
Theorem and proofs

1. Write the negation of the following statements in the way that the final answer does not contain any
negation sign.

1. x = 2 ∨ x = 3.

2. x = 5 ∨ x = 8 ∨ x = 100.

3. x ≤ 2 ∨ x ≥ 3.

4. x < 12 ∨ x > 53.

5. x ≥ 2 ∧ x < 3.

6. −5 < x ≤ 0.

7. n ∈ N ∧ n ≥ 13 ∧ n < 20.

8. (2 + 2 · 2 = 8) ∧ (5 is a prime number).

9. 4 < x < 7 ∨ x ≤ 10.

10. (x < −
√

2 ∨ x > 3π) ∧ x ≥ −2.

11. k ∈ Z ∧ (k ≤ −6 ∨ k ≥ 25).

12. x2 > 9⇒ x > 3.

13. x > 3⇒ x2 > 9.

14. x2 < 4⇔ x < 2.

15. x2 < 4⇔ −2 < x < 2.

16. I’ll buy a car or a motorcycle.

17. I’ll eat cake but I’ll not drink tea.

18. If f is an increasing function then 2f is also an increasing function.

19. If tomorrow is sunny I’ll go for a walk.

20. f is an increasing function iff 2f is an increasing function.

21. I help my brother iff I have some free time.

2. Using quantifiers, logical operations, symbols and numbers write the statements below.

1. an =
n+ 1

n+ 2
is increasing.

2. bn =
n!

50n
is decreasing.

3. cn =
7n

n!
is non-decreasing from the 6th element.

4. dn =
2n

n2
is non-increasing from the 2nd element.

5. Equation x3 − 3x+ 8 = 0 has a real solution.

6. Equation x3 − 3x+ 8 = 0 has exactly one solution.

7. Equation x4 + 4x+ 8 = 0 has no real solution.

8. Equation x4 + 4x+ 8 = 0 has exactly one positive solution.

9. The system
x+ 2y = −1
x+ y = 2
x+ 3y = 1

, x, y ∈ R,

has a solution.
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10. The system{
x+ 2y + z = −1
x+ y + 3z = 2

, x, y, z ∈ R,

has a solution.

11. The system
x+ 2y = −1
x+ y = 2
x+ 3y = 1

, x, y ∈ R,

has no solution.

12. The system
x+ 2y + z = −1
x+ y + 3z = 2
x+ 3y + 8z = 1

, x, y, z ∈ R,

has no solution.

13. 2017 is a prime number.

14. 14371 is a prime number.

15. R \ {0} is the set of values of f(x) =
1

x− 1
, x 6= 1.

16. [0,∞) is the set of values of f(x) =
√
x, x ≥ 0.

17. 2 is the smallest element of a sequence an = n! + 1.

18. 3
√

3 is the greatest element of a sequence bn = n
√
n.

19. The greatest common divisor of 8, 12 and 22 is 2.

20. The greatest common divisor of 8, 12 and 27 is 1.

21. The least common multiple of 8, 12 and 16 is 48.

22. The least common multiple of 3, 4 and 6 is 12.

3. Write the negation of the following theorems in the way that the final answer does not contain any
negation sign.

1. ∀x ∈ R x2 + 2x < 0.

2. ∀n ∈ N n2 + 2n ≥ 0.

3. ∀x ∈ Z 2x 6= 3.

4. ∀x ∈ Q 3x 6= 4.

5. ∃x ∈ R x2 + 2x < 0.

6. ∃n ∈ N n2 + 2n ≥ 0.

7. ∃x ∈ Z 2x 6= 3.

8. ∃x ∈ Q 3x 6= 4.

9. ∀x ∈ Df f(−x) = f(x)

(this means that f is an even function over its domain Df ).

10. ∀x1, x2 ∈ R x2 > x1 ⇒ x32 > x31
(this means that y = x3 is increasing in R.

11. ∀x1, x2 > 0 x2 > x1 ⇒
1
√
x2

>
1
√
x1

(this means that y =
1√
x

is decreasing in (0,∞).

12. ∀x ∈ R ∃y ∈ R x2 + y3 = 0.

13. ∃y ∈ R ∀x ∈ R x2 + y3 = 0.
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14. ∀x ∈ R ∃n ∈ N nx = 0.

15. ∃n ∈ N ∀x ∈ R nx = 0.

16. ∀y ∈ R ∃x ∈ R y = x4 − x
(this means that the set of values of y = x4 − x is R).

17. ∀y ∈ [−1, 1] ∃x ∈ R y = sinx

(this means that the set of values of y = sinx is [−1, 1]).

18. ∃M ∈ R ∀n ∈ N+ an ≤M ,

(this means that M is an upper boundary of a sequence an.

19. ∃n ∈ R ∀n ∈ N+ bn ≥ m.

(this means that m is a lower boundary of a sequence bn.

20. ∀ε > 0 ∃n0 ∈ N+ ∀n ∈ N+, n ≥ n0 |an − L| ≤ ε.

(this means that a number L is a limit of a sequence an).

21. ∀r > 0 ∃n0 ∈ N+ ∀n ∈ N+, n ≥ n0 an > r.

(this means that lim
n→∞

an =∞).

4. Disprove the following theorems by giving adequate counterexamples.

1. ∀n ∈ N 2n ≥ n2.

2. ∀n ∈ N, n ≥ 3 3n > n!.

3. ∀n ∈ N+ 2n + 3 is a prime number.

4. ∀n ∈ N+ n2 + n+ 1 is a prime number.

5. ∀n ∈ N n6 − n is divisible by 6.

6. ∀n ∈ N n15 − 15n is divisible by 15.

7. ∀x ∈ R 9x2 + 12x+ 4 > 0.

8. ∀x ∈ R |6x2 + 7x+ 1| > 0.

9. ∀x1, x2 ∈ R \ {0} x2 > x1 ⇒
1

x2
<

1

x1
.

10. ∀x1, x2 ∈ R x42 = x41 ⇒ x2 = x1.

11. ∀x, y > 0 xy > 1⇒ (x > 1 ∧ y > 1).

12. ∀x, y, a, b ∈ R (x > a ∧ y > b)⇒ xy > ab.

13. ∀x ∈ R ∃y ∈ R xy 6= 0.

14. ∀x ∈ R ∃y ∈ R x+ y2 = 0.

15. If an is an arithmetic sequence then |an| is also an arithmetic sequence.

16. If |an| is an arithmetic sequence then an is also an arithmetic sequence.

17. If |an| is a geometric sequence then an is also a geometric sequence.

18. If an > 0 for every n ∈ N+ and lim
n→∞

an exists then lim
n→∞

an > 0.

19. If bn < 1 for every n ∈ N+ and lim
n→∞

bn exists then lim
n→∞

bn < 1.

20. If an has no upper boundary then lim
n→∞

an =∞.

21. If an has no lower boundary then lim
n→∞

an = −∞.

22. If lim
n→∞

an = lim
n→∞

bn =∞ then lim
n→∞

(an − bn) = 0.

23. If lim
n→∞

an = lim
n→∞

bn =∞ then lim
n→∞

an
bn

= 1.

24. If lim
n→∞

an = 0 and lim
n→∞

bn =∞ then lim
n→∞

(an · bn) is 0 or ∞.

25. If lim
n→∞

an = 0 and lim
n→∞

bn does not exist then lim
n→∞

(an · bn) is 0 or it does not exist

(compare it to a similar theorem in task 5).

26. ∀x, y ∈ R bx+ yc = bxc+ byc, where b c denotes the ’floor’ function.
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5. Prove by contradiction the following theorems.

1.
√

5 is irrational.

2. 3
√

2 is irrational.

3. 5
√

40 is irrational.

4. log2 3 is irrational.

5. log50 40 is irrational.

6. log0.7 5 is irrational.

7. If x ∈ Q and y /∈ Q then x− y /∈ Q.

8. If x ∈ Q \ {0} and y /∈ Q then xy /∈ Q.

9. A ⊂ B ⇒ A \B = ∅.
10. A \B = ∅ ⇒ A ⊂ B. Therefore, A ⊂ B ⇔ A \B = ∅.
11. A ⊂ B ⇔ A ∩B = A.

12. If lim
n→∞

an =∞ or −∞ and lim
n→∞

bn does not exist then lim
n→∞

bn
an

is 0 or it does not exist.

13. If lim
n→∞

an is 0+ or 0− and lim
n→∞

bn does not exist then lim
n→∞

(an · bn) is 0 or it does not exist

(compare it to a similar theorem in task 4).

6. Prove the following theorems by any method.

1. Let x, y > 0, y 6= 1. Then

logy x ∈ Q ⇔ ∃a > 0, a 6= 1 ∃p ∈ Q ∃q ∈ Q \ {0} x = ap, y = aq.

2. an is a arithmetic sequence iff

∃A,B ∈ R ∀n ∈ N+ an = An+B.

3. an is a geometric sequence iff

(∀n ∈ N+, n ≥ 2 an = 0) ∨ (∃A ∈ R ∃r ∈ R \ {0} ∀n ∈ N+ an = A · rn).

4. Sn = a1 + a2 + ...+ an is an arithmetic series iff

∃A,B ∈ R ∀n ∈ N+ Sn = An2 +Bn.

5. Sn = a1 + a2 + ...+ an is a geometric series iff

( (∀n ∈ N+ Sn = na1) ∨ (∃A ∈ R ∃r ∈ R \ {1} ∀n ∈ N+ Sn = A− A · rn) ).

6. If an is a geometric sequence then |an| is also a geometric sequence.

7. Let a > 0, a 6= 1. Then if an is an arithmetic sequence then aan is a geometric sequence.

8. Let a > 0, a 6= 1. Then if an is a positive geometric sequence then loga an is an arithmetic
sequence.

9. For any determinant of dimension 3 the Sarrus rule is equivalent to the so-called Laplace expansion
with respect to the first row, that is,∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a ·
∣∣∣∣e f
h i

∣∣∣∣− b · ∣∣∣∣d f
g i

∣∣∣∣+ c ·
∣∣∣∣d e
g h

∣∣∣∣.
10. Consider a system of two linear equations with two variables x and y, written in the matrix form

A ·X = B. Then for this special case

det(A) = det(Ax) = det(Ay) = 0⇔ the system has infinitely many solutions

(compare it to the general case of n equations with n variables).

11. ∀x 6= 0 sgn(x) =
x

|x|
=
|x|
x

.

12. ∀x ∈ R ∀n ∈ Z bx+ nc = bxc+ n, where b c denotes the ’floor’ function.
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13. Let f be an even or an odd function. Then

• if x0 is its root then −x0 is also its root,

• if it is monotonic in some interval (a, b), a < b, then it is monotonic in (−b,−a),

• if it has a turning point at x = x0 then it has a turning point at x = −x0,
• if x = x0 is its asymptote then x = −x0 is also its asymptote.

14. If f is an odd function and f(0) exists then f(0) = 0.

15. The only function that is both even and odd is constantly equal to 0.

16. Let f , g be two functions. Then

• if f and g are even then f + g and f − g are even,

• if f and g are odd then f + g and f − g are odd,

• if f and g are even or odd then f · g,
f

g
and

g

f
are even,

• if f is even and g is odd then f · g,
f

g
and

g

f
are odd,

17. Consider a composite function h = f ◦ g. Then

• if g is even then h is even,

• if g is odd and f is even then h is even,

• if g is odd and f is odd then h is odd,

• if g is periodic then h is periodic.

18. Every function f which satisfies the condition (x ∈ Df ⇒ −x ∈ Df ) can be written uniquely as
a sum of two functions of which one is even and the second one is odd.

19. If f is an even function and y = ax+ b is its asymptote at +∞ (or −∞) then y = −ax+ b is its
asymptote at at −∞ (or +∞).

20. If f is an odd function and y = ax + b is its asymptote at +∞ (or −∞) then y = −ax− b is its
asymptote at at −∞ (or +∞).

21. If for some a, b ∈ R, lim
x→∞

(f(x)− ax) = b then y = ax+ b is an asymptote of f at ∞.

Analogously at −∞.

22. If y = ax + b is an asymptote of f then y = (A + a)x + (B + b) is an asymptote of g, where
g(x) = f(x) + Ax+B.

Tasks 4, 5 and 6 are going to be developed throught the whole course.
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