Mathematical logic and sets

- 1. Show that the following formulas are laws of logic.
 - (a) $[\neg (p \lor q)] \Leftrightarrow [(\neg p) \land (\neg q)].$
 - (b) $[\neg (p \land q)] \Leftrightarrow [(\neg p) \lor (\neg q)].$
 - (c) $[\neg(p \Leftrightarrow q)] \Leftrightarrow [((\neg p) \land q) \lor ((\neg q) \land p)].$
 - (d) $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r).$
- 2. Write the negation of the following statements in the way that the final answer does not contain any negation sign.
 - (a) $x = 2 \lor x = 3$.
 - (b) $x \leq 2 \lor x \geq 3$.
 - (c) $x \ge 2 \land x < 3$.
 - (d) $n \in \mathbf{N} \land n \ge 13 \land n < 20.$
 - (e) $4 < x < 7 \lor x \le 10$.
 - (f) $k \in \mathbf{Z} \land (k \leq -6 \lor k \geq 25).$
 - (g) $x > 3 \Rightarrow x^2 > 9$.
 - (h) $x^2 < 4 \Leftrightarrow -2 < x < 2$.
 - (i) I'll eat cake but I'll not drink tea.
 - (j) If f is an increasing function then 2f is also an increasing function.
 - (k) I'll help my brother iff I have some free time.
- 3. Using quantifiers, operations of logic, symbols and numbers write the statements below.
 - (a) $a_n = \frac{n+1}{n+2}$ is increasing.
 - (b) $d_n = \frac{2^n}{n^2}$ is non-increasing from the 2nd element.
 - (c) Equation $x^3 3x + 8 = 0$ has a real solution.
 - (d) Equation $x^3 3x + 8 = 0$ has exactly one solution.
 - (e) The system

$$\begin{cases} x + 2y = -1 \\ x + y = 2 \\ x + 3y = 1 \end{cases}, x, y \in \mathbf{R},$$
has a solution.

(f) The system

$$\begin{cases} x + 2y = -1 \\ x + y = 2 \\ x + 3y = 1 \end{cases}, x, y \in \mathbf{R},$$
has no solution.

- (g) 14371 is a prime number.
- (h) $\mathbf{R} \setminus \{0\}$ is the set of values of $f(x) = \frac{1}{x-1}, x \neq 1$.
- (i) 2 is the smallest element of a sequence $a_n = n! + 1$.
- (j) The greatest common divisor of 8, 12 and 22 is 2.
- (k) The least common multiple of 3, 4 and 6 is 12.

4. Write the negation of the following theorems in the way that the final answer does not contain any negation sign.

- (k) $\forall \epsilon > 0 \ \exists n_0 \in \mathbf{N}^+ \ \forall n \in \mathbf{N}^+, n \ge n_0 \ |a_n L| \le \epsilon.$ (this means that a number *L* is a limit of a sequence a_n).
- 5. Disprove the following theorems by giving adequate counterexamples.
 - (a) $\forall n \in \mathbf{N} \ 2^n \ge n^2$.
 - (b) $\forall n \in \mathbf{N}^+ \ 2^n + 3$ is a prime number.
 - (c) $\forall n \in \mathbf{N} \ n^6 n$ is divisible by 6.
 - (d) $\forall x \in \mathbf{R} \ 9x^2 + 12x + 4 > 0.$

(e)
$$\forall x_1, x_2 \in \mathbf{R} \setminus \{0\} \ x_2 > x_1 \Rightarrow \frac{1}{x_2} < \frac{1}{x_1}$$

- (f) $\forall x, y > 0 \ xy > 1 \Rightarrow (x > 1 \land y > 1).$
- (g) $\forall x \in \mathbf{R} \exists y \in \mathbf{R} \ xy \neq 0.$
- (h) If a_n is an arithmetic sequence then $|a_n|$ is also an arithmetic sequence.
- (i) If $|a_n|$ is a geometric sequence then a_n is also a geometric sequence.
- (j) If $a_n > 0$ for every $n \in \mathbf{N}^+$ and $\lim_{n \to \infty} a_n$ exists then $\lim_{n \to \infty} a_n > 0$.
- (k) If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ then $\lim_{n \to \infty} (a_n b_n) = 0$.
- (1) If $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} b_n$ does not exist then $\lim_{n \to \infty} (a_n \cdot b_n)$ is 0 or it does not exist
- 6. Prove by contradiction the following theorems.
 - (a) $\sqrt{5}$ is irrational.
 - (b) $\log_2 3$ is irrational.
 - (c) If $x \in \mathbf{Q} \setminus \{0\}$ and $y \notin \mathbf{Q}$ then $xy \notin \mathbf{Q}$.
 - (d) $A \subset B \Rightarrow A \setminus B = \emptyset$.
 - (e) If $\lim_{n \to \infty} a_n = \infty$ or $-\infty$ and $\lim_{n \to \infty} b_n$ does not exist then $\lim_{n \to \infty} \frac{b_n}{a_n}$ is 0 or it does not exist.

- 7. Prove the following theorems by any method.
 - (a) Let $x, y > 0, y \neq 1$. Then $\log_y x \in \mathbf{Q} \iff \exists a > 0, a \neq 1 \ \exists p \in \mathbf{Q} \ \exists q \in \mathbf{Q} \setminus \{0\} \ x = a^p, y = a^q.$
 - (b) a_n is a arithmetic sequence iff $\exists A, B \in \mathbf{R} \ \forall n \in \mathbf{N}^+ \ a_n = An + B.$
 - (c) If a_n is a geometric sequence then $|a_n|$ is also a geometric sequence.
 - (d) Let f be an even or an odd function. Then
 - if x_0 is its root then $-x_0$ is also its root,
 - if it is monotonic in some interval (a, b), a < b, then it is monotonic in (-b, -a),
 - if it has a turning point at $x = x_0$ then it has a turning point at $x = -x_0$,
 - if $x = x_0$ is its asymptote then $x = -x_0$ is also its asymptote.
- 8. Prove by induction that for all suitable natural n
 - (a) $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$, (b) $1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2 = \frac{1}{2}(-1)^{n-1}n(n+1)$, (c) $4^n + 2$ is divisible by 3, (d) $n^7 - n$ is divisible by 7, (e) $n! > n^2$ for $n \ge 4$, (c) $\frac{1}{2} - \frac{1}{2} + \frac{1}$
 - (f) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 \frac{1}{n}.$

Krzysztof "El Profe" Michalik