
? page 97, line 6:
A data compression algorithm in information theory is an algorithm (described

? page 98, lines –13 to –9:
Theorem 3.5.1 Let φ be a compression algorithm that applies to all suffi-
ciently long blocks appearing in some ergodic process (X, P, µ, T, S)
of entropy h = h(µ, T, P). Let n be so large that H(µ, Pn) < n(h + ε).
Then the joint measure of all blocks B of length m whose compression rate is
smaller than Hn(B)/ log #Λ tends to zero with m.

? page 101, line 8:
n exceeds 2n(log l−ε). Hint: Choose carefully a block W which cannot

? page 111, line 7:
equals ΠP, where P =

Wk
i=1 Pi. By Theorem 3.2.2 again, h(Q′) = 0 and, by

? page 131, line –5:
4.9 Prove that every automorphism (X, A, µ, T,Z) of finite entropy admits,

? page 131, line –3:
4.10 Use the Sinai Theorem to show that every system (X, A, µ, T, S) admits

? page 199, line –14:
6.3 Show that if T is Lipschitz, i.e., d(Tx, Ty) ≤ cd(x, y) for some constant

? page 199, line –4:
h(Tn, U|n||ν) = |n|h(T, U|ν), h(Tn|ν) = |n|h(T |ν).

? page 216, lines 1 and 2:
• For every n the projections onto X of the cells of AFk

labeled yk,n have

? page 219, lines –2 and –1:
satisfies the column condition; the projections of the cells corresponding to the
symbols in column n of this rectangle all contain the point TnxD.

Throughout this section
Λ denotes a finite alphabet.

(ΛS, µ, σ,S)
h(µ,Λ) (

h− ε))

eventually

is inscribed in

ergodic

ergodic

Is it true

(attention, some equalities hold only for n ≥ 0 ).

and k
and yk+1,n, respectively,

? page 216, lines 3 and 4:
Since the diameters of these cells decrease to zero with k (for n fixed), the
above intersection is a single point in X . We denote this point by πX,n(y).

If we arrange that sufficiently fast
projections converge to

and AFk+1
,

in rows k and k + 1 both

1

E R R A T A
to

Tomasz Downarowicz

Entropy in Dynamical Systems

satisfies IP(ω) ≤ N(ω) ≤ IP(ω) + 1 for µ-almost every ω. The difference E(IP) ≤ E(N) (where E
denotes the expected value) and

? page 8, line –8: 1

1 I thank Krzysztof Przesławski for this correction.
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? page 237, line 2:
or it is finite everywhere. Clearly, the transfinite sequence uα is increasing.

? page 260, line –14:
say that G′ is a fiber saturation of F . Since F ′ is compact and π is continuous,

? page 261, line 7:
H(U|F, W) ≤ H(U|F, V) + H(V|W). We apply the above to Un, Vn and Vn,

? page 261, line –14:
generated by the partitions P and Q. Consider a cell V ∈ Vn not disjoint of

? page 270, line –14:
8.5 (David Burguet) Check that the superenvelopes of H are precisely the

? page 270, lines –10 and –9:
Theorem [Tarski, 1955] to deduce the existence of the smallest superen-
velope.

? page 290, line –11:
combination

P∞
k=1

2−kµk+1 (like the points bk in Example 8.2.17, which are now

? page 299, line –11:
the functions. By monotonicity, each function can strech at most 1/δ of these

? page 323, line 1:
Lemma 11.2.10 Let f , g be two bounded measurable functions on X . For

? page 323, line 11:Z
Tn+1f ∧ Tn+1g dµ ≥

Z
Tnf ∧ Tnf dµ,

? page 391, line -12:
Toepilitz system, 225, 363, 363–364

and upper semicontinuous

repair functions of the tails

repair function

t

belong to L1(µ)

should satisfy the above for a generating sequence of parti-
tions P (each with possibly different threshold number nσ).

The points in G

µ(Bk+1)

g

F ′

Wn

(

)
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