Math-algebra. Vector geometry

- 1. Using vectors show that a quadrilateral whose diagonals bisect each other is a parallelogram.
- 2. Let \vec{u} be the position vector of point A and \vec{v} be the position vector of point B. Consider a point that divides the line segment AB in the ratio p:q, with p,q > 0. That is, such P from this line segment for which $\frac{|AP|}{|BP|} = \frac{p}{q}$. Find the position vector of P.
- 3. Show that the midpoints of the sides of any quadrilateral are vertices of some parallelogram.
- 4. Investigate which \vec{u} and \vec{v} listed below are
 - parallel,
 - perpendicular.
 - (a) $\vec{u} = [12, -15]$ and $\vec{v} = [-8, 10]$.
 - (b) $\vec{u} = [1, a]$ and $\vec{v} = [-a, 1], a \in \mathbf{R}$.
 - (c) $\vec{u} = [e, e^2, e^3]$ and $\vec{v} = [e^4, e^5, e^6]$.
 - (d) $\vec{u} = [6, 7, -1]$ and $\vec{v} = [-1, 1, 1]$.
 - (e) $\vec{u} = [3, -6, -1]$ and $\vec{v} = [-1, 2, -3]$.

5. Let $\vec{u} = [2, 2, -1]$. Find

- (a) the unit vector in the direction of \vec{u} ,
- (b) a vector whose length is 4 and whose direction is opposite to the direction of \vec{u} .
- 6. Take two vectors $\vec{u}, \vec{v} \in \mathbf{R}^n$ such $\vec{u}, \vec{v} \neq \vec{0}$ and they are neither parallel nor perpendicular. An important thing is to decompose \vec{u} into two components parallel to \vec{v} and perpendicular to \vec{v} . This means that

 $\vec{u} = \vec{u}_{\vec{v}} + \vec{u}_{\perp \vec{v}}$, where $\vec{u}_{\vec{v}} \parallel \vec{v}$ and $\vec{u}_{\perp \vec{v}} \perp \vec{v}$.

 \vec{v} plays the role of a reference direction and $\overrightarrow{u_{\vec{v}}}$ is called the projection of \vec{u} onto \vec{v} .

- (a) Show that $\overrightarrow{u_{\vec{v}}} = \frac{\vec{u} \circ \vec{v}}{|\vec{v}|^2} \cdot \vec{v}$ and, hence, $\overrightarrow{u_{\perp \vec{v}}} = \vec{u} \frac{\vec{u} \circ \vec{v}}{|\vec{v}|^2} \cdot \vec{v}$.
- (b) Find this decomposition for
 - i. $\vec{u} = [1, -1]$ if $\vec{v} = [2, 3]$, ii. $\vec{u} = [1, 2, 3]$ if $\vec{v} = [-1, 1, 2]$.
- 7. Find the exact value of the angle between \vec{u} and \vec{v} .
 - (a) $\vec{u} = [2, 1]$ and $\vec{v} = [-3, 1]$. (b) $\vec{u} = 2\vec{i} - 3\vec{j}$ and $\vec{v} = 5\vec{i} + 2\vec{j}$. (c) $\vec{u} = [1, 0, 1]$ and $\vec{v} = [1, 1, 0]$. (d) $\vec{u} = 2\vec{i} - \vec{j} + \vec{k}$ and $\vec{v} = -\vec{i} - 3\vec{k}$.
- 8. Let A = (1, 2). Find all points B from the line x = -1 for which the angle between \overrightarrow{OA} and \overrightarrow{OB} is equal to 45° .
- 9. (*) Let $\vec{u} = [1, 1, p]$ and $\vec{v} = [-1, p, 1]$, $p \in \mathbf{R}$. Find all possible angles between \vec{u} and \vec{v} . Give the answer in a form $[\alpha, \beta]$, where α and β are given exactly, in degrees.

10. Let $\vec{u}, \vec{v} \in \mathbf{R}^3$ and let α be the angle between \vec{u} and \vec{v} .

- (a) When $0 < \alpha < \pi$, applying the cosine rule to a suitable triangle, prove, formally, that $\vec{u} \circ \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \alpha$.
- (b) Complete the proof for $\alpha = 0$ and for $\alpha = \pi$.
- 11. Find all unit vectors that are perpendicular both to $\vec{u} = [1, 2, 1]$ and $\vec{v} = [1, 1, -1]$ using
 - (a) scalar product,
 - (b) vector product.
- 12. ABCD is a parallelogram such that A = (1, 0, 2), B = (2, 3, 5), C = (1, 2, 7) and $\overrightarrow{AB} = \overrightarrow{CD}$. Find the coordinates of D and the area of the parallelogram.
- 13. $\vec{u} = [1, 2, 1], \vec{v} = [1, 1, -1]$ and $\vec{w} = [-1, 2, 5]$ start at the same point A and span a parallelepiped. Find its volume and the height between the walls that are spanned by \vec{u} and \vec{v}
- 14. Let A = (1, 0, 2), B = (2, 3, 5) and C = (1, 2, 7). Find all points D from the Z-axis for which
 - (a) the volume of tetrahedron ABCD is equal to 3,
 - (b) A, B, C, D are co-planar.

15. Prove, formally, that
$$(\vec{u} \times \vec{v}) \circ \vec{w} = \det \begin{bmatrix} \vec{u} \\ \vec{v} \\ \vec{w} \end{bmatrix}$$
 for $\vec{u}, \vec{v}, \vec{w} \in \mathbf{R}^3$.

- 16. (*) Let $\vec{u}, \vec{v} \in \mathbf{R^3}$ be non-zero vectors.
 - (a) Show that $|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 \cdot |\vec{v}|^2 (\vec{u} \circ \vec{v})^2$.
 - (b) Hence prove that $|\vec{u} \times \vec{v}| = |\vec{u}| \cdot |\vec{v}| \cdot \sin \alpha$, where α is the angle between \vec{u} and \vec{v} .
- 17. Let $A, B, C \in \mathbf{R}^2$ be vertices of a triangle. Show that if each coordinate of these points is a rational number then the area of the triangle is also rational.

Krzysztof "El Profe" Michalik