given functions f over the sets indicated below.
 - (a) $f(x,y) = xy^{10}$, D is bounded by the graphs of the curves y = x and $y = 2 x^2$. (b) $f(x,y) = 2^{x^3}y$, D is a triangle with vertices (0,0), (1,-1) and (1,0). (c) $f(x,y) = \frac{1}{y}e^{\frac{x}{y^2}}$, $D = \left\{ (x,y): \frac{1}{4} \le x \le 2, \sqrt[3]{\frac{1}{2}x} \le y \le 1 \right\}$. (d) f(x,y) = x + 2y, D is bounded by the graphs of the curves x = 0, $x = \frac{\pi}{3}$, $y = \cos(2x)$ i y = -2. (e) $f(x,y) = \frac{x}{(xy+3)^2}$, D is bounded by the X-axis and the graphs of the lines x = 3 i y = x. (f) $f(x,y) = x\sqrt[3]{y}$, $D = \left\{ (x,y): 1 \le y \le \sqrt{4-x^2} \right\}$.

5. Using polar coordinates calculate double integrals of given functions f over the sets indicated below.

(f)
$$f(x,y) = \frac{1}{\sqrt{(x^2 + y^2)^3}}, D = \left\{ (x,y) : 1 \le y \le \sqrt{2 - x^2} \right\}.$$

6. In polar coordinates the image of a set $D \subset \mathbf{R}^2$ is a rectangle. What kind of set may D be in cartesian coordinates? Describe its shape, position and parameters.

Krzysztof "El Profe" Michalik