We consider a neural net with L dense layers, with n/¥ neurons in layer [= 1,...L,
which takes the input from R"”. For notation simplicity we assume that the same
activation function ¢ : R — R is used in all layers.

Let W be the matrix of weights in layer [, i.e.,

!
Wil = [wl[c,]j]kzl,..-,n[”;j=0,..-,n[l*1]7 I=12,...,L
Let us suppose that the following vector is the input to the network,
[0]
ay
0 a[O} [0]
dl= 1% | er".
(0]

a, ol

Forward propagation (calculating the output), inductive step. Let us suppose

that [€ {0,1,...,L — 1} and that we are given a vector
a

(1]

)

all —
aZ]m_

from R"". We put xg] =0 and xg” = agl] for j > 1, ie.,

e 1
ol a!’
2l = | G0 | = | olf
i il

_:L'Ez][l] h _an[” i

Vector z¥ is just ! with prepended element equal to one. We calculate
nettH] — i,

and
ol

Q1 — gp(net[l“]) — SO(Z w,[fjl]l“y})

=0 k=1,...,nli+1]

Forward propagation, output of the network. Given vector al”, we may apply L-
times the above inductive step, to find al!l,al?, ... al*). The output of the network is the
last vector al”. In other words, considered neural network is a function of the following
form
R™ 54l s ot e R,
Loss function. Let us say that for) we have found al! as above, but we expected
to obtain another vector, y € R"". We are going to modify the weights using gradient
descent, by calculating the gradient of the loss function with respect to the weights.
Let us suppose that our loss function is of the form

nlL]

1 L
L(y, CL[L]) —9 Z(yk - aL })2-
k=1

First we calculate oL,
aam:a%}—yk, k=1,...,n
k

The above equalities may be written in the following abbreviated form,

ai% [3 _y’“}

where on both sides we have a column vector.
Back propagation, inductive step. Let | € {1,..., L}, suppose that we are given
a vector

, (0.1)

oL
Oalll”
Recall the formula

-1
= o3l

k=1,...,nl1
Therefore we can calculate l] using chain rule
Yko.do
oL 3 OL da))
U IR
Miogo gt 90 QW
oL, [
_ / URU N s R U
- aa[l] ¥ Z Who,i % Ljo = 5’60 Jo
ko 7=0
where the column vector 6 is given by
oL, [
[_ (-1
ot = da [l] 90 Z Who,i %
j=0

where on both sides we have matrices with n rows and (nl=Y 4 1) columns.

Similarly we may calculate . l —%i2y7 using chain rule
Jo

L _i”]: oL dal
ozll~1 o1 6@%” ozl

Jo

nll pli=1] nlll
6L [1—1] Ui [sl
:Za Zwkj L wkjozz k]o(S
k=1 k=1
In the matrix notation
oL
5ot = (WHT . sl
T

Recall that x[l U_ Ll -1

obtain

for 7 > 1, so by omitting the first entry of the above vector we

OL
dall—1"

Back propagation, summary. Using formula (0.1)), we may apply inductive step for
[l = L, obtaining the derivatives of the loss function with respect to the weights from
the last layer, and also %. This allows us to carry on applying the inductive step
forl =L —1,...,1. In this way we will obtain the derivatives of L. with respect to all
weights, which allows us to use gradient descent.

Softmax function and categorical cross entropy. In categorical problems one often
uses softmaz as the activation function in the [ast layer. It has the advantage that then
the output of the network has nonnegative entries with sum equal to one. Therefore this
output may be interpreted as a probability distribution. The drawback is that softmax,
unl}k]e the activation function ¢ considered before, is the function of the whole vector
net!

] 1 exp(netgf})
a™ = (nett™) = mig 7 :
doj—rexp(net;) |,

Thus the back propagation for the last layer will have a different form, which we will now
find. We assume that categorical cross entropy,

nlZ nlL]
Z yx log(a Z Yk net[log(z exp(netg.L]))
j=1

is our loss function, which is typical when softmax is used for activation. Note that
aECL] > 0, hence the function L is well-defined. Recall that

nlL=1]
net[L] Z w,[fj] EL U , k=1,... ,n[L].
We calculate
oL o
_ L1 (L]
PRI L +Zyk S (N <3 i exp(nety,)>
Wo.do] 1exp(ne) Wo.jo

nlL] (L])

B 1] exp net,C
- koxjo +Z Y n[L (L] "7
> j—1 exp(net;”)

L-1]

L]

n[
— L [L—1]
o Z Yk | - Oy = Yko | Tjo -

k=1

Putting

SIE — (Z%) all — 7 (0.2)

k=1,....,nld
we obtain the same formula as before, namely

OL
Owlt]

_ I (T

Similarly, we will calculate

nll] nll]

oL i
Jo

Do ex p(net%

[L 1 Zexp net[]
O Lo

o A exp (nettw!"!
— p)Wp,;
=2 gt wd 0
xp(net;”)
nlL] nlL] ML
_ L
o Zyp PJO+Zy Za[] pyo
p=
] L]
=3 [(o w)al =) il
p=1 k=1

nlL]
(L] [L]
25

We have again obtalned the same formula as before, in matrix notation,
oL

OzlL-1]

To sum up, the same formulae hold provided we modify the definition of 6% (only for

the last layer) by putting (0.2).
Finally, let us see that the formula for 5! may be simplified, if we additionally assume

that ZZ[]1yk = 1 (which is typical for classification tasks). Then

o = [alfT —] _
k=1,...,nl1

prepared by Bartek Dyda, CC BY-NC-SA 4.0

_ (T sl

https://creativecommons.org/licenses/by-nc-sa/4.0/

