We consider a neural network with two layers, with two neurons each. Below, gray
circles denote artificially added inputs, which are always 1 and encode the bias.

Xl[l] >< >< a[lz}
[2]

sz asg

. 1 1
Let us suppose that for the input [0] we expect the network to output [0] .
Initial weights:

w_ [01 —02 03 o [015 025 0.35
W _[—0.4 05 —06]° VT |-045 055 —0.65

Input (the first coordinate is always 1 and encodes the bias):

1
XM= |1
0

Forward pass. The first layer (W) gives

) — i ey — [0

net"! =WH. X _{0'11,

after applying the function ¢(z) = (1 + e *)"! element-wise we obtain the output of the
first layer,

Ju _ [#(=0.1)] _ [0.47502081
~ | (0.1) | T {0.52497919]

and after prepending 1, we obtain the input of the second layer:

1
X = 10.47502081
0.52497919

The second layer (W) gives

net? — w2 . xl2 — [0.21498751]

—0.52997502

after applying the function ¢(z) = (1 +e%)~! element-wise we obtain the output of the
whole network,

2 { ©(0.21498751) }

0.55354082
©(—0.52997502) ’

0.37052271

. 1 .
Back propagation. We expected the network to output y = [} . For the loss function

0
L(y,a®) = 5lly — a®/[|3 we have
OL 1] [~0.44645918
N BN B 13
gad — 4 YT M {0.37052271}' (0.1)

From there we obtain the delta signal by multiplying elements of by the value of ¢’ at
the corresponding points of net!? (here ¢ is computed using an explicit formula of ¢),

52— —0.44645918 - ©'(0.21498751) | [—0.110334967
~10.37052271 - ¢/(—0.52997502) | | 0.086419099 |-

Thus

T {—0.110335 —0.0524114 —0.0579236]

OL _ sl (xT =
e 0.0864191 0.0410509 0.0453682

We adjust the weights W, taking the learning rate equal to ¢ = 0.1,

— oL ~0.110335 —0.0524114 —0.0579236
2 — 2 _ — w2l _
WHE=W=—cpmg=Wr—c [0.0864191 0.0410509 0.0453682]
[01610335 —0.24475886 0.35579236
= | —0.45864191 0.54580491 —0.65453682
We compute
5L —0.05543884
~a = (WENT . 5B = | 0.07511425
X —0.09478965

The first coordinate (—0.05543884) is redundant (it corresponds to the constant input 1,
which encodes the bias) — we omit it and obtain

oL { 0.07511425 }

o~ | —0.09478965 (0.2)

Let us note that we have obtained an analogous derivative as in (0.1), but for the deeper
layer. We continue analogously. Specifically, we multiply elements of % by the values of
¢’ at the corresponding points net!), from where we obtain the delta signal for the first
layer,
51— [0.07511425-¢’(—0.1)] B [0.0187316942}
| —0.09478965 - ¢'(0.1)| | —0.023638267|

Hence

oL
Wi ot (XM = {

We adjust the weights W, taking the learning rare again equal to ¢ = 0.1,

g, 0L _ [0.09812683 —0.20187317 0.3]
W T |-0.39763617 0.50236383 —0.6

0.0187317 0.0187317 0O
—0.0236383 —0.0236383 0} "

We obtain a network with modified weights W[i WW[2 and repeat. ..

Remarks:

(1) If we had a deeper network, we would continue computing

oL INT | S

S = (WIT 60
then we would omit the first coordinate, to obtain %7 and we would be in a sit-
uation analogous to (0.1) and (0.2).

(2) Above equalities are not exact, some rounding errors are possible

(3) For the function ¢(z) = (1 + e *)~! it holds (as is easy to check), ¢'(z) =
©(z)(1—p(x)). This allows us to perform the calculations more efficiently, because
©(z) is computed in the forward pass.

(4) If we use another activation function ¢ (but not softmaz) and the same loss
function as above, then in the above calculations nothing will essentially change,
apart from the values of ¢(...) and ¢'(...).

(5) In the last layer softmax function v is often used as the activation function,

- exl -

2221 etk

Ty er?
o(| "2 |) = | T

Tn

e

Zzzl etk

Because it depends on the whole vector netl“~, i.e., it is not a function on R,
which is applied element-wise to the vector net, therefore the way the output of the
network and the back-propagation in the last layer are performed are somewhat
different. In the example above, we would have

[2]_¢(0.21498751) = 11.2832988446664 ~10.67808
“ T Y —0.52097502)) T | wssseonr | = |0.32192

If we additionally use categorical cross-entropy as the loss function (which one
usually does with the softmaz) — in the example above it would be the function

2
Le(y.a®) = 3" —yelog(al),
k=1

then the above recipe for adjusting the weights will stay valid, if we redefine §? in
the following way (note: we only redefine the last 4, not ¢’s for the deeper layers):

2

ym::<§:%>dm_y'

J=1

In comparison to the previous formula, we no longer multiply by the derivatives
¢'. To verify this fact one needs to repeat the calculations of % and %; these
calculations are quite tedious, because now each a?] depends on all elements of
the matrix W2,

In our example we would have

—0.32192
5[2}:(1+0)a[2]—y= [} .

0.32192

We continue as before, but the value 6P is different, we will become different
numbers. More specifically, we obtain

oL —0.32192 —0.1529187 —0.1690013
w2l 0.32192 0.1529187 0.1690013 |-

:ymmey:[

We adjust the weights W2 using the learning rate equal to ¢ = 0.1,

— oL ~0.32192 —0.1529187 —0.1690013
2 = Wil _
WE =W =cwn ¢ {(132192 0.1529187 0.1690013 }

0.182192 —0.23470813 0.36690013
—0.482192 0.53470813 —0.66690013

We compute

L —0.193152
oL (W[2])T 6 = | 0.257536
X[

—0.32192

The first coordinate (—0.193152) is redundant (it corresponds to the constant
input 1, which encodes the bias) — we omit it and obtain

oL {0.257536}

o~ 1—0.32192
Thus
s — 0.257536 - ¢/ (—0.1)] _ [0.06422331
~ | —0.32192- ¢'(0.1) | — |—0.08027913]
Hence

oL sl (xT — 0.06422331 0.06422331 0
whl ~ |—0.08027913 —0.08027913 0"
We adjust the weights W taking again the learning rate equal to ¢ = 0.1,

oL | 0.09357767 —0.20642233 0.3
whl — [—0.39197209 0.50802791 —0.6]|"

prepared by Bartek Dyda

Wil — i _ ¢

