Math-algebra. Lines and planes.

1. Find the cartesian and the parametric form of a line that
(a) joins the origin $(0,0)$ to $P=(1,2)$,
(b) joins $A=(2,3)$ to $B=(-1,5)$,
(c) passes through $P=(3,2)$ and is parallel to the line $y=2 x$,
(d) passes through $P=(3,2)$ and is perpendicular to the line $y=3 x-1$.
2. Find the distance from the line $y=2 x+1$ to
(a) the point $P=(3,2)$,
(b) the line $-4 x+2 y+5=0$,
(c) the line $8 x+9 y+7=0$.
3. Find all lines that
(a) pass through the origin and their distance to the point $P=(1,2)$ is equal to 1 ,
(b) their distance to the line $y=2 x+1$ is equal to 4 .
4. Find the cartesian and the parametric form of a plane that
(a) is parallel to $\vec{u}=[1,2,3]$ and to $\vec{v}=[0,5,2]$,
(b) passes through $A=(2,3,5), B=(1,7,0)$ and $C=(4,8,1)$,
(c) passes through the origin and is perpendicular to the line that joins $A=(1,2,3)$ to $B=(7,2,0)$,
(d) passes through $P=(1,-1,3)$ and includes the Z-axis.
5. Find the cartesian and the parametric form of a line that
(a) joins the origin $(0,0,0)$ to $P=(1,2,4)$,
(b) joins $A=(1,2,3)$ to $B=(-1,0,5)$,
(c) passes through $P=(7,3,2)$ and is perpendicular to the $Y Z$ plane,
(d) is the common part of the planes $\Pi_{1}: x-y+z+1=0$ and $\Pi_{2}: 2 x-y+3 z=0$,
(e) passes through $P=(3,2,-1)$ and is parallel to the Z-axis.
6. An object is moving in 3 dimensions with a constant velocity $\vec{v}=[2,-2,1]$, where each coordinate of \vec{v} is given in m / s. Let t represent time, measured in seconds. When $t=0$ the object is at $P_{0}=(1,6,-7)$, where each coordinate is given in meters.
(a) Find, in parametric form, the trajectory of the object as a function of time t.
(b) Find the position of the object

- at $t=5$,
- 2 seconds before it reached P_{0}.
(c) Find the position of the object when it meets the $X Z$ plane.
(d) Investigate whether the object reaches the points $A=(17,-10,1)$ and $B=(11,-4,-1)$.
(e) Find the speed of this motion and the distance the object covers within 4 seconds.

7. Describe mutual position of the planes below.
(a) $\Pi_{1}: 3 x-2 y+3 z+1=0$ and $\Pi_{2}: x-y-z-7=0$,
(b) $\Pi_{1}: 6 x+2 y-4 z-10=0$ and $\Pi_{2}:-3 x-y+2 z+5=0$,
(c) $\Pi_{1}: x-2 y+3 z=0$ and $\Pi_{2}: 0.1 x-0.2 y+0.3 z+1=0$,
(d) $\Pi_{1}: x-2 y-3 z-4=0$ and $\Pi_{2}:\left\{\begin{array}{l}x=3-s+t \\ y=2+s-t \\ z=1+2 s+t\end{array}, s, t \in \mathbf{R}\right.$,
(e) $\Pi_{1}: x-2 y-3 z-4=0$ and $\Pi_{2}:\left\{\begin{array}{l}x=1+s+t \\ y=2 s-t \\ z=-1-s+t\end{array}, s, t \in \mathbf{R}\right.$,
(f) $\Pi_{1}: x-2 y-3 z-4=0$ and $\Pi_{2}:\left\{\begin{array}{l}x=2-s-t \\ y=-4-2 s+t, s, t \in \mathbf{R}, \\ z=7+s-t\end{array}\right.$
(g) $\Pi_{1}:\left\{\begin{array}{l}x=2+s+t \\ y=4-s \\ z=5 s+3 t\end{array}, s, t \in \mathbf{R}\right.$, and $\Pi_{2}:\left\{\begin{array}{l}x=2+a+b \\ y=1-a-b \\ z=2-3 a+2 b\end{array}, a, b \in \mathbf{R}\right.$,
(h) $\Pi_{1}:\left\{\begin{array}{l}x=s+t \\ y=s+3 t \\ z=-s-2 t\end{array}, s, t \in \mathbf{R}\right.$, and $\Pi_{2}:\left\{\begin{array}{l}x=a-3 b \\ y=-a-b, a, b \in \mathbf{R}, \\ z=2 b\end{array}\right.$
(i) $\Pi_{1}:\left\{\begin{array}{l}x=2+3 s+5 t \\ y=4+s+t \\ z=-1-2 s-3 t\end{array}, s, t \in \mathbf{R}\right.$, and $\Pi_{2}:\left\{\begin{array}{l}x=5-4 a+b \\ y=1-2 a-3 b \\ z=3 a+b\end{array}, a, b \in \mathbf{R}\right.$,
(j) $\Pi_{1}: A x+B y+C z+D=0$ and $\Pi_{2}: 2 A x+2 B y+2 C z+E=0$,
where $A, B, C, D, E \in \mathbf{R}$ and $A \neq 0 \vee B \neq 0 \vee C \neq 0$,
(k) $\Pi_{1}: x+B y+C z+D=0$ and $\Pi_{2}:-2 x+3 y-z+1=0$, where $B, C, D \in \mathbf{R}$,
(1) $\Pi_{1}: A x+z+5=0$ and $\Pi_{2}: x+B y-z+1=0$, where $A, B, \in \mathbf{R}$,
(m) $\Pi_{1}: A x+B y+D=0$ and $\Pi_{2}: x-z+E=0$, where $A, B, D, E \in \mathbf{R}$ and $A \neq 0 \vee B \neq 0$.
8. Describe mutual position of the lines below. When they intersect at one point find its coordinates.
(a) $L_{1}:\left\{\begin{array}{l}x=1-s \\ y=2+s \\ z=3+2 s\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=2 t \\ y=3-2 t \\ z=1-4 t\end{array}, t \in \mathbf{R}\right.$,
(b) $L_{1}: \frac{x-2}{3}=\frac{y-3}{-2}=\frac{z+1}{5}$ and $L_{2}: \frac{x-5}{-3}=\frac{y-1}{2}=\frac{z-4}{-5}$,
(c) $L_{1}:\left\{\begin{array}{l}x=t \\ y=2-t \\ z=1+t\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x+y+z-5=0 \\ 2 y-z+3=0\end{array}\right.$,
(d) $L_{1}:\left\{\begin{array}{l}x=2-s \\ y=3+s \\ z=4\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=3+t \\ y=2+t \\ z=-3+t\end{array}, t \in \mathbf{R}\right.$,
(e) $L_{1}: x=y=2 z$ and $L_{2}:\left\{\begin{array}{l}x=1+2 t \\ y=-1+2 t, t \in \mathbf{R}, \\ z=t\end{array}\right.$
(f) $L_{1}:\left\{\begin{array}{l}x=3-t \\ y=2+t \\ z=1+2 t\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x-y+z-2=0 \\ x+y-5=0\end{array}\right.$,
(g) $L_{1}:\left\{\begin{array}{l}x=2+s \\ y=3-s \\ z=4 s\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=1+2 t \\ y=1+t \\ z=5-t\end{array}, t \in \mathbf{R}\right.$,
(h) $L_{1}:\left\{\begin{array}{l}x+2 y-3 z+1=0 \\ x+y+z-1=0\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x-y+3=0 \\ y+2 z+1=0\end{array}\right.$,
(i) $L_{1}:\left\{\begin{array}{l}x=1-s \\ y=2+s \\ z=3+a s\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=2 t \\ y=3-2 t \\ z=1-4 t\end{array}, t \in \mathbf{R}\right.$, and $a \in \mathbf{R}$,
(j) $L_{1}:\left\{\begin{array}{l}x=3-t \\ y=2+t \\ z=a+2 t\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x-y+z-2=0 \\ x+y-5=0\end{array}\right.$, and $a \in \mathbf{R}$,
(k) $L_{1}:\left\{\begin{array}{l}x=2-s \\ y=3+s \\ z=a\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=3+t \\ y=2+t \\ z=-3+t\end{array}, t \in \mathbf{R}\right.$, and $a \in \mathbf{R}$,
9. Describe mutual position of the lines and the planes below. When they have common points find their coordinates.
(a) $L:\left\{\begin{array}{l}x=1-t \\ y=2+t \\ z=3 t\end{array}, t \in \mathbf{R}\right.$, and $\Pi: 3 x+2 y-5 z+1=0$,
(b) $L:\left\{\begin{array}{l}x=2 t \\ y=1-t, t \in \mathbf{R}, \text { and } \Pi: x+y-z-2=0, \\ z=3+t\end{array}\right.$
(c) $L:\left\{\begin{array}{l}x=-3+2 t \\ y=1-t \\ z=3+t\end{array} \quad, t \in \mathbf{R}\right.$, and $\Pi:-x-y+z+9=0$,
(d) $L:\left\{\begin{array}{l}x+2 y-z+1=0 \\ 2 x+y-3=0\end{array}\right.$ and $\Pi: 2 x+3 y-z=0$,
(e) $L:\left\{\begin{array}{l}2 x-3 y+z=0 \\ 3 x-2 y+2 z=0\end{array}\right.$ and $\Pi: x+y+z+1=0$,
(f) $L:\left\{\begin{array}{l}2 x-3 y+z+1=0 \\ 3 x-2 y+2 z+2=0\end{array}\right.$ and $\Pi: x+y+z+1=0$,
(g) $L:\left\{\begin{array}{l}x=1-t \\ y=2+t \\ z=a t\end{array}, t \in \mathbf{R}, a \in \mathbf{R}\right.$, and $\Pi: 3 x+2 y-5 z+1=0$,
(h) $L:\left\{\begin{array}{l}x=a+2 t \\ y=1-t \\ z=3+t\end{array} \quad, t \in \mathbf{R}, a \in \mathbf{R}\right.$, and $\Pi: x+y-z-2=0$,
(i) $L:\left\{\begin{array}{l}2 x-3 y+z+1=0 \\ 3 x-2 y+2 z+2=0\end{array}\right.$ and $\Pi: a x+y+z+1=0, a \in \mathbf{R}$.
10. Find the distance between
(a) $\Pi_{1}: x-y+2 z+1=0$ and $\Pi_{2}: 2 x-2 y+4 z+7=0$,
(b) $\Pi_{1}: x+2 y+3 z=0$ and $\Pi_{2}:\left\{\begin{array}{l}x=1-s+t \\ y=2-s \\ z=2 s+3 t\end{array}, s, t \in \mathbf{R}\right.$,
(c) $\Pi: x+y+z+1=0$ and $L:\left\{\begin{array}{l}2 x-3 y+z=0 \\ 3 x-2 y+2 z=0\end{array}\right.$,
(d) $\Pi: x+y-z-2=0$ and $L:\left\{\begin{array}{l}x=2 t \\ y=1-t \\ z=3+t\end{array}, t \in \mathbf{R}\right.$,
(e) $\Pi: 3 x-2 y+z+1=0$ and $L:\left\{\begin{array}{l}x=2-t \\ y=3+t \\ z=4 t\end{array}, t \in \mathbf{R}\right.$.
11. Consider two planes $-\Pi_{1}: 2 x+3 z+6 z+1=0$ and $\Pi_{2}: A x+B y+z+D=0$, where $A, B, D \in \mathbf{R}$.

Find the values of A, B, D for which the distance between the planes is equal to 2 .
12. Consider the plane $\Pi: x-y+2 z+1=0$ and the line $L:\left\{\begin{array}{l}x=1+t \\ y=2-t \\ z=a+b t\end{array}, t \in \mathbf{R}\right.$, and $a, b \in \mathbf{R}$. Find the values of a and b for which
(a) L is included in Π,
(b) the distance from L to Π is equal to 1 ,
(c) the only common point of L and Π is $P=(2,1,-1)$.
13. Find the distance between
(a) $P=(2,1,-1)$ and $L:\left\{\begin{array}{l}x=3-t \\ y=2 t \\ z=1+t\end{array}, t \in \mathbf{R}\right.$.
(b) $L_{1}:\left\{\begin{array}{l}x=1-s \\ y=2+s \\ z=3+2 s\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=2 t \\ y=3-2 t \\ z=1-4 t\end{array}, t \in \mathbf{R}\right.$,
(c) $L_{1}:\left\{\begin{array}{l}x=2-s \\ y=3+s \\ z=4\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=3+t \\ y=2+t \\ z=-3+t\end{array}, t \in \mathbf{R}\right.$,
(d) $L_{1}: x=y=2 z$ and $L_{2}:\left\{\begin{array}{l}x=1+2 t \\ y=-1+2 t \\ z=t\end{array}, t \in \mathbf{R}\right.$,
(e) $L_{1}:\left\{\begin{array}{l}x+2 y-3 z+1=0 \\ x+y+z-1=0\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x-y+3=0 \\ y+2 z+1=0\end{array}\right.$,
14. Find the projection of $P=(1,2,5)$ onto
(a) $\Pi: x+2 y-2 z+1=0$,
(b) $\Pi:\left\{\begin{array}{l}x=1-s+t \\ y=2+t \\ z=3-s-t\end{array}, s, t \in \mathbf{R}\right.$,
(c) $L:\left\{\begin{array}{l}x=t \\ y=2 t \\ z=3 t\end{array}, t \in \mathbf{R}\right.$,
(d) $L:\left\{\begin{array}{l}x+y+z+1=0 \\ x-y+2 z=0\end{array}\right.$
15. Find the exact value of the angle between
(a) $L_{1}: x=y=2 z$ and $L_{2}:\left\{\begin{array}{l}x=1+2 t \\ y=-1+2 t, t \in \mathbf{R}, \\ z=t\end{array}\right.$
(b) $L_{1}:\left\{\begin{array}{l}x=2-s \\ y=3+s \\ z=4\end{array}, s \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x=3+t \\ y=2+t \\ z=-3+t\end{array}, t \in \mathbf{R}\right.$,
(c) $L_{1}:\left\{\begin{array}{l}x=t \\ y=2-t \\ z=1+t\end{array}, t \in \mathbf{R}\right.$, and $L_{2}:\left\{\begin{array}{l}x+y+z-5=0 \\ 2 y-z+3=0\end{array}\right.$,
(d) $\Pi_{1}: 3 x-2 y+3 z+1=0$ and $\Pi_{2}: x-y-z-7=0$,
(e) $\Pi_{1}: x-2 y+3 z=0$ and $\Pi_{2}: 0.1 x-0.2 y+0.3 z+1=0$,
(f) $\Pi_{1}: x-2 y-3 z-4=0$ and $\Pi_{2}:\left\{\begin{array}{l}x=3-s+t \\ y=2+s-t \\ z=1+2 s+t\end{array}, s, t \in \mathbf{R}\right.$,
(g) $L:\left\{\begin{array}{l}x=1-t \\ y=2+t \\ z=3 t\end{array}, t \in \mathbf{R}\right.$, and $\Pi: 3 x+2 y-5 z+1=0$,
(h) $L:\left\{\begin{array}{l}x=2 t \\ y=1-t, t \in \mathbf{R}, \text { and } \Pi: x+y-z-2=0, ~ \\ z=3+t\end{array}\right.$
(i) $L: x=y=z$, and $\Pi: x+y+z-2=0$.

