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* page 8, line —8: !

satisfies fafw} < N(w) < Ip(w) + 1 for p-almost every w. The difference E(Ip) < E(IV) (where E
denotes the expected value) and

* page 97, line 6:

. . .. . . ) ] Throughout this section
AA data compression algorithm in information theory is an algorithm (described

A denotes a finite alphabet.
* page 98, lines —13 to -9:

Theorem 3.5.1 Let ¢ be a compression algorithm that applies to all suffi-

ciently long blocks appearing in some ergodic process 6P H5Sy (A5, p,0,S)

of entropy h = kit Py—Eet n be-sotarge-that H{m; Py <nth + 2% h(u,A)

Then the joint measure of all blocks B of length m whose compression rate is

smaller than H, B}/ log #A tends to zero with m. (h—€)

* page 101, line 8:
n Aaxceeds on(logl=¢) Hint: Choose carefully a block W which cannot eventually

* page 111, line 7:
equals I1p, where P = \/f:1 P;. By Theorem 3.2.2 again, h(Q’) = 0 and, by is inscribed in

* page 131, line -5:
4.9 Prove that every gutomorphism (X, 1, T, Z) of finite entropy admits, ergodic

* page 131, line —3:
4.10 Use the Sinai Theorem to show that every System (X, 2, 1, T, S) admits ergodic

* page 199, line —14:
6.3 Shew that if T is Lipschitz, i.e., d(T'z, Ty) < cd(x,y) for some constant Is it true

* page 199, line —4:
h(T™, U™ |v) = |n|h(T, Uv), h(T"|v) = In|h(T'|v), (attention, some equalities hold only for n > 0).

* page 216, lines 1 and 2:

e For every n the projections onto X of the cells of A4, labeled yj ., have and k and Ag,__ .,
ry A p J k 3 flrk+]

and Yy 41,n, Tespectively,
* page 216, lines 3 and 4:

Sinee the diameters of these cells decrease to zero Awith k (for n fixed), the If we arrange that  sufficiently fast
above interseetion-is a single point in X. We denote this point by 7x ., (y). projections converge to

* page 219, lines —2 and —1:
satisfies the column condition; the projections of the cells corresponding to the
symbols in column 7 of this rectangle att contain the point 7"z p. inrows k and k + 1 both

L I thank Krzysztof Przestawski for this correction.
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* page 237, line 2:
or it is finite everywhere,( Clearly, the transfinite sequence u, is increasing. and upper semicontinuous

* page 260, line —14:

say that G is a fiber saturation of #. Since I is compact and 7 is continuous, '
* page 261, line 7:

HU|F,W) <H(U|F,V) + H(V|W). We apply the above to U™, V"* and ¥*, W™

* page 261, line —14:

generated by the partitions P and Q. AConsider acell V€ V" not disjoint of ghe points in G _
should satisfy the above for a generating sequence of parti-
* page 270, line —14: tions P (each with possibly different threshold number n,).)

8.5 (David Burguet) Check that the superenvetopes of H are precisely the repair functions of the tails

* page 270, lines —10 and -9:
Theorem [Tarski, 1955] to deduce the existence of the smallest superen= repair function

velope.

* page 290, line —11:
combination Zzozl 27 tt4+ (like the points by, in Example 8.2.17, which are now H(Byy1)

* page 299, line —11:
the functions. By monotonicity, each function can str%h at most 1/4 of these t

* page 323, line 1:
Lemma 11.2.10 Let f, g betwo-bounded-measurable-funetions-on 2. For belong to L' (u)

* page 323, line 11:
/T”“f/\T"“gdu > /T”f/\T"fdu, 9

* page 391, line -12:
Toeptilitz system, 225, 363, 363-364
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