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Multiorder

Let G be an infinite countable group with the unit e.

Let ≺ be a total order on G and let g ∈ G.

Then we let g(≺) be the total order on G defined by

(1) a g(≺) b ⇐⇒ ag ≺ bg.

A total order ≺ on G is said to be of type Z if
1 for any a ≺ b the order interval [a,b]≺ = {a,b} ∪ {c : a ≺ c ≺ b} is

finite, and
2 there is no minimal or maximal element in G.

The action (1) on total orders is Borel measurable (total orders inherit the
Borel structure from {0,1}G×G, the space of all relations in G) and preserves
type Z.
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Multiorder
Any total order on G of type Z can be identified with an anchored bijection
bi : Z→ G (enumeration of G by the integers). Anchored means that
bi(0) = e.

The property “anchored” is necessary for uniqueness.

Let O denote the space of all anchored bijections from Z to G. Then O
inherits a natural Borel structure from GZ and the correspondence between
total orders of type Z and bijections from Z to G is a Borel-measurable
bijection.

The action (1) of G on total orders of type Z corresponds to the action on O
defined as follows:
if g ∈ G and bi ∈ O then, for any i ∈ Z,

(2) (g(bi))(i) = bi(i + k) · g−1, where k ∈ Z is such that g = bi(k).
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Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).

Tomasz Downarowicz (Wrocław) Seminar October 14, 2021 5 / 19



Multiorder
Definition
By a multiorder on G we will understand any measure-preserving system
(O, ν,G), where ν a Borel probability measure on O, invariant under the
action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by
John Kieffer in 1975. The difference is that IRO involves total orders of any
type (typically of type Q).

Definition
Let G be amenable. A multiorder (O, ν,G) on G is Følner if, for ν-almost
every bijection bi ∈ O the sequence of order intervals bi([0,n]) is a Følner
sequence in G.

Theorem 0
Every multiorder on any amenable group is Følner.
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Examples of multiorders

The first example is completely trivial, but important, because it ensures that
all our theorems valid for countable amenable groups apply as well to the
classical Z-actions. Here they either reduce to some well known theorems, or
sometimes they shed a new light even in this classical setup.

On G = Z consider the standard order ≺=<. It is easy to verify that the
action given by the formula (2) is just shifting, while < is clearly invariant
under shifting. We conclude that g(<) =< for every g ∈ Z, i.e. < is a fixed
point of the action. Thus the Dirac measure δ< is Z-invariant and
({<}, δ<,Z) is a (one-element) multiorder. So, whatever we prove to hold for
almost every order in a multiorder, must hold for the standard order on Z.
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Examples of multiorders
On Z consider the family of orders constructed according to a binary tree of choices:

1 either draw arrows from each even number to the following odd number, or from each
odd number to the following even number, then call every other arrow “odd” and every
remaining one “even”.
-3       -2       -1        0        1        2        3        4        5        6        7        8        9       10       11       12       13       14      15      16      17      18      19       20    

2 either draw an arrow from the head of each even arrow to the tail of the preceding odd
arrow, or draw an arrow from the head of each odd arrow to the tail of the preceding even
arrow. You will see connected directed paths consisting of three arrows. Call every other
path “odd” and every remaining one “even”.

-3       -2       -1        0        1        2        3        4        5        6        7        8        9       10       11       12       13       14      15      16      17      18      19       20    

3 either draw an arrow from the head of each even path to the tail of the following odd
path, or draw an arrow from the head of each odd path to the tail of the following even
path. You will see connected directed paths consisting of seven arrows. Call every other
path “odd” and every remaining one “even”.

-3       -2       -1        0        1        2        3        4        5        6        7        8        9       10       11       12       13       14      15      16      17      18      19       20    

4 Proceed in this manner, using alternately “following” and “preceding”.

-3       -2       -1        0        1        2        3        4        5        6        7        8        9       10       11       12       13       14      15      16      17      18      19       20    
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Examples of multiorders
Since in each step we have two choices, eventually we will have constructed a
binary tree of partial orders which, in the limit, will produce a Cantor set of
orders, most of which will be total and of type Z. Namely, if we assume that
in each step our two choices have probabilities 1

2 ,
1
2 , and the steps are

independent, we will obtain a probability measure ν on the limiting Cantor
set. This measure turns out to be invariant under the shift action of Z.
Moreover, one can show that the set O of total orders of type Z has measure
1. So, we have constructed an object (O, ν,Z) that fits the definition of a
multiorder. As a matter of fact, it can be shown that (O, ν,Z) is isomorphic
with the standard dyadic odometer (it is easy to see, that it is an inverse limit
of cyclic groups of orders 2n).
Observe that every order ≺ in this multiorder has arbitrarily long arrows,
meaining that the distance between an element and its successor is unbouded.
By taking the closure of O, we will create partial orders where some element
does not have a successor (or predecessor), hence it is not an order of type Z.
In other words, the multiorder O in this example is not closed. The
aforementioned Cantor set contains a null set of “bad” elements.
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Examples of multiorders
On Z2 consider the following Hilber curve:

In each step there are four choices to be made. Again, if you make the choices
equally likely and independently, you obtain a shift-invariant measure on total
orders of type Z, i.e. a multiorder on Z2. This time the family is closed,
because the increments are bounded (the successor of each element is always
one of four neighbors).
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Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of
different groups on the same probability space, and such that the conjugating
map is the identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).
Observe that the above bijection is always anchored because ex = x = eΓx .
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Multiorder versus orbit equivalence to a Z-action
We remark that a Z-action is free if and only if almost every orbit is infinite.
Any free G-action also has infinite orbits.

Thus any Z-action orbit equivalent
to a free action of G is itself free and then the orbit equivalence establishes,
for µ-almost every x ∈ X an anchored bijection bix : Z→ G.

Theorem 1
Let (X , µ,G) be a free action on a probability space. Let (X , µ,Z) be a
Z-action orbit equivalent to (i.e. with the same orbits as) (X , µ,G). Let
T = T1 be the generating map of this Z-action. Then the map θ : X → O
given by θ(x) = bix , where bix : Z→ G is a bijection defined by the relation

(3) bix (i) = g ⇐⇒ T ix = gx ,

is a measure-theoretic factor map from (X , µ,G) to a multiorder (O, ν,G),
where ν = θ(µ), and the action of G on O is given by (2).

Corollary. Since every action of an amenable group is orbit-equivalent to a
Z-action, every free action of an amenable group has a multiorder as a factor.
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Multiorder versus orbit equivalence to a Z-action
Notation: Suppose ϕ : X → O is a measure-theoretic factor map from a
measure-preserving G-action (X , µ,G) to a multiorder (O, ν,G). The
quadruple (X , µ,G, ϕ) is called a multiordered G-action.

Given x ∈ X , the associated bijection bix = ϕ(x) ∈ O, and i ∈ Z, instead of
bix (i) we will write ix (the i th element of G in the order associated to x).
Note that ix ∈ G.

Theorem 2
Let (X , µ,G, ϕ) be a multiordered G-action. Then (X , µ,G) is
orbit-equivalent to the Z-action generated by the successor map defined as
follows:

(4) Sx = 1xx .

Moreover, for any k ∈ Z, we have

(5) Skx = kxx .

Note that we do not assume the actions (X , µ,G) or (O, ν,G) to be free.
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Multiorder versus orbit equivalence to a Z-action
Clearly, the muliorder (O, ν,G) is itself a multiordered system (with identity
in the role of the factor map).

The resulting successor map on O now is given
by

S̃(≺) = 1≺(≺),

that is, we “shift” each order ≺ so that its first element 1≺ “lands” at e.
Theorem 2 now tell us that (O, ν,G) is orbit equivalent to (O, ν, S̃) and that

S̃k (≺) = k≺(≺) (k ∈ Z).

Theorem 3

The system (X , µ,S) factors to (O, ν, S̃) via the same map ϕ which serves as
a factor map from (X , µ,G) factors to (O, ν,G).

Moreover, for any finite partition P of X , we have the equality of conditional
entropies:

h(µ,G,P|ΣO) = h(µ,S,P|ΣO).
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Multiorder versus orbit equivalence to a Z-action

Theorem 3 tells us three things:

1 the G-invariant sigma-algebra ΣO associated with the multiorder factor
is also invariant under the mapping S,

2 the map S applied to the atoms of ΣO equals S̃, and
3 for any process generated by a finite partition of X , the conditional

entropy of that process w.r.t. the multiorder factor is the same regardless
of whether we consider the original G-action on X or the orbit equivalent
action of S.

Remark. The last statement follows from a more general theorem of Rudolph
and Weiss (Ann. of Math. 2000), but our proof is very different.
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Application to Pinsker factors
Theorem 3 allows to identify, in a muliordered system, the Pinsker factor
relative to the multiorder factor, as follows:

ΠG(X |ΣO) = ΠS(X |ΣO).

Corollary
If the multiorder factor has entropy zero (under the action of G), then we have
a formula for the unconditional Pinsker factor:

ΠG(X ) = ΠS(X |ΣO).

If the multiorder factor has double entropy zero (i.e. w.r.t. both the action of
G and that of S̃), then

ΠG(X ) = ΠS(X )

(and we can use any formula available for Z-actions).
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Application to Pinsker factors
We can prove that on every countable amenable group there exists a
multiorder of double entropy zero. However, given a G-action, there is no
guarantee that the action factors to a multiorder of entropy zero (let alone
double entropy zero). So the range of applicability of the above Corollary is
rather limited.

But for the unconditional Pinsker factor we have a much better (general and
more effective) result:

Theorem 4
Let (X , µ,G) be an arbitrary measure-preserving G-action and let P be a
finite partition of X . Then, for an arbitrary multiorder (O, ν,G) on G and
ν-almost every order ≺ we have⋂

n≥1

P(−∞,−n]≺ = ΠG(P).
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Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor ΠG(P) of the process
generated by P under the action of G follow these three steps:

1 choose your favorite multiorder on G (of entropy zero, double zero, or
positive - this does not matter),

2 pick at random an order from that multiorder,
3 take the remote past of the process counting along your chosen order.

Unless you are extremely unlucky (which has probability zero), what you’ve
just found is the desired Pinsker factor.
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That’s all for today. Next week, Mateusz Wiȩcek will tell us how multiorders
allow to generalize a theorem by Blanchard–Host–Ruette to topological
actions of countable amenable groups.

THANK YOU
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