
We consider a neural network with two layers, with two neurons each. Below, gray
circles denote arti�cially added inputs, which are always 1 and encode the bias.

1 = X
[1]
0

X
[1]
1

X
[1]
2

a
[2]
1

a
[2]
2

Let us suppose that for the input

[
1
0

]
we expect the network to output

[
1
0

]
.

Initial weights:

W [1] =

[
0.1 −0.2 0.3
−0.4 0.5 −0.6

]
, W [2] =

[
0.15 −0.25 0.35
−0.45 0.55 −0.65

]
Input (the �rst coordinate is always 1 and encodes the bias):

X [1] =

11
0

 .
Forward pass. The �rst layer (W [1]) gives

net[1] = W [1] ·X [1] =

[
−0.1
0.1

]
,

after applying the function ϕ(x) = (1 + e−x)−1 element-wise we obtain the output of the
�rst layer,

a[1] =

[
ϕ(−0.1)
ϕ(0.1)

]
=

[
0.47502081
0.52497919

]
,

and after prepending 1, we obtain the input of the second layer:

X [2] =

 1
0.47502081
0.52497919

The second layer (W [2]) gives

net[2] = W [2] ·X [2] =

[
0.21498751
−0.52997502

]
after applying the function ϕ(x) = (1 + e−x)−1 element-wise we obtain the output of the
whole network,

a[2] =

[
ϕ(0.21498751)
ϕ(−0.52997502)

]
=

[
0.55354082
0.37052271

]
.

Back propagation. We expected the network to output y =

[
1
0

]
. For the loss function

L(y, a[2]) = 1
2
‖y − a[2]‖22 we have

∂L

∂a[2]
= a[2] − y = a[2] −

[
1
0

]
=

[
−0.44645918
0.37052271

]
. (0.1)

From there we obtain the delta signal by multiplying elements of by the value of ϕ′ at
the corresponding points of net[2] (here ϕ′ is computed using an explicit formula of ϕ),

δ[2] =

[
−0.44645918 · ϕ′(0.21498751)
0.37052271 · ϕ′(−0.52997502)

]
=

[
−0.110334967
0.086419099

]
.

Thus
∂L

W [2]
= δ[2] · (X [2])T =

[
−0.110335 −0.0524114 −0.0579236
0.0864191 0.0410509 0.0453682

]
.

We adjust the weights W [2], taking the learning rate equal to c = 0.1,

W̃ [2] = W [2] − c ∂L

W [2]
= W [2] − c

[
−0.110335 −0.0524114 −0.0579236
0.0864191 0.0410509 0.0453682

]
=

[
0.1610335 −0.24475886 0.35579236
−0.45864191 0.54589491 −0.65453682

]
We compute

∂L

X [2]
= (W [2])T · δ[2] =

−0.055438840.07511425
−0.09478965

 .
The �rst coordinate (−0.05543884) is redundant (it corresponds to the constant input 1,
which encodes the bias) � we omit it and obtain

∂L

a[1]
=

[
0.07511425
−0.09478965

]
. (0.2)

Let us note that we have obtained an analogous derivative as in (0.1), but for the deeper
layer. We continue analogously. Speci�cally, we multiply elements of ∂L

a[1]
by the values of

ϕ′ at the corresponding points net[1], from where we obtain the delta signal for the �rst
layer,

δ[1] =

[
0.07511425 · ϕ′(−0.1)
−0.09478965 · ϕ′(0.1)

]
=

[
0.0187316942
−0.023638267

]
.

Hence
∂L

W [1]
= δ[1] · (X [1])T =

[
0.0187317 0.0187317 0
−0.0236383 −0.0236383 0

]
.

We adjust the weights W [1], taking the learning rare again equal to c = 0.1,

W̃ [1] = W [1] − c ∂L
W [1]

=

[
0.09812683 −0.20187317 0.3
−0.39763617 0.50236383 −0.6

]
.

We obtain a network with modi�ed weights W̃ [1] i W̃ [2], and repeat. . .

Remarks:

(1) If we had a deeper network, we would continue computing

∂L

X [1]
= (W [1])T · δ[1],

then we would omit the �rst coordinate, to obtain ∂L
a[0]

, and we would be in a sit-
uation analogous to (0.1) and (0.2).

(2) Above equalities are not exact, some rounding errors are possible
(3) For the function ϕ(x) = (1 + e−x)−1 it holds (as is easy to check), ϕ′(x) =

ϕ(x)(1−ϕ(x)). This allows us to perform the calculations more e�ciently, because
ϕ(x) is computed in the forward pass.

(4) If we use another activation function ϕ (but not softmax) and the same loss
function as above, then in the above calculations nothing will essentially change,
apart from the values of ϕ(. . .) and ϕ′(. . .).

(5) In the last layer softmax function ψ is often used as the activation function,

ψ(

x1
x2
. . .
xn

) =

ex1∑n
k=1 e

xk

ex2∑n
k=1 e

xk

. . .

exn∑n
k=1 e

xk

.

Because it depends on the whole vector net[L−1], i.e., it is not a function on R,
which is applied element-wise to the vector net, therefore the way the output of the
network and the back-propagation in the last layer are performed are somewhat
di�erent. In the example above, we would have

a[2] = ψ(

[
0.21498751
−0.52997502

]
) =

[
1.2398464
1.828466

0.58861967
1.828466

]
=

[
0.67808
0.32192

]
If we additionally use categorical cross-entropy as the loss function (which one
usually does with the softmax) � in the example above it would be the function

Le(y, a
[2]) =

2∑
k=1

−yk log(a[2]k),

then the above recipe for adjusting the weights will stay valid, if we rede�ne δ[2] in
the following way (note: we only rede�ne the last δ, not δ's for the deeper layers):

δ[2] :=

(2∑
j=1

yj

)
a[2] − y.

In comparison to the previous formula, we no longer multiply by the derivatives
ϕ′. To verify this fact one needs to repeat the calculations of ∂L

∂W [2] and
∂L

∂X[2] ; these

calculations are quite tedious, because now each a
[2]
j depends on all elements of

the matrix W [2].
In our example we would have

δ[2] = (1 + 0)a[2] − y =

[
−0.32192
0.32192

]
.

We continue as before, but the value δ[2] is di�erent, we will become di�erent
numbers. More speci�cally, we obtain

∂L

W [2]
= δ[2] · (X [2])T =

[
−0.32192 −0.1529187 −0.1690013
0.32192 0.1529187 0.1690013

]
.

We adjust the weights W [2] using the learning rate equal to c = 0.1,

W̃ [2] = W [2] − c ∂L

W [2]
= W [2] − c

[
−0.32192 −0.1529187 −0.1690013
0.32192 0.1529187 0.1690013

]
=

[
0.182192 −0.23470813 0.36690013
−0.482192 0.53470813 −0.66690013

]

We compute

∂L

X [2]
= (W [2])T · δ[2] =

−0.1931520.257536
−0.32192

 .
The �rst coordinate (−0.193152) is redundant (it corresponds to the constant
input 1, which encodes the bias) � we omit it and obtain

∂L

a[1]
=

[
0.257536
−0.32192

]
.

Thus

δ[1] =

[
0.257536 · ϕ′(−0.1)
−0.32192 · ϕ′(0.1)

]
=

[
0.06422331
−0.08027913

]
.

Hence

∂L

W [1]
= δ[1] · (X [1])T =

[
0.06422331 0.06422331 0
−0.08027913 −0.08027913 0

]
.

We adjust the weights W [1] taking again the learning rate equal to c = 0.1,

W̃ [1] = W [1] − c ∂L
W [1]

=

[
0.09357767 −0.20642233 0.3
−0.39197209 0.50802791 −0.6

]
.

prepared by Bartek Dyda

