## Mathematical Analysis - List 15

1. Let $f(x, y)=\frac{x^{2}}{x^{2}+y}, x^{2}+y \neq 0$. Examine what happens when $(x, y) \rightarrow(0,0)$ along the curve $y=k x^{2}$ for different values of $k \neq-1$ and show that $f$ does not have a limit at $(0,0)$.
2. Let $f(x, y)=\left\{\begin{array}{cll}\frac{x y}{x^{2}+y^{2}} & \text { for } & (x, y) \neq(0,0) \\ 0 & \text { for } & (x, y)=(0,0)\end{array}\right.$.
a) Show that $f(0, y)$ and $f(x, 0)$ are each continuous functions of one variable.
b) Show that rays emanating from the origin are contained in contours of $f$.
c) Is $f$ continuous at $(0,0)$ ?
3. Let $f(x, y)=\left\{\begin{array}{cll}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { for } & (x, y) \neq(0,0) \\ 0 & \text { for } & (x, y)=(0,0)\end{array}\right.$. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.
4. Explain why the following function is not continuous along the line $y=0$. (At any point of the line?)
$f(x, y)=\left\{\begin{array}{cc}1-x, & y \geqslant 0, \\ -2, & y<0 .\end{array}\right.$
5. Determine whether there is a value for $c$ making the function continuous everywhere. If so, find it. If not, explain why not.
a) $f(x, y)= \begin{cases}c+y, & x \leqslant 3, \\ 5-y, & x>3,\end{cases}$
b) $f(x, y)= \begin{cases}c+y, & x \leqslant 3, \\ 5-x, & x>3 .\end{cases}$
6. Determine whether there is a value for $a$ making the function continuous at $(0,0)$. If so, find it. If not, explain why not.
a) $f(x, y)=\left\{\begin{array}{cc}\frac{\sin x y}{y} & \text { when } y \neq 0, \\ a & \text { when } y=0,\end{array}\right.$
b) $f(x, y)=\left\{\begin{array}{cll}\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1} & \text { for } & (x, y) \neq(0,0) \\ a & \text { for } & (x, y)=(0,0) .\end{array}\right.$
