Let us suppose that for the input $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ we expect the network to output $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Initial weights:

$$
W=\left[\begin{array}{ccc}
0.1 & -0.2 & 0.3 \\
-0.4 & 0.5 & -0.6
\end{array}\right], \quad V=\left[\begin{array}{ccc}
0.15 & -0.25 & 0.35 \\
-0.45 & 0.55 & -0.65
\end{array}\right]
$$

Input (the last coordinate is always -1 and it encodes the bias):

$$
X^{(1)}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

The first layer (W) gives

$$
n e t_{1}=W \cdot X^{(1)}=\left[\begin{array}{c}
-0.2 \\
0.2
\end{array}\right]
$$

after applying the function $f(x)=\left(1+e^{-x}\right)^{-1}$ element-wise

$$
Y^{(1)}=\left[\begin{array}{c}
f(-0.2) \\
f(0.2)
\end{array}\right]=\left[\begin{array}{l}
0.450166 \\
0.549834
\end{array}\right],
$$

and after appending -1 we obtain the input for the second layer:

$$
X^{(2)}=\left[\begin{array}{c}
0.450166 \\
0.549834 \\
-1
\end{array}\right]
$$

The second layer (V) gives

$$
\text { net }_{2}=V \cdot X^{(2)}=\left[\begin{array}{c}
-0.4199336 \\
0.749834
\end{array}\right]
$$

after applying the function $f(x)=\left(1+e^{-x}\right)^{-1}$ element-wise we obtain the output of the network:

$$
Y^{(2)}=\left[\begin{array}{c}
f(-0.4199336) \\
f(0.749834)
\end{array}\right]=\left[\begin{array}{c}
0.39653264 \\
0.67914253
\end{array}\right] .
$$

We expected to obtain $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so the error is $b^{(2)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]-Y^{(2)}=\left[\begin{array}{c}0.60346736 \\ -0.67914253\end{array}\right]$ From there we obtain the delta signal by multiplying elements by the value of f^{\prime} in corresponding points net t_{2}; it holds $f^{\prime}(x)=f(x)(1-f(x))$, therefore

$$
\delta^{(2)}=\left[\begin{array}{c}
0.60346736 \cdot f^{\prime}(-0.4199336) \\
-0.67914253 \cdot f^{\prime}(0.749834)
\end{array}\right]=\left[\begin{array}{c}
0.14440642 \\
-0.147990559
\end{array}\right]
$$

We adjust the weights V, taking the learning rate equal to $c=0.1$,

$$
\tilde{V}=V+c \delta^{(2)} \cdot\left(X^{(2)}\right)^{T}=V+c\left[\begin{array}{ccc}
0.06500686 & 0.07939956 & -0.1444 \\
-0.06662 & -0.08137 & 0.14799
\end{array}\right]=\left[\begin{array}{ccc}
0.156500686 & -0.24206 & 0.33556 \\
-0.456662 & 0.541863 & -0.6352
\end{array}\right]
$$

We calculate the error for the first layer as follows

$$
b^{(1)}=V^{T} \cdot \delta^{(2)}=\left[\begin{array}{c}
0.08825672 \\
-0.11749641 \\
0.14673611
\end{array}\right] .
$$

The last coordinate (0.14673611) is redundant (it corresponds to the constant input -1 , which encodes the bias) - we omit it, and we multiply the remaining ones by the values of f^{\prime} at the points net t_{1}, to obtain the delta signal for the first layer,

$$
\delta^{(1)}=\left[\begin{array}{l}
0.08825672 \cdot f^{\prime}(-0.2) \\
-0.11749641 \cdot f^{\prime}(0.2)
\end{array}\right]=\left[\begin{array}{c}
0.021845 \\
-0.0290823
\end{array}\right]
$$

We adjust the weights W, taking again the learning rate equal to $c=0.1$,

$$
\tilde{W}=W+c \delta^{(1)} \cdot\left(X^{(1)}\right)^{T}=\left[\begin{array}{ccc}
0.1021845 & -0.2 & 0.2978155 \\
-0.40290823 & 0.5 & -0.59709177
\end{array}\right]
$$

We obtain a network with modified weights \tilde{W} i \tilde{V}, and repeat...

Notes:

(1) The above equalities are not exact, some rounding errors are possible. For the function $f(x)=\left(1+e^{-x}\right)^{-1}$ it holds $f^{\prime}(x)=f(x)(1-f(x))$ (as one may easily verify). If we took $\tilde{f}(x)=f(\lambda x)$, then $\tilde{f}^{\prime}(x)=\lambda \tilde{f}(x)(1-\tilde{f}(x))$. Nevertheless the factor λ may be omitted in the formulae by incorporating it into the learning rate c.

