Math-algebra. Linear equations

1. Let $a, b, \alpha \in \mathbf{R}$ be fixed parameters. Using Cramer's rule solve the systems below.
a) $\left\{\begin{array}{l}6 x+25 y=-1 \\ -x+y=2\end{array}\right.$
b) $\left\{\begin{array}{l}x \cos \alpha-y \sin \alpha=a \\ x \sin \alpha+y \cos \alpha=b\end{array}\right.$
c) $\left\{\begin{array}{l}\frac{1-a^{2}}{1+a^{2}} x+\frac{2 a}{1+a^{2}} y=1 \\ \frac{2 a}{1+a^{2}} x-\frac{1-a^{2}}{1+a^{2}} y=a\end{array}\right.$
d) $\left\{\begin{aligned} \frac{1}{1+a^{2}} x+\frac{a}{1+a^{2}} y & =-a \\ \frac{a}{1+a^{2}} x+\frac{a^{2}}{1+a^{2}} y & =1\end{aligned}\right.$
e) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2 \\ x+3 y+8 z=1\end{array}\right.$
f) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2 \\ 2 x+3 y+4 z=6\end{array}\right.$
2. Solve, when possible, the systems from the previous task using the inverse matrix method.
3. Solve the systems below using the method of elimination.
a) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2 \\ x+3 y+8 z=1\end{array}\right.$
b) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2 \\ 2 x+3 y+4 z=6\end{array}\right.$
c) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2 \\ 2 x+3 y+4 z=1\end{array}\right.$
d) $\left\{\begin{array}{l}x+2 y+z=-1 \\ x+y+3 z=2\end{array}\right.$
e) $\left\{\begin{array}{l}x-2 y+z=-4 \\ x+y+z=1 \\ 2 x-3 y+5 z=10 \\ 5 x-6 y+18 z=19\end{array}\right.$
f) $\left\{\begin{array}{l}x+2 y+z+t=7 \\ 2 x-y-z+4 t=2 \\ 5 x+5 y+2 z+7 t=1\end{array}\right.$
g) $\left\{\begin{array}{l}x+2 y+z+t=7 \\ 2 x-y-z+4 t=-20 \\ 5 x+5 y+2 z+7 t=1\end{array}\right.$ h) $\left\{\begin{array}{l}x-2 y+z-t=-4 \\ 2 x-y-z+t=1 \\ x+y+2 z-t=5 \\ x+y-z+t=4\end{array}\right.$ i) $\left\{\begin{array}{l}x+2 y+3 z+t=1 \\ 2 x+4 y-z+2 t=2 \\ 3 x+6 y+10 z+3 t=3 \\ x+y+z+t=0\end{array}\right.$
j) $\left\{\begin{array}{l}3 x+y-2 t=1 \\ 5 x+2 y+2 z-t=5 \\ x-y-2 t=-5 \\ 5 x+y+z-3 t=0 \\ -7 x-3 y+z+5 t=-4\end{array}\right.$
k) $\left\{\begin{array}{l}x-y+z-2 s+t=0 \\ 3 x+4 y-z+s+3 t=1 \\ x-8 y+5 z-9 s+t=-1\end{array}\right.$
1) $\left\{\begin{array}{l}x-3 y+z-2 s+t=-5 \\ 2 x-6 y-4 s+t=-10 \\ 2 z+t=0 \\ -2 x+6 y+2 z+4 s=10 \\ -2 x+6 y+4 z+4 s+t=10 \\ -x+3 y+z+2 s=5\end{array}\right.$
4. Solve the system $\left\{\begin{array}{l}x+2 y+z=-1 \\ x-y+3 z=0 \\ 2 x+3 y-z=1\end{array}\right.$ using
a) the inverse matrix method,
b) Cramer's rule,
c) the elimination.
5. Find all $p \in \mathbf{R}$ for which the systems below have unique solutions. For other values of p solve the systems.
a) $\left\{\begin{array}{l}x+2 y+z=-1 \\ y+3 z=2 \\ x+3 y+p z=0\end{array}\right.$
b) $\left\{\begin{array}{l}(p+5) x+2 y+4 z=2 \\ 4 x+p y+2 z=2 \\ 3 x+y+2 z=1\end{array}\right.$
c) $\left\{\begin{array}{l}x+4 y-2 z=-p \\ 3 x+5 y-p z=3 \\ p x+3 p y+z=p\end{array}\right.$
6. Determine for which values of $p \in \mathbf{R}$ the systems below are solvable and solve them.
a) $\left\{\begin{array}{l}x+y+z=1 \\ 2 x-y+3 z=5 \\ x-2 y+2 z=p\end{array}\right.$
b) $\left\{\begin{array}{l}x+2 y+z+t=3 \\ 2 x+3 y-5 z+t=p \\ -x-y+6 z=1\end{array}\right.$
c) $\left\{\begin{array}{l}x+2 y-3 z=2 \\ -3 x+y-z=p \\ -2 x+3 y-4 z=p^{2}\end{array}\right.$
7. Consider a system of linear equations written as $A X=B$. Let $A \neq \mathbf{0}$ be square. A popular error is the following statement. If all the determinants related to the system (that is, $\operatorname{det} A$ and the determinants associated with the variables) are equal to 0 then the system has infinitely solutions.
Give an example of a system that disproves this statement.
8. Consider a system of linear equations written as $A X=B$. Let $A \neq \mathbf{0}$ be square and of dimension 2. Using Kronecker-Capelli theorem prove that in this special case the statement from the previous task is true. That is, if all three determinants related to the system are 0 then there are infinitely many solutions.
9. Prove that if a system of linear equations has more variables than equations then is cannot have a unique solution.

Krzysztof "El Profe" Michalik

