List 0. Binomial expansion and trigonometric equations.

1. Expand and simplify

- (a) $(2x+3)^4$, (b) $\left(3x - \frac{1}{3x^2}\right)^5$, (c) $\left(\sqrt{y} + \frac{2}{y}\right)^6$, (d) $(a-1)^8$.
- 2. In the expansion of $\left(x^3 \frac{2}{x}\right)^{36}$ find
 - (a) the coefficient of x^{16} ,
 - (b) the coefficient of $\frac{1}{m^{12}}$,
 - (c) the constant term (independent of x).
- 3. In the expansion of $(1+3x)^n$ the coefficient of x^2 is 90. Find n.
- 4. In the expansion of $(1 + ax)^n$ the first three terms are 1, 24x and $252x^2$. Find a and n.
- 5. Find an approximation of 1.02^{38} by taking the sum of the first four terms in the expansion of $(1+0.02)^{38}$. Find the percentage error of this approximation.
- 6. Using the expansion of $(1 + x)^n$ show that for all positive natural n
 - (a) $8^n + 6$ is divisible by 7,
 - (b) $4^n + 2$ is divisible by 6,
 - (c) $6^n + 3 \cdot 11^n + 1$ is divisible by 5,
 - (d) $4^n + 6n 1$ is divisible by 9,
 - (e) $5^n + 12n + 15$ is divisible by 16,
 - (f) $3^n 2n^2 + 7$ is divisible by 8.
- 7. Solve, exactly, the equations below.

(a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 in $[0, 2\pi]$.
(b) $\cos x = -\frac{1}{2}$ in $[-\pi, 2\pi]$.
(c) $\tan x = 1$ in $[0, 3\pi]$.
(d) $\sin x = 1$ in $[-120^{\circ}, 240^{\circ}]$.
(e) $\cos x = \frac{\sqrt{2}}{2}$ in $[-300^{\circ}, 30^{\circ}]$.
(f) $\tan x = -\sqrt{3}$ in $[-180^{\circ}, 360^{\circ}]$.
(g) $\sin(2x) = \frac{1}{2}$ in $[0, 2\pi]$.
(h) $\cos(\frac{1}{2}x) = -1$ in $[-2\pi, 3\pi]$.
(i) $\sin(\frac{2}{3}x) = -\frac{1}{2}$ in $[-180^{\circ}, 180^{\circ}]$.
(j) $\cos(3x) = \frac{\sqrt{2}}{2}$ in $[0^{\circ}, 360^{\circ}]$.

Krzysztof "El Profe" Michalik