## Mathematical logic and sets

1. Show that the following formulas are laws of logic.
(a) $[\neg(p \vee q)] \Leftrightarrow[(\neg p) \wedge(\neg q)]$.
(b) $[\neg(p \wedge q)] \Leftrightarrow[(\neg p) \vee(\neg q)]$.
(c) $[\neg(p \Leftrightarrow q)] \Leftrightarrow[((\neg p) \wedge q) \vee((\neg q) \wedge p)]$.
(d) $[(p \Rightarrow q) \wedge(q \Rightarrow r)] \Rightarrow(p \Rightarrow r)$.
2. Write the negation of the following statements in the way that the final answer does not contain any negation sign.
(a) $x=2 \vee x=3$.
(b) $x \leq 2 \vee x \geq 3$.
(c) $x \geq 2 \wedge x<3$.
(d) $n \in \mathbf{N} \wedge n \geq 13 \wedge n<20$.
(e) $4<x<7 \vee x \leq 10$.
(f) $k \in \mathbf{Z} \wedge(k \leq-6 \vee k \geq 25)$.
(g) $x>3 \Rightarrow x^{2}>9$.
(h) $x^{2}<4 \Leftrightarrow-2<x<2$.
(i) I'll eat cake but I'll not drink tea.
(j) If $f$ is an increasing function then $2 f$ is also an increasing function.
(k) I'll help my brother iff I have some free time.
3. Using quantifiers, operations of logic, symbols and numbers write the statements below.
(a) $a_{n}=\frac{n+1}{n+2}$ is increasing.
(b) $d_{n}=\frac{2^{n}}{n^{2}}$ is non-increasing from the 2 nd element.
(c) Equation $x^{3}-3 x+8=0$ has a real solution.
(d) Equation $x^{3}-3 x+8=0$ has exactly one solution.
(e) The system
$\left\{\begin{array}{l}x+2 y=-1 \\ x+y=2 \\ x+3 y=1\end{array}, x, y \in \mathbf{R}\right.$,
has a solution.
(f) The system

$$
\left\{\begin{array}{l}
x+2 y=-1 \\
x+y=2 \\
x+3 y=1
\end{array}, x, y \in \mathbf{R}\right.
$$

has no solution.
(g) 14371 is a prime number.
(h) $\mathbf{R} \backslash\{0\}$ is the set of values of $f(x)=\frac{1}{x-1}, x \neq 1$.
(i) 2 is the smallest element of a sequence $a_{n}=n!+1$.
(j) The greatest common divisor of 8,12 and 22 is 2 .
(k) The least common multiple of 3,4 and 6 is 12 .
4. Write the negation of the following theorems in the way that the final answer does not contain any negation sign.
(a) $\forall x \in \mathbf{R} \quad x^{2}+2 x<0$.
(b) $\forall x \in \mathbf{Z} \quad 2^{x} \neq 3$.
(c) $\exists x \in \mathbf{R} x^{2}+2 x<0$.
(d) $\exists x \in \mathbf{Z} \quad 2^{x} \neq 3$.
(e) $\forall x \in D_{f} \quad f(-x)=f(x)$
(this means that $f$ is an even function over its domain $D_{f}$ ).
(f) $\forall x_{1}, x_{2}>0 \quad x_{2}>x_{1} \Rightarrow \frac{1}{\sqrt{x_{2}}}>\frac{1}{\sqrt{x_{1}}}$
(this means that $y=\frac{1}{\sqrt{x}}$ is decreasing in $(0, \infty)$.
(g) $\forall x \in \mathbf{R} \exists y \in \mathbf{R} x^{2}+y^{3}=0$.
(h) $\exists y \in \mathbf{R} \forall x \in \mathbf{R} x^{2}+y^{3}=0$.
(i) $\forall y \in \mathbf{R} \exists x \in \mathbf{R} y=x^{4}-x$
(this means that the set of values of $y=x^{4}-x$ is $\mathbf{R}$ ).
(j) $\exists M \in \mathbf{R} \forall n \in \mathbf{N}^{+} a_{n} \leq M$,
(this means that $M$ is an upper boundary of a sequence $a_{n}$.
(k) $\forall \epsilon>0 \exists n_{0} \in \mathbf{N}^{+} \forall n \in \mathbf{N}^{+}, n \geq n_{0}\left|a_{n}-L\right| \leq \epsilon$.
(this means that a number $L$ is a limit of a sequence $a_{n}$ ).
5. Disprove the following theorems by giving adequate counterexamples.
(a) $\forall n \in \mathbf{N} \quad 2^{n} \geq n^{2}$.
(b) $\forall n \in \mathbf{N}^{+} 2^{n}+3$ is a prime number.
(c) $\forall n \in \mathbf{N} n^{6}-n$ is divisible by 6 .
(d) $\forall x \in \mathbf{R} 9 x^{2}+12 x+4>0$.
(e) $\forall x_{1}, x_{2} \in \mathbf{R} \backslash\{0\} \quad x_{2}>x_{1} \Rightarrow \frac{1}{x_{2}}<\frac{1}{x_{1}}$.
(f) $\forall x, y>0 \quad x y>1 \Rightarrow(x>1 \wedge y>1)$.
(g) $\forall x \in \mathbf{R} \exists y \in \mathbf{R} \quad x y \neq 0$.
(h) If $a_{n}$ is an arithmetic sequence then $\left|a_{n}\right|$ is also an arithmetic sequence.
(i) If $\left|a_{n}\right|$ is a geometric sequence then $a_{n}$ is also a geometric sequence.
(j) If $a_{n}>0$ for every $n \in \mathbf{N}^{+}$and $\lim _{n \rightarrow \infty} a_{n}$ exists then $\lim _{n \rightarrow \infty} a_{n}>0$.
(k) If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\infty$ then $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.
(l) If $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}$ does not exist then $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)$ is 0 or it does not exist
6. Prove by contradiction the following theorems.
(a) $\sqrt{5}$ is irrational.
(b) $\log _{2} 3$ is irrational.
(c) If $x \in \mathbf{Q} \backslash\{0\}$ and $y \notin \mathbf{Q}$ then $x y \notin \mathbf{Q}$.
(d) $A \subset B \Rightarrow A \backslash B=\emptyset$.
(e) If $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $-\infty$ and $\lim _{n \rightarrow \infty} b_{n}$ does not exist then $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}$ is 0 or it does not exist.
7. Prove the following theorems by any method.
(a) Let $x, y>0, y \neq 1$. Then
$\log _{y} x \in \mathbf{Q} \Leftrightarrow \exists a>0, a \neq 1 \exists p \in \mathbf{Q} \exists q \in \mathbf{Q} \backslash\{0\} \quad x=a^{p}, y=a^{q}$.
(b) $a_{n}$ is a arithmetic sequence iff

$$
\exists A, B \in \mathbf{R} \forall n \in \mathbf{N}^{+} \quad a_{n}=A n+B .
$$

(c) If $a_{n}$ is a geometric sequence then $\left|a_{n}\right|$ is also a geometric sequence.
(d) Let $f$ be an even or an odd function. Then

- if $x_{0}$ is its root then $-x_{0}$ is also its root,
- if it is monotonic in some interval $(a, b), a<b$, then it is monotonic in $(-b,-a)$,
- if it has a turning point at $x=x_{0}$ then it has a turning point at $x=-x_{0}$,
- if $x=x_{0}$ is its asymptote then $x=-x_{0}$ is also its asymptote.

8. Prove by induction that for all suitable natural $n$
(a) $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$,
(b) $1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{n-1} n^{2}=\frac{1}{2}(-1)^{n-1} n(n+1)$,
(c) $4^{n}+2$ is divisible by 3 ,
(d) $n^{7}-n$ is divisible by 7 ,
(e) $n!>n^{2}$ for $n \geq 4$,
(f) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.
