List 0. Binomial expansion and trigonometric equations.

1. Expand and simplify
(a) $(2 x+3)^{4}$,
(b) $\left(3 x-\frac{1}{3 x^{2}}\right)^{5}$,
(c) $\left(\sqrt{y}+\frac{2}{y}\right)^{6}$,
(d) $(a-1)^{8}$.
2. In the expansion of $\left(x^{3}-\frac{2}{x}\right)^{36}$ find
(a) the coefficient of x^{16},
(b) the coefficient of $\frac{1}{x^{12}}$,
(c) the constant term (independent of x).
3. In the expansion of $(1+3 x)^{n}$ the coefficient of x^{2} is 90 . Find n.
4. In the expansion of $(1+a x)^{n}$ the first three terms are $1,24 x$ and $252 x^{2}$. Find a and n.
5. Find an approximation of 1.02^{38} by taking the sum of the first four terms in the expansion of $(1+0.02)^{38}$. Find the percentage error of this approximation.
6. Using the expansion of $(1+x)^{n}$ show that for all positive natural n
(a) $8^{n}+6$ is divisible by 7 ,
(b) $4^{n}+2$ is divisible by 6 ,
(c) $6^{n}+3 \cdot 11^{n}+1$ is divisible by 5 ,
(d) $4^{n}+6 n-1$ is divisible by 9 ,
(e) $5^{n}+12 n+15$ is divisible by 16 ,
(f) $3^{n}-2 n^{2}+7$ is divisible by 8 .
7. Solve, exactly, the equations below.
(a) $\sin x=\frac{\sqrt{3}}{2}$ in $[0,2 \pi]$.
(b) $\cos x=-\frac{1}{2}$ in $[-\pi, 2 \pi]$.
(c) $\tan x=1$ in $[0,3 \pi]$.
(d) $\sin x=1$ in $\left[-120^{\circ}, 240^{\circ}\right]$.
(e) $\cos x=\frac{\sqrt{2}}{2}$ in $\left[-300^{\circ}, 30^{\circ}\right]$.
(f) $\tan x=-\sqrt{3}$ in $\left[-180^{\circ}, 360^{\circ}\right]$.
(g) $\sin (2 x)=\frac{1}{2}$ in $[0,2 \pi]$.
(h) $\cos \left(\frac{1}{2} x\right)=-1$ in $[-2 \pi, 3 \pi]$.
(i) $\sin \left(\frac{2}{3} x\right)=-\frac{1}{2}$ in $\left[-180^{\circ}, 180^{\circ}\right]$.
(j) $\cos (3 x)=\frac{\sqrt{2}}{2}$ in $\left[0^{\circ}, 360^{\circ}\right]$.
