Multiorder on countable groups

Tomasz Downarowicz

Faculty of Pure and Applied Mathematics Wroclaw University of Science and Technology

Poland
based on a joint work with
Piotr Oprocha, Mateusz Wiȩcek and Guohua Zhang
based on a joint work with

Piotr Oprocha, Mateusz Więcek and Guohua Zhang

some of the ideas presented in this particular section were suggested by Tom Meyerovitch

Multiorder

Multiorder

Let G be an infinite countable group with the unit e.

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order on G and let $g \in G$.

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order on G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by
(1)

$$
a g(\prec) b \Longleftrightarrow a g \prec b g
$$

Multiorder

Let G be an infinite countable group with the unit e. Let \prec be a total order on G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec on G is said to be of type \mathbb{Z} if

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order on G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec on G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order on G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec on G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and
(2) there is no minimal or maximal element in G.

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order on G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec on G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and
(2) there is no minimal or maximal element in G.

The action (1) on total orders is Borel measurable (total orders inherit the Borel structure from $\{0,1\}^{G \times G}$, the space of all relations in $\left.G\right)$ and preserves type \mathbb{Z}.

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of \mathcal{G} on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of \mathcal{G} on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:
if $g \in G$ and bi $\in \mathcal{O}$ then, for any $i \in \mathbb{Z}$,

Multiorder

Any total order on G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of G on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:
if $g \in G$ and bi $\in \mathcal{O}$ then, for any $i \in \mathbb{Z}$,
(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where $k \in \mathbb{Z}$ is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Definition

Let G be amenable. A multiorder (\mathcal{O}, ν, G) on G is Følner if, for ν-almost every bijection bi $\in \mathcal{O}$ the sequence of order intervals $\mathrm{bi}([0, n])$ is a Følner sequence in G.

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Definition

Let G be amenable. A multiorder (\mathcal{O}, ν, G) on G is Følner if, for ν-almost every bijection bi $\in \mathcal{O}$ the sequence of order intervals $\mathrm{bi}([0, n])$ is a Følner sequence in G.

Theorem 0

Every multiorder on any amenable group is Følner.

Examples of multiorders

Examples of multiorders

The first example is completely trivial, but important, because it ensures that all our theorems valid for countable amenable groups apply as well to the classical \mathbb{Z}-actions. Here they either reduce to some well known theorems, or sometimes they shed a new light even in this classical setup.

Examples of multiorders

The first example is completely trivial, but important, because it ensures that all our theorems valid for countable amenable groups apply as well to the classical \mathbb{Z}-actions. Here they either reduce to some well known theorems, or sometimes they shed a new light even in this classical setup.

On $G=\mathbb{Z}$ consider the standard order $\prec=<$. It is easy to verify that the action given by the formula (2) is just shifting, while $<$ is clearly invariant under shifting. We conclude that $g(<)=<$ for every $g \in \mathbb{Z}$, i.e. $<$ is a fixed point of the action. Thus the Dirac measure $\delta_{<}$is \mathbb{Z}-invariant and $\left(\{<\}, \delta_{<}, \mathbb{Z}\right)$ is a (one-element) multiorder. So, whatever we prove to hold for almost every order in a multiorder, must hold for the standard order on \mathbb{Z}.

Examples of multiorders

On \mathbb{Z} consider the family of orders constructed according to a binary tree of choices:

Examples of multiorders

On \mathbb{Z} consider the family of orders constructed according to a binary tree of choices:
(1) either draw arrows from each even number to the following odd number, or from each odd number to the following even number, then call every other arrow "odd" and every remaining one "even".
$-3 \rightarrow-2 \quad-1 \rightarrow 0 \quad 1 \rightarrow 2 \quad 3 \rightarrow 4 \quad 5 \rightarrow 6 \quad 7 \rightarrow 8 \quad 9 \rightarrow 10 \quad 11 \rightarrow 12 \quad 13 \rightarrow 14 \quad 15 \rightarrow 16 \quad 17 \rightarrow 18 \quad 19 \rightarrow 20$

Examples of multiorders

On \mathbb{Z} consider the family of orders constructed according to a binary tree of choices:
(1) either draw arrows from each even number to the following odd number, or from each odd number to the following even number, then call every other arrow "odd" and every remaining one "even".

$$
-3 \rightarrow-2 \quad-1 \rightarrow 0 \quad 1 \rightarrow 2 \quad 3 \rightarrow 4 \quad 5 \rightarrow 6 \quad 7 \rightarrow 8 \quad 9 \rightarrow 10 \quad 11 \rightarrow 12 \quad 13 \rightarrow 14 \quad 15 \rightarrow 16 \quad 17 \rightarrow 18 \quad 19 \rightarrow 20
$$

(2) either draw an arrow from the head of each even arrow to the tail of the preceding odd arrow, or draw an arrow from the head of each odd arrow to the tail of the preceding even arrow. You will see connected directed paths consisting of three arrows. Call every other path "odd" and every remaining one "even".

$$
\underset{-3 \rightarrow-2}{\downarrow-1 \rightarrow 0} \quad \begin{array}{llllllllll}
\downarrow \rightarrow 2 & 3 \rightarrow 4 & \downarrow \rightarrow 6 & 7 \rightarrow 8 & \downarrow \rightarrow 10 & 11 \rightarrow 12 & \downarrow \rightarrow 13 & 15 \rightarrow 16 & \begin{array}{l}
17 \rightarrow 18
\end{array} \quad 19 \rightarrow 20
\end{array}
$$

Examples of multiorders

On \mathbb{Z} consider the family of orders constructed according to a binary tree of choices:
(1) either draw arrows from each even number to the following odd number, or from each odd number to the following even number, then call every other arrow "odd" and every remaining one "even".

$$
-3 \rightarrow-2 \quad-1 \rightarrow 0 \quad 1 \rightarrow 2 \quad 3 \rightarrow 4 \quad 5 \rightarrow 6 \quad 7 \rightarrow 8 \quad 9 \rightarrow 10 \quad 11 \rightarrow 12 \quad 13 \rightarrow 14 \quad 15 \rightarrow 16 \quad 17 \rightarrow 18 \quad 19 \rightarrow 20
$$

(2) either draw an arrow from the head of each even arrow to the tail of the preceding odd arrow, or draw an arrow from the head of each odd arrow to the tail of the preceding even arrow. You will see connected directed paths consisting of three arrows. Call every other path "odd" and every remaining one "even".

(3) either draw an arrow from the head of each even path to the tail of the following odd path, or draw an arrow from the head of each odd path to the tail of the following even path. You will see connected directed paths consisting of seven arrows. Call every other path "odd" and every remaining one "even".

Examples of multiorders

On \mathbb{Z} consider the family of orders constructed according to a binary tree of choices:
(1) either draw arrows from each even number to the following odd number, or from each odd number to the following even number, then call every other arrow "odd" and every remaining one "even".
$-3 \rightarrow-2 \quad-1 \rightarrow 0 \quad 1 \rightarrow 2 \quad 3 \rightarrow 4 \quad 5 \rightarrow 6 \quad 7 \rightarrow 8 \quad 9 \rightarrow 10 \quad 11 \rightarrow 12 \quad 13 \rightarrow 14 \quad 15 \rightarrow 16 \quad 17 \rightarrow 18 \quad 19 \rightarrow 20$
(2) either draw an arrow from the head of each even arrow to the tail of the preceding odd arrow, or draw an arrow from the head of each odd arrow to the tail of the preceding even arrow. You will see connected directed paths consisting of three arrows. Call every other path "odd" and every remaining one "even".

(3) either draw an arrow from the head of each even path to the tail of the following odd path, or draw an arrow from the head of each odd path to the tail of the following even path. You will see connected directed paths consisting of seven arrows. Call every other path "odd" and every remaining one "even".

4 Proceed in this manner, using alternately "following" and "preceding".

Examples of multiorders

Since in each step we have two choices, eventually we will have constructed a binary tree of partial orders which, in the limit, will produce a Cantor set of orders, most of which will be total and of type \mathbb{Z}. Namely, if we assume that in each step our two choices have probabilities $\frac{1}{2}, \frac{1}{2}$, and the steps are independent, we will obtain a probability measure ν on the limiting Cantor set. This measure turns out to be invariant under the shift action of \mathbb{Z}.
Moreover, one can show that the set \mathcal{O} of total orders of type \mathbb{Z} has measure 1. So, we have constructed an object $(\mathcal{O}, \nu, \mathbb{Z})$ that fits the definition of a multiorder. As a matter of fact, it can be shown that $(\mathcal{O}, \nu, \mathbb{Z})$ is isomorphic with the standard dyadic odometer (it is easy to see, that it is an inverse limit of cyclic groups of orders 2^{n}).
Observe that every order \prec in this multiorder has arbitrarily long arrows, meaining that the distance between an element and its successor is unbouded. By taking the closure of \mathcal{O}, we will create partial orders where some element does not have a successor (or predecessor), hence it is not an order of type \mathbb{Z}. In other words, the multiorder \mathcal{O} in this example is not closed. The aforementioned Cantor set contains a null set of "bad" elements.

Examples of multiorders

On \mathbb{Z}^{2} consider the following Hilber curve:

Examples of multiorders

On \mathbb{Z}^{2} consider the following Hilber curve:

Examples of multiorders

On \mathbb{Z}^{2} consider the following Hilber curve:

In each step there are four choices to be made. Again, if you make the choices equally likely and independently, you obtain a shift-invariant measure on total orders of type \mathbb{Z}, i.e. a multiorder on \mathbb{Z}^{2}. This time the family is closed, because the increments are bounded (the successor of each element is always one of four neighbors).

Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of different groups on the same probability space, and such that the conjugating map is the identity.

Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of different groups on the same probability space, and such that the conjugating map is the identity.
In this context we can redefine orbit equivalence:

Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of different groups on the same probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\}
$$

Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of different groups on the same probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\} .
$$

If, in addition, both actions are free, then for μ-almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $g x=\gamma x$ establishes a bijection $\mathrm{bi}_{x}: \Gamma \rightarrow G$ (the direction is reversed on purpose).

Orbit equivalence of actions of different groups

By an easy argument, the notion of orbit equivalence reduces to actions of different groups on the same probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\}
$$

If, in addition, both actions are free, then for μ-almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $g x=\gamma x$ establishes a bijection $\mathrm{bi}_{x}: \Gamma \rightarrow G$ (the direction is reversed on purpose).
Observe that the above bijection is always anchored because $e x=x=e_{\Gamma} x$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi $_{x}: \mathbb{Z} \rightarrow G$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi $_{x}: \mathbb{Z} \rightarrow G$.
Theorem 1
Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent to (i.e. with the same orbits as) (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi bi $_{x}: \mathbb{Z} \rightarrow G$.

Theorem 1

Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent to (i.e. with the same orbits as) (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action. Then the map $\theta: X \rightarrow \mathcal{O}$ given by $\theta(x)=\mathrm{bi}_{x}$, where $\mathrm{bi}_{x}: \mathbb{Z} \rightarrow G$ is a bijection defined by the relation

$$
\begin{equation*}
\operatorname{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x \tag{3}
\end{equation*}
$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G), where $\nu=\theta(\mu)$, and the action of G on \mathcal{O} is given by (2).

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi bi $_{x}: \mathbb{Z} \rightarrow G$.

Theorem 1

Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent to (i.e. with the same orbits as) (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action. Then the map $\theta: X \rightarrow \mathcal{O}$ given by $\theta(x)=\mathrm{bi}_{x}$, where $\mathrm{bi}_{x}: \mathbb{Z} \rightarrow G$ is a bijection defined by the relation

$$
\begin{equation*}
\operatorname{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x \tag{3}
\end{equation*}
$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G), where $\nu=\theta(\mu)$, and the action of G on \mathcal{O} is given by (2).

Corollary. Since every action of an amenable group is orbit-equivalent to a \mathbb{Z}-action, every free action of an amenable group has a multiorder as a factor.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

 Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G). The quadruple (X, μ, G, φ) is called a multiordered G-action.
Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G). The quadruple (X, μ, G, φ) is called a multiordered G-action. Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G). The quadruple (X, μ, G, φ) is called a multiordered G-action.
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.

Theorem 2

Let (X, μ, G, φ) be a multiordered G-action. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{4}
\end{equation*}
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G). The quadruple (X, μ, G, φ) is called a multiordered G-action.
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x).
Note that $i^{x} \in G$.

Theorem 2

Let (X, μ, G, φ) be a multiordered G-action. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{4}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$
\begin{equation*}
S^{k} x=k^{x} x \tag{5}
\end{equation*}
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G). The quadruple (X, μ, G, φ) is called a multiordered G-action.
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x).
Note that $i^{x} \in G$.

Theorem 2

Let (X, μ, G, φ) be a multiordered G-action. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{4}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$
\begin{equation*}
S^{k} x=k^{x} x \tag{5}
\end{equation*}
$$

Note that we do not assume the actions (X, μ, G) or $\left(\mathcal{O}, \nu_{\nu} G\right)$ to be free.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map).

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map). The resulting successor map on \mathcal{O} now is given by

$$
\tilde{S}(\prec)=1^{\prec}(\prec),
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map). The resulting successor map on \mathcal{O} now is given by

$$
\tilde{S}(\prec)=1^{\prec}(\prec),
$$

that is, we "shift" each order \prec so that its first element 1 "lands" at e.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map). The resulting successor map on \mathcal{O} now is given by

$$
\tilde{S}(\prec)=1^{\prec}(\prec),
$$

that is, we "shift" each order \prec so that its first element $1 \prec$ "lands" at e. Theorem 2 now tell us that (\mathcal{O}, ν, G) is orbit equivalent to $(\mathcal{O}, \nu, \tilde{S})$ and that

$$
\tilde{S}^{k}(\prec)=k^{\prec}(\prec) \quad(k \in \mathbb{Z}) .
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map). The resulting successor map on \mathcal{O} now is given by

$$
\tilde{S}(\prec)=1^{\prec}(\prec),
$$

that is, we "shift" each order \prec so that its first element 1 "lands" at e.
Theorem 2 now tell us that (\mathcal{O}, ν, G) is orbit equivalent to $(\mathcal{O}, \nu, \tilde{S})$ and that

$$
\tilde{S}^{k}(\prec)=k^{\prec}(\prec) \quad(k \in \mathbb{Z}) .
$$

Theorem 3

The system (X, μ, S) factors to $(\mathcal{O}, \nu, \tilde{S})$ via the same map φ which serves as a factor map from (X, μ, G) factors to (\mathcal{O}, ν, G).

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Clearly, the muliorder (\mathcal{O}, ν, G) is itself a multiordered system (with identity in the role of the factor map). The resulting successor map on \mathcal{O} now is given by

$$
\tilde{S}(\prec)=1^{\prec}(\prec),
$$

that is, we "shift" each order \prec so that its first element 1 "lands" at e.
Theorem 2 now tell us that (\mathcal{O}, ν, G) is orbit equivalent to $(\mathcal{O}, \nu, \tilde{S})$ and that

$$
\tilde{S}^{k}(\prec)=k^{\prec}(\prec) \quad(k \in \mathbb{Z}) .
$$

Theorem 3

The system (X, μ, S) factors to $(\mathcal{O}, \nu, \tilde{S})$ via the same map φ which serves as a factor map from (X, μ, G) factors to (\mathcal{O}, ν, G).
Moreover, for any finite partition \mathcal{P} of X, we have the equality of conditional entropies:

$$
h\left(\mu, G, \mathcal{P} \mid \Sigma_{\mathcal{O}}\right)=h\left(\mu, S, \mathcal{P} \mid \Sigma_{\mathcal{O}}\right)
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Theorem 3 tells us three things:

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Theorem 3 tells us three things:
(1) the G-invariant sigma-algebra $\Sigma_{\mathcal{O}}$ associated with the multiorder factor is also invariant under the mapping S,

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Theorem 3 tells us three things:
(1) the G-invariant sigma-algebra $\Sigma_{\mathcal{O}}$ associated with the multiorder factor is also invariant under the mapping S,
(2) the map S applied to the atoms of $\Sigma_{\mathcal{O}}$ equals \tilde{S}, and

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Theorem 3 tells us three things:
(1) the G-invariant sigma-algebra $\Sigma_{\mathcal{O}}$ associated with the multiorder factor is also invariant under the mapping S,
(2) the map S applied to the atoms of $\Sigma_{\mathcal{O}}$ equals \tilde{S}, and
(3) for any process generated by a finite partition of X, the conditional entropy of that process w.r.t. the multiorder factor is the same regardless of whether we consider the original G-action on X or the orbit equivalent action of S.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Theorem 3 tells us three things:
(1) the G-invariant sigma-algebra $\Sigma_{\mathcal{O}}$ associated with the multiorder factor is also invariant under the mapping S,
(2) the map S applied to the atoms of $\Sigma_{\mathcal{O}}$ equals \tilde{S}, and
(3) for any process generated by a finite partition of X, the conditional entropy of that process w.r.t. the multiorder factor is the same regardless of whether we consider the original G-action on X or the orbit equivalent action of S.

Remark. The last statement follows from a more general theorem of Rudolph and Weiss (Ann. of Math. 2000), but our proof is very different.

Application to Pinsker factors

Theorem 3 allows to identify, in a muliordered system, the Pinsker factor relative to the multiorder factor, as follows:

Application to Pinsker factors

Theorem 3 allows to identify, in a muliordered system, the Pinsker factor relative to the multiorder factor, as follows:

$$
\Pi_{G}\left(X \mid \Sigma_{\mathcal{O}}\right)=\Pi_{\mathcal{S}}\left(X \mid \Sigma_{\mathcal{O}}\right)
$$

Application to Pinsker factors

Theorem 3 allows to identify, in a muliordered system, the Pinsker factor relative to the multiorder factor, as follows:

$$
\Pi_{G}\left(X \mid \Sigma_{\mathcal{O}}\right)=\Pi_{S}\left(X \mid \Sigma_{\mathcal{O}}\right)
$$

Corollary

If the multiorder factor has entropy zero (under the action of G), then we have a formula for the unconditional Pinsker factor:

$$
\Pi_{G}(X)=\Pi_{S}\left(X \mid \Sigma_{\mathcal{O}}\right) .
$$

Application to Pinsker factors

Theorem 3 allows to identify, in a muliordered system, the Pinsker factor relative to the multiorder factor, as follows:

$$
\Pi_{G}\left(X \mid \Sigma_{\mathcal{O}}\right)=\Pi_{S}\left(X \mid \Sigma_{\mathcal{O}}\right)
$$

Corollary

If the multiorder factor has entropy zero (under the action of G), then we have a formula for the unconditional Pinsker factor:

$$
\Pi_{G}(X)=\Pi_{S}\left(X \mid \Sigma_{\mathcal{O}}\right)
$$

If the multiorder factor has double entropy zero (i.e. w.r.t. both the action of G and that of \tilde{S}), then

$$
\Pi_{G}(X)=\Pi_{S}(X)
$$

(and we can use any formula available for \mathbb{Z}-actions).

Application to Pinsker factors

We can prove that on every countable amenable group there exists a multiorder of double entropy zero. However, given a G-action, there is no guarantee that the action factors to a multiorder of entropy zero (let alone double entropy zero). So the range of applicability of the above Corollary is rather limited.

Application to Pinsker factors

We can prove that on every countable amenable group there exists a multiorder of double entropy zero. However, given a G-action, there is no guarantee that the action factors to a multiorder of entropy zero (let alone double entropy zero). So the range of applicability of the above Corollary is rather limited.

But for the unconditional Pinsker factor we have a much better (general and more effective) result:

Application to Pinsker factors

We can prove that on every countable amenable group there exists a multiorder of double entropy zero. However, given a G-action, there is no guarantee that the action factors to a multiorder of entropy zero (let alone double entropy zero). So the range of applicability of the above Corollary is rather limited.

But for the unconditional Pinsker factor we have a much better (general and more effective) result:

Theorem 4

Let (X, μ, G) be an arbitrary measure-preserving G-action and let \mathcal{P} be a finite partition of X. Then, for an arbitrary multiorder (\mathcal{O}, ν, G) on G and ν-almost every order \prec we have

$$
\bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]^{\prec}}=\Pi_{G}(\mathcal{P}) .
$$

Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor $\Pi_{G}(\mathcal{P})$ of the process generated by \mathcal{P} under the action of G follow these three steps:

Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor $\Pi_{G}(\mathcal{P})$ of the process generated by \mathcal{P} under the action of G follow these three steps:
(1) choose your favorite multiorder on G (of entropy zero, double zero, or positive - this does not matter),

Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor $\Pi_{G}(\mathcal{P})$ of the process generated by \mathcal{P} under the action of G follow these three steps:
(1) choose your favorite multiorder on G (of entropy zero, double zero, or positive - this does not matter),
(2) pick at random an order from that multiorder,

Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor $\Pi_{G}(\mathcal{P})$ of the process generated by \mathcal{P} under the action of G follow these three steps:
(1) choose your favorite multiorder on G (of entropy zero, double zero, or positive - this does not matter),
(2) pick at random an order from that multiorder,
(3) take the remote past of the process counting along your chosen order.

Application to Pinsker factors

Interpretation: In order to identify the Pinsker factor $\Pi_{G}(\mathcal{P})$ of the process generated by \mathcal{P} under the action of G follow these three steps:
(1) choose your favorite multiorder on G (of entropy zero, double zero, or positive - this does not matter),
(2) pick at random an order from that multiorder,
(3) take the remote past of the process counting along your chosen order. Unless you are extremely unlucky (which has probability zero), what you've just found is the desired Pinsker factor.

That's all for today. Next week, Mateusz Więcek will tell us how multiorders allow to generalize a theorem by Blanchard-Host-Ruette to topological actions of countable amenable groups.

That's all for today. Next week, Mateusz Więcek will tell us how multiorders allow to generalize a theorem by Blanchard-Host-Ruette to topological actions of countable amenable groups.

THANK YOU

