
We consider a neural net with L dense layers, with n[l] neurons in layer l = 1, . . . L,
which takes the input from Rn[0]

. For notation simplicity we assume that the same
activation function ϕ : R→ R is used in all layers.
Let W [l] be the matrix of weights in layer l, i.e.,

W [l] = [w
[l]
k,j]k=1,...,n[l];j=0,...,n[l−1] , l = 1, 2, . . . , L.

Let us suppose that the following vector is the input to the network,
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Forward propagation (calculating the output), inductive step. Let us suppose
that l ∈ {0, 1, . . . , L− 1} and that we are given a vector
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from Rn[l]

. We put x
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j for j ≥ 1, i.e.,
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Vector x[l] is just a[l] with prepended element equal to one. We calculate

net[l+1] = W [l+1]x[l],

and

a[l+1] = ϕ(net[l+1]) :=
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.

Forward propagation, output of the network. Given vector a[0], we may apply L-
times the above inductive step, to �nd a[1], a[2], . . . , a[L]. The output of the network is the
last vector a[L]. In other words, considered neural network is a function of the following
form

Rn[0] 3 a[0] 7→ a[L] ∈ Rn[L]

.

Loss function. Let us say that for x[0] we have found a[L] as above, but we expected
to obtain another vector, y ∈ Rn[L]

. We are going to modify the weights using gradient

descent, by calculating the gradient of the loss function with respect to the weights.
Let us suppose that our loss function is of the form
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2
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First we calculate
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The above equalities may be written in the following abbreviated form,
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where on both sides we have a column vector.
Back propagation, inductive step. Let l ∈ {1, . . . , L}, suppose that we are given
a vector
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.

Recall the formula
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Therefore we can calculate ∂ L
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using chain rule
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where the column vector δ[l] is given by
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Such a notation allows us to write the above formulae in the following short form,
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where on both sides we have matrices with n[l] rows and (n[l−1] + 1) columns.
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∂x
[l−1]
j0

using chain rule

∂ L

∂x
[l−1]
j0

=
n[l]∑
k=1

∂ L

∂a
[l]
k

· ∂a
[l]
k

∂x
[l−1]
j0

=
n[l]∑
k=1

∂ L

∂a
[l]
k

ϕ′

n[l−1]∑
j=0

w
[l]
k,jx

[l−1]
j

 w
[l]
k,j0

=
n[l]∑
k=1

w
[l]
k,j0
δ
[l]
k .

In the matrix notation
∂ L

∂x[l−1]
= (W [l])T · δ[l].

Recall that x
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j = a
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j for j ≥ 1, so by omitting the �rst entry of the above vector we

obtain
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Back propagation, summary. Using formula (0.1), we may apply inductive step for
l = L, obtaining the derivatives of the loss function with respect to the weights from
the last layer, and also ∂ L

∂a[L−1] . This allows us to carry on applying the inductive step
for l = L − 1, . . . , 1. In this way we will obtain the derivatives of L with respect to all
weights, which allows us to use gradient descent.

Softmax function and categorical cross entropy. In categorical problems one often
uses softmax as the activation function in the last layer. It has the advantage that then
the output of the network has nonnegative entries with sum equal to one. Therefore this
output may be interpreted as a probability distribution. The drawback is that softmax,
unlike the activation function ϕ considered before, is the function of the whole vector
net[L],

a[L] = ψ(net[L]) :=

[
exp(net

[L]
k )∑n[L]

j=1 exp(net
[L]
j )

]
k=1,...,n[L]

.

Thus the back propagation for the last layer will have a di�erent form, which we will now
�nd. We assume that categorical cross entropy,
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is our loss function, which is typical when softmax is used for activation. Note that
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k > 0, hence the function L is well-de�ned. Recall that
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We calculate

∂ L

∂w
[L]
k0,j0

= −yk0x
[L−1]
j0

+
n[L]∑
k=1

yk
1∑n[L]

j=1 exp(net
[L]
j )
·

(
∂

∂w
[L]
k0,j0

exp(net
[L]
k0
)

)

= −yk0x
[L−1]
j0

+
n[L]∑
k=1

yk
exp(net

[L]
k0
)∑n[L]

j=1 exp(net
[L]
j )

x
[L−1]
j0

=

( n[L]∑
k=1

yk

)
· a[L]k0

− yk0

x
[L−1]
j0

.

Putting
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we obtain the same formula as before, namely
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Similarly, we will calculate
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We have again obtained the same formula as before, in matrix notation,

∂ L

∂x[L−1]
= (W [L])T · δ[L].

To sum up, the same formulae hold provided we modify the de�nition of δ[L] (only for
the last layer) by putting (0.2).
Finally, let us see that the formula for δ[L] may be simpli�ed, if we additionally assume

that
∑n[L]

k=1 yk = 1 (which is typical for classi�cation tasks). Then

δ[L] =
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.
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