Theorem and proofs

1. Write the negation of the following statements in the way that the final answer does not contain any negation sign.

1. $x = 2 \lor x = 3$. 2. $x = 5 \lor x = 8 \lor x = 100$. 3. $x \leq 2 \lor x \geq 3$. 4. $x < 12 \lor x > 53$. 5. $x \ge 2 \land x < 3$. 6. -5 < x < 0. 7. $n \in \mathbf{N} \land n > 13 \land n < 20.$ 8. $(2+2\cdot 2=8) \wedge (5 \text{ is a prime number}).$ 9. $4 < x < 7 \lor x \le 10$. 10. $(x < -\sqrt{2} \lor x > 3\pi) \land x > -2.$ 11. $k \in \mathbf{Z} \land (k \leq -6 \lor k \geq 25).$ 12. $x^2 > 9 \Rightarrow x > 3$. 13. $x > 3 \Rightarrow x^2 > 9$. 14. $x^2 < 4 \Leftrightarrow x < 2$. 15. $x^2 < 4 \Leftrightarrow -2 < x < 2$. 16. I'll buy a car or a motorcycle.

- 17. I'll eat cake but I'll not drink tea.
- 18. If f is an increasing function then 2f is also an increasing function.
- 19. If tomorrow is sunny I'll go for a walk.
- 20. f is an increasing function iff 2f is an increasing function.
- 21. I help my brother iff I have some free time.
- 2. Using quantifiers, logical operations, symbols and numbers write the statements below.

- 5. Equation $x^3 3x + 8 = 0$ has a real solution.
- 6. Equation $x^3 3x + 8 = 0$ has exactly one solution.
- 7. Equation $x^4 + 4x + 8 = 0$ has no real solution.
- 8. Equation $x^4 + 4x + 8 = 0$ has exactly one positive solution.
- 9. The system

$$\begin{cases} x + 2y = -1\\ x + y = 2\\ x + 3y = 1 \end{cases}, x, y \in \mathbf{R},$$

has a solution.

10. The system

 $\begin{cases} x+2y+z=-1\\ x+y+3z=2 \end{cases}, x, y, z \in \mathbf{R}, \\ \text{has a solution.} \end{cases}$

11. The system

$$\begin{cases} x+2y=-1\\ x+y=2\\ x+3y=1\\ \text{has no solution.} \end{cases}, x,y \in \mathbf{R},$$

12. The system

 $\left\{ \begin{array}{l} x+2y+z=-1\\ x+y+3z=2\\ x+3y+8z=1\\ \text{has no solution.} \end{array} \right.,\, x,y,z\in \mathbf{R},$

- 13. 2017 is a prime number.
- 14. 14371 is a prime number.

15.
$$\mathbf{R} \setminus \{0\}$$
 is the set of values of $f(x) = \frac{1}{x-1}, x \neq 1$.

- 16. $[0,\infty)$ is the set of values of $f(x) = \sqrt{x}, x \ge 0$.
- 17. 2 is the smallest element of a sequence $a_n = n! + 1$.
- 18. $\sqrt[3]{3}$ is the greatest element of a sequence $b_n = \sqrt[n]{n}$.
- 19. The greatest common divisor of 8, 12 and 22 is 2.
- 20. The greatest common divisor of 8, 12 and 27 is 1.
- 21. The least common multiple of 8, 12 and 16 is 48.
- 22. The least common multiple of 3, 4 and 6 is 12.
- 3. Write the negation of the following theorems in the way that the final answer does not contain any negation sign.

1.
$$\forall x \in \mathbf{R} \ x^2 + 2x < 0.$$

2. $\forall n \in \mathbf{N} \ n^2 + 2n \ge 0.$
3. $\forall x \in \mathbf{Z} \ 2^x \ne 3.$
4. $\forall x \in \mathbf{Q} \ 3^x \ne 4.$
5. $\exists x \in \mathbf{R} \ x^2 + 2x < 0.$
6. $\exists n \in \mathbf{N} \ n^2 + 2n \ge 0.$
7. $\exists x \in \mathbf{Z} \ 2^x \ne 3.$
8. $\exists x \in \mathbf{Q} \ 3^x \ne 4.$
9. $\forall x \in D_f \ f(-x) = f(x)$
(this means that f is an even function over its domain D_f).
10. $\forall x_1, x_2 \in \mathbf{R} \ x_2 > x_1 \Rightarrow x_2^3 > x_1^3$
(this means that $y = x^3$ is increasing in \mathbf{R} .
11. $\forall x_1, x_2 > 0 \ x_2 > x_1 \Rightarrow \frac{1}{\sqrt{x_2}} > \frac{1}{\sqrt{x_1}}$
(this means that $y = \frac{1}{\sqrt{x}}$ is decreasing in $(0, \infty)$.
12. $\forall x \in \mathbf{R} \ \exists y \in \mathbf{R} \ x^2 + y^3 = 0.$
13. $\exists y \in \mathbf{R} \ \forall x \in \mathbf{R} \ x^2 + y^3 = 0.$

- 14. $\forall x \in \mathbf{R} \exists n \in \mathbf{N} \ nx = 0.$
- 15. $\exists n \in \mathbf{N} \ \forall x \in \mathbf{R} \ nx = 0.$
- 16. $\forall y \in \mathbf{R} \ \exists x \in \mathbf{R} \ y = x^4 x$ (this means that the set of values of $y = x^4 - x$ is \mathbf{R}).
- 17. $\forall y \in [-1, 1] \; \exists x \in \mathbf{R} \; y = \sin x$ (this means that the set of values of $y = \sin x$ is [-1, 1]).
- 18. $\exists M \in \mathbf{R} \ \forall n \in \mathbf{N}^+ \ a_n \leq M$, (this means that M is an upper boundary of a sequence a_n .
- 19. $\exists n \in \mathbf{R} \ \forall n \in \mathbf{N}^+ \ b_n \ge m.$ (this means that *m* is a lower boundary of a sequence b_n .
- 20. $\forall \epsilon > 0 \ \exists n_0 \in \mathbf{N}^+ \ \forall n \in \mathbf{N}^+, n \ge n_0 \ |a_n L| \le \epsilon.$ (this means that a number *L* is a limit of a sequence a_n).
- 21. $\forall r > 0 \ \exists n_0 \in \mathbf{N}^+ \ \forall n \in N^+, n \ge n_0 \ a_n > r.$ (this means that $\lim_{n \to \infty} a_n = \infty$).
- 4. Disprove the following theorems by giving adequate counterexamples.
 - 1. $\forall n \in \mathbf{N} \ 2^n \ge n^2$.
 - 2. $\forall n \in \mathbf{N}, n \ge 3$ $3^n > n!$.
 - 3. $\forall n \in \mathbf{N}^+ \ 2^n + 3$ is a prime number.
 - 4. $\forall n \in \mathbf{N}^+$ $n^2 + n + 1$ is a prime number.
 - 5. $\forall n \in \mathbf{N} \ n^6 n$ is divisible by 6.
 - 6. $\forall n \in \mathbf{N} \ n^{15} 15n$ is divisible by 15.
 - 7. $\forall x \in \mathbf{R} \ 9x^2 + 12x + 4 > 0.$
 - 8. $\forall x \in \mathbf{R} ||6x^2 + 7x + 1|| > 0.$
 - 9. $\forall x_1, x_2 \in \mathbf{R} \setminus \{0\} \quad x_2 > x_1 \Rightarrow \frac{1}{x_2} < \frac{1}{x_1}.$
 - 10. $\forall x_1, x_2 \in \mathbf{R} \quad x_2^4 = x_1^4 \Rightarrow x_2 = x_1.$
 - 11. $\forall x, y > 0 \quad xy > 1 \Rightarrow (x > 1 \land y > 1).$
 - 12. $\forall x, y, a, b \in \mathbf{R} \ (x > a \land y > b) \Rightarrow xy > ab.$
 - 13. $\forall x \in \mathbf{R} \ \exists y \in \mathbf{R} \ xy \neq 0.$
 - 14. $\forall x \in \mathbf{R} \ \exists y \in \mathbf{R} \ x + y^2 = 0.$
 - 15. If a_n is an arithmetic sequence then $|a_n|$ is also an arithmetic sequence.
 - 16. If $|a_n|$ is an arithmetic sequence then a_n is also an arithmetic sequence.
 - 17. If $|a_n|$ is a geometric sequence then a_n is also a geometric sequence.
 - 18. If $a_n > 0$ for every $n \in \mathbf{N}^+$ and $\lim_{n \to \infty} a_n$ exists then $\lim_{n \to \infty} a_n > 0$.
 - 19. If $b_n < 1$ for every $n \in \mathbf{N}^+$ and $\lim_{n \to \infty} b_n$ exists then $\lim_{n \to \infty} b_n < 1$.
 - 20. If a_n has no upper boundary then $\lim a_n = \infty$.
 - 21. If a_n has no lower boundary then $\lim_{n \to \infty} a_n = -\infty$.
 - 22. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ then $\lim_{n \to \infty} (a_n b_n) = 0$.
 - 23. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.
 - 24. If $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} b_n = \infty$ then $\lim_{n \to \infty} (a_n \cdot b_n)$ is 0 or ∞ .
 - 25. If $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} b_n$ does not exist then $\lim_{n \to \infty} (a_n \cdot b_n)$ is 0 or it does not exist (compare it to a similar theorem in task 5).
 - 26. $\forall x, y \in \mathbf{R} \ \lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$, where $\lfloor \rfloor$ denotes the 'floor' function.

- 5. Prove by contradiction the following theorems.
 - 1. $\sqrt{5}$ is irrational.
 - 2. $\sqrt[3]{2}$ is irrational.
 - 3. $\sqrt[5]{40}$ is irrational.
 - 4. $\log_2 3$ is irrational.
 - 5. $\log_{50} 40$ is irrational.
 - 6. $\log_{0.7} 5$ is irrational.
 - 7. If $x \in \mathbf{Q}$ and $y \notin \mathbf{Q}$ then $x y \notin \mathbf{Q}$.
 - 8. If $x \in \mathbf{Q} \setminus \{0\}$ and $y \notin \mathbf{Q}$ then $xy \notin \mathbf{Q}$.
 - 9. $A \subset B \Rightarrow A \setminus B = \emptyset$.
 - 10. $A \setminus B = \emptyset \implies A \subset B$. Therefore, $A \subset B \iff A \setminus B = \emptyset$.
 - 11. $A \subset B \Leftrightarrow A \cap B = A$.
 - 12. If $\lim_{n \to \infty} a_n = \infty$ or $-\infty$ and $\lim_{n \to \infty} b_n$ does not exist then $\lim_{n \to \infty} \frac{b_n}{a_n}$ is 0 or it does not exist.
 - 13. If $\lim_{n\to\infty} a_n$ is 0^+ or 0^- and $\lim_{n\to\infty} b_n$ does not exist then $\lim_{n\to\infty} (a_n \cdot b_n)$ is 0 or it does not exist (compare it to a similar theorem in task 4).
- 6. Prove the following theorems by any method.
 - 1. Let $x, y > 0, y \neq 1$. Then $\log_y x \in \mathbf{Q} \iff \exists a > 0, a \neq 1 \ \exists p \in \mathbf{Q} \ \exists q \in \mathbf{Q} \setminus \{0\} \ x = a^p, y = a^q.$
 - 2. a_n is a arithmetic sequence iff $\exists A, B \in \mathbf{R} \ \forall n \in \mathbf{N}^+ \ a_n = An + B.$
 - 3. a_n is a geometric sequence iff $(\forall n \in \mathbf{N}^+, n \ge 2 \ a_n = 0) \lor (\exists A \in \mathbf{R} \exists r \in \mathbf{R} \setminus \{0\} \forall n \in \mathbf{N}^+ \ a_n = A \cdot r^n).$
 - 4. $S_n = a_1 + a_2 + \ldots + a_n$ is an arithmetic series iff $\exists A, B \in \mathbf{R} \ \forall n \in \mathbf{N}^+ \ S_n = An^2 + Bn.$
 - 5. $S_n = a_1 + a_2 + \ldots + a_n$ is a geometric series iff ($(\forall n \in \mathbf{N}^+ \ S_n = na_1) \lor (\exists A \in \mathbf{R} \ \exists r \in \mathbf{R} \setminus \{1\} \ \forall n \in \mathbf{N}^+ \ S_n = A - A \cdot r^n)$).
 - 6. If a_n is a geometric sequence then $|a_n|$ is also a geometric sequence.
 - 7. Let $a > 0, a \neq 1$. Then if a_n is an arithmetic sequence then a^{a_n} is a geometric sequence.
 - 8. Let $a > 0, a \neq 1$. Then if a_n is a positive geometric sequence then $\log_a a_n$ is an arithmetic sequence.
 - 9. For any determinant of dimension 3 the Sarrus rule is equivalent to the so-called Laplace expansion with respect to the first row, that is,

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

10. Consider a system of two linear equations with two variables x and y, written in the matrix form $A \cdot X = B$. Then for this special case

 $det(A) = det(A_x) = det(A_y) = 0 \Leftrightarrow$ the system has infinitely many solutions (compare it to the general case of *n* equations with *n* variables).

- 11. $\forall x \neq 0 \quad \text{sgn}(x) = \frac{x}{|x|} = \frac{|x|}{x}.$
- 12. $\forall x \in \mathbf{R} \ \forall n \in \mathbf{Z} \ \lfloor x + n \rfloor = \lfloor x \rfloor + n$, where $\lfloor \ \rfloor$ denotes the 'floor' function.

- 13. Let f be an even or an odd function. Then
 - if x_0 is its root then $-x_0$ is also its root,
 - if it is monotonic in some interval (a, b), a < b, then it is monotonic in (-b, -a),
 - if it has a turning point at $x = x_0$ then it has a turning point at $x = -x_0$,
 - if $x = x_0$ is its asymptote then $x = -x_0$ is also its asymptote.
- 14. If f is an odd function and f(0) exists then f(0) = 0.
- 15. The only function that is both even and odd is constantly equal to 0.
- 16. Let f, g be two functions. Then
 - if f and g are even then f + g and f g are even,
 - if f and g are odd then f + g and f g are odd,
 - if f and g are even or odd then $f \cdot g$, $\frac{f}{g}$ and $\frac{g}{f}$ are even,
 - if f is even and g is odd then $f \cdot g$, $\frac{f}{g}$ and $\frac{g}{f}$ are odd,
- 17. Consider a composite function $h = f \circ g$. Then
 - if g is even then h is even,
 - if g is odd and f is even then h is even,
 - if g is odd and f is odd then h is odd,
 - if g is periodic then h is periodic.
- 18. Every function f which satisfies the condition $(x \in D_f) \Rightarrow -x \in D_f)$ can be written uniquely as a sum of two functions of which one is even and the second one is odd.
- 19. If f is an even function and y = ax + b is its asymptote at $+\infty$ (or $-\infty$) then y = -ax + b is its asymptote at $at -\infty$ (or $+\infty$).
- 20. If f is an odd function and y = ax + b is its asymptote at $+\infty$ (or $-\infty$) then y = -ax b is its asymptote at at $-\infty$ (or $+\infty$).
- 21. If for some $a, b \in \mathbf{R}$, $\lim_{x \to \infty} (f(x) ax) = b$ then y = ax + b is an asymptote of f at ∞ . Analogously at $-\infty$.
- 22. If y = ax + b is an asymptote of f then y = (A + a)x + (B + b) is an asymptote of g, where g(x) = f(x) + Ax + B.

Tasks 4, 5 and 6 are going to be developed throught the whole course.