We consider a neural net with L dense layers, with $n^{[l]}$ neurons in layer $l=1, \ldots L$, which takes the input from $\mathbf{R}^{n^{[0]}}$. For notation simplicity we assume that the same activation function $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ is used in all layers.

Let $W^{[l]}$ be the matrix of weights in layer l, i.e.,

$$
W^{[l]}=\left[w_{k, j}^{[l]}\right]_{k=1, \ldots, n^{[l]} ; j=0, \ldots, n^{[l-1]}}, \quad l=1,2, \ldots, L .
$$

Let us suppose that the following vector is the input to the network,

$$
a^{[0]}=\left[\begin{array}{c}
a_{1}^{[0]} \\
a_{2}^{[0]} \\
\cdots \\
a_{n[0]}^{[0]}
\end{array}\right] \in \mathbf{R}^{\left[{ }^{[0]}\right.} .
$$

Forward propagation (calculating the output), inductive step. Let us suppose that $l \in\{0,1, \ldots, L-1\}$ and that we are given a vector

$$
a^{[l]}=\left[\begin{array}{c}
a_{1}^{[l]} \\
a_{2}^{[l]} \\
\cdots \\
a_{n}^{[l]}
\end{array}\right] .
$$

from $\mathbf{R}^{n^{[l]}}$. We put $x_{0}^{[l]}=0$ and $x_{j}^{[l]}=a_{j}^{[l]}$ for $j \geq 1$, i.e.,

$$
x^{[l]}=\left[\begin{array}{c}
x_{0}^{[l]} \\
x_{1}^{[l]} \\
x_{2}^{[l]} \\
\cdots \\
\left.x_{n}^{[l]}\right]
\end{array}\right]=\left[\begin{array}{c}
1 \\
a_{1}^{[l]} \\
a_{2}^{[l]} \\
\cdots \\
a_{n}^{[l]}
\end{array}\right] .
$$

Vector $x^{[l]}$ is just $a^{[l]}$ with prepended element equal to one. We calculate

$$
n e t^{[l+1]}=W^{[l+1]} x^{[l]}
$$

and

$$
a^{[l+1]}=\varphi\left(n e t^{[l+1]}\right):=\left[\varphi\left(\sum_{j=0}^{n^{[l]}} w_{k, j}^{[l+1]} x_{j}^{[l]}\right)\right]_{k=1, \ldots, n^{[l+1]}} .
$$

Forward propagation, output of the network. Given vector $a^{[0]}$, we may apply L times the above inductive step, to find $a^{[1]}, a^{[2]}, \ldots, a^{[L]}$. The output of the network is the last vector $a^{[L]}$. In other words, considered neural network is a function of the following form

$$
\mathbf{R}^{n^{[0]}} \ni a^{[0]} \mapsto a^{[L]} \in \mathbf{R}^{n^{[L]}} .
$$

Loss function. Let us say that for $x^{[0]}$ we have found $a^{[L]}$ as above, but we expected to obtain another vector, $y \in \mathbf{R}^{[[L]}$. We are going to modify the weights using gradient descent, by calculating the gradient of the loss function with respect to the weights.
Let us suppose that our loss function is of the form

$$
\mathbf{L}\left(y, a^{[L]}\right)=\frac{1}{2} \sum_{k=1}^{n^{[L]}}\left(y_{k}-a_{k}^{[L]}\right)^{2} .
$$

First we calculate

$$
\frac{\partial \mathbf{L}}{\partial a_{k}^{[L]}}=a_{k}^{[L]}-y_{k}, \quad k=1, \ldots, n^{[L]}
$$

The above equalities may be written in the following abbreviated form,

$$
\begin{equation*}
\frac{\partial \mathbf{L}}{\partial a^{[L]}}=\left[a_{k}^{[L]}-y_{k}\right]_{k=1, \ldots, n^{[L]}} \tag{0.1}
\end{equation*}
$$

where on both sides we have a column vector.
Back propagation, inductive step. Let $l \in\{1, \ldots, L\}$, suppose that we are given a vector

$$
\frac{\partial \mathbf{L}}{\partial a^{[l]}} .
$$

Recall the formula

$$
a^{[l]}=\left[\varphi\left(\sum_{j=0}^{n^{[l-1]}} w_{k, j}^{[l]} x_{j}^{[l-1]}\right)\right]_{k=1, \ldots, n^{[l]}} .
$$

Therefore we can calculate $\frac{\partial \mathbf{L}}{\partial w_{k_{0}, j_{0}}^{L L}}$ using chain rule

$$
\begin{aligned}
\frac{\partial \mathbf{L}}{\partial w_{k_{0}, j_{0}}^{[l]}} & =\sum_{k=1, \ldots, n^{[l]}} \frac{\partial \mathbf{L}}{\partial a_{k}^{[l]}} \cdot \frac{\partial a_{k}^{[l]}}{\partial w_{k_{0}, j_{0}}^{[l]}} \\
& =\frac{\partial \mathbf{L}}{\partial a_{k_{0}}^{[l]}} \varphi^{\prime}\left(\sum_{j=0}^{n^{[l-1]}} w_{k_{0}, j}^{[l]} x_{j}^{[l-1]}\right) x_{j_{0}}^{[l-1]}=: \delta_{k_{0}}^{[l]} x_{j_{0}}^{[l-1]},
\end{aligned}
$$

where the column vector $\delta^{[l]}$ is given by

$$
\delta^{[l]}=\left[\frac{\partial \mathbf{L}}{\partial a_{k_{0}}^{[l]}} \varphi^{\prime}\left(\sum_{j=0}^{n^{[l-1]}} w_{k_{0}, j}^{[l]} x_{j}^{[l-1]}\right)\right]_{k=1, \ldots, n^{[l]}} .
$$

Such a notation allows us to write the above formulae in the following short form,

$$
\frac{\partial \mathbf{L}}{\partial w^{[l]}}=\delta^{[l]} \cdot\left(x^{[l-1]}\right)^{T},
$$

where on both sides we have matrices with $n^{[l]}$ rows and $\left(n^{[l-1]}+1\right)$ columns.
Similarly we may calculate $\frac{\partial \mathbf{L}}{\partial x_{j_{0}}^{[-1]}}$ using chain rule

$$
\begin{aligned}
\frac{\partial \mathbf{L}}{\partial x_{j_{0}}^{[l-1]}} & =\sum_{k=1}^{n^{[l]}} \frac{\partial \mathbf{L}}{\partial a_{k}^{[l]}} \cdot \frac{\partial a_{k}^{[l]}}{\partial x_{j_{0}}^{[l]}} \\
& =\sum_{k=1}^{n^{[l]}} \frac{\partial \mathbf{L}}{\partial a_{k}^{[l]}} \varphi^{\prime}\left(\sum_{j=0}^{n^{[l-1]}} w_{k, j}^{[l]} x_{j}^{[l-1]}\right) w_{k, j_{0}}^{[l]}=\sum_{k=1}^{n^{[l]}} w_{k, j_{0}}^{[l]} \delta_{k}^{[l]} .
\end{aligned}
$$

In the matrix notation

$$
\frac{\partial \mathbf{L}}{\partial x^{[l-1]}}=\left(W^{[l]}\right)^{T} \cdot \delta^{[l]}
$$

Recall that $x_{j}^{[l-1]}=a_{j}^{[l-1]}$ for $j \geq 1$, so by omitting the first entry of the above vector we obtain

$$
\frac{\partial \mathbf{L}}{\partial a^{[l-1]}} .
$$

Back propagation, summary. Using formula (0.1), we may apply inductive step for $l=L$, obtaining the derivatives of the loss function with respect to the weights from the last layer, and also $\frac{\partial \mathbf{L}}{\partial a(L-1]}$. This allows us to carry on applying the inductive step for $l=L-1, \ldots, 1$. In this way we will obtain the derivatives of \mathbf{L} with respect to all weights, which allows us to use gradient descent.

Softmax function and categorical cross entropy. In categorical problems one often uses softmax as the activation function in the last layer. It has the advantage that then the output of the network has nonnegative entries with sum equal to one. Therefore this output may be interpreted as a probability distribution. The drawback is that softmax, unlike the activation function φ considered before, is the function of the whole vector $n e t^{[L]}$,

$$
a^{[L]}=\psi\left(n e t^{[L]}\right):=\left[\frac{\exp \left(n e t_{k}^{[L]}\right)}{\sum_{j=1}^{n^{[L]}} \exp \left(n e t_{j}^{[L]}\right)}\right]_{k=1, \ldots, n^{[L]}} .
$$

Thus the back propagation for the last layer will have a different form, which we will now find. We assume that categorical cross entropy,

$$
\mathbf{L}\left(y, a^{[L]}\right)=-\sum_{k=1}^{n^{[L]}} y_{k} \log \left(a_{k}^{[L]}\right)=-\sum_{k=1}^{n^{[L]}} y_{k}\left(n e t_{k}^{[L]}-\log \left(\sum_{j=1}^{n^{[L]}} \exp \left(n e t_{j}^{[L]}\right)\right)\right) .
$$

is our loss function, which is typical when softmax is used for activation. Note that $a_{k}^{[L]}>0$, hence the function \mathbf{L} is well-defined. Recall that

$$
n e t_{k}^{[L]}=\sum_{j=0}^{n^{[L-1]}} w_{k, j}^{[L]} x_{j}^{[L-1]}, \quad k=1, \ldots, n^{[L]}
$$

We calculate

$$
\begin{aligned}
\frac{\partial \mathbf{L}}{\partial w_{k_{0}, j_{0}}^{[L]}} & =-y_{k_{0}} x_{j_{0}}^{[L-1]}+\sum_{k=1}^{n^{[L]}} y_{k} \frac{1}{\sum_{j=1}^{[L]} \exp \left(n e t_{j}^{[L]}\right)} \cdot\left(\frac{\partial}{\partial w_{k_{0}, j_{0}}^{[L]}} \exp \left(n e t_{k_{0}}^{[L]}\right)\right) \\
& =-y_{k_{0}} x_{j_{0}}^{[L-1]}+\sum_{k=1}^{n^{[L]}} y_{k} \frac{\exp \left(n e t_{k_{0}}^{[L]}\right)}{\sum_{j=1}^{[L]} \exp \left(n e t_{j}^{[L]}\right)} x_{j_{0}}^{[L-1]} \\
& =\left(\left(\sum_{k=1}^{n^{[L]}} y_{k}\right) \cdot a_{k_{0}}^{[L]}-y_{k_{0}}\right) x_{j_{0}}^{[L-1]} .
\end{aligned}
$$

Putting

$$
\begin{equation*}
\delta^{[L]}=\left[\left(\sum_{j=1}^{n^{[L]}} y_{j}\right) \cdot a_{k}^{[L]}-y_{k}\right]_{k=1, \ldots, n} \tag{0.2}
\end{equation*}
$$

we obtain the same formula as before, namely

$$
\frac{\partial \mathbf{L}}{\partial w^{[L]}}=\delta^{[L]} \cdot\left(x^{[L-1]}\right)^{T} .
$$

Similarly, we will calculate

$$
\begin{aligned}
\frac{\partial \mathbf{L}}{\partial x_{j_{0}}^{[L-1]}} & =-\sum_{k=1}^{n^{[L]}} y_{k} w_{k, j_{0}}^{[L]}+\sum_{k=1}^{n^{[L]}} y_{k} \frac{1}{\sum_{j=1}^{n[L]} \exp \left(n e t_{j}^{[L]}\right)} \cdot\left(\frac{\partial}{\partial x_{j_{0}}^{[L-1]}} \sum_{j=1}^{n^{[L]}} \exp \left(n e t_{j}^{[L]}\right)\right) \\
& =-\sum_{k=1}^{n^{[L]}} y_{k} w_{k, j_{0}}^{[L]}+\sum_{k=1}^{n^{[L]}} y_{k} \sum_{p=1}^{n^{[L]}} \frac{\exp \left(n e t_{p}^{[L]}\right) w_{p, j_{0}}^{[L]}}{\sum_{j=1}^{n L]} \exp \left(n e t_{j}^{[L]}\right)} \\
& =-\sum_{p=1}^{n^{[L]}} y_{p} w_{p, j_{0}}^{[L]}+\sum_{k=1}^{n_{k}^{[L]}} y_{k} \sum_{p=1}^{n_{p}^{[L]}} a_{p}^{[L]} w_{p, j_{0}}^{[L]} \\
& =\sum_{p=1}^{n^{[L]}}\left(\left(\sum_{k=1}^{n^{[L]}} y_{k}\right) a_{p}^{[L]}-y_{p}\right) w_{p, j_{0}}^{[L]} \\
& =\sum_{p=1}^{n_{p}^{[L]}} \delta_{p}^{[L]} w_{p, j_{0}}^{[L]} .
\end{aligned}
$$

We have again obtained the same formula as before, in matrix notation,

$$
\frac{\partial \mathbf{L}}{\partial x^{[L-1]}}=\left(W^{[L]}\right)^{T} \cdot \delta^{[L]} .
$$

To sum up, the same formulae hold provided we modify the definition of $\delta^{[L]}$ (only for the last layer) by putting (0.2).

Finally, let us see that the formula for $\delta^{[L]}$ may be simplified, if we additionally assume that $\sum_{k=1}^{n^{[L]}} y_{k}=1$ (which is typical for classification tasks). Then

$$
\delta^{[L]}=\left[a_{k}^{[L]}-y_{k}\right]_{k=1, \ldots, n^{[l]}} .
$$

