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What is medical image analysis?

Medical image analysis is the science of solving/analyzing medical

problems based on different imaging modalities and digital image

analysis techniques.
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Different Image Modalities

• Geometric

• X-ray: 2D and 3D

• MR-Images: 2D, 3D, 4D, etc

• Tomographic methods

• Microscopic images

– Standard (requires staining)

– HMC (Huffman modulated contrast)

• SPECT (Radioactive isotopes)

• Ultrasound

• Different artificially created images (bulls-eye for hearts)
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Medical problems

• Diagnosis

• Follow up on treatments

• Comparing different treatments/patients/drugs

• On-line imaging for active intervention

• Predicting development

• etc
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Image analysis problems

• Segmentation – delineating different organs

• Classification – determining e.g. types of leukocytes

• Registration – comparing different modalities/patients

• Reconstruction – making 3D-measurments

• Measuring flow – e.g. inside aorta

• Reconstructing flow fields – e.g. inside the heart

• Building shape priors effeciently

• Visualizing results

• etc
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Segmentation - Thresholding

• Thresholding

Gray-scale

image

Thresholded

image
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Segmentation – Active contours

• Define a moving contour

• Driven by external and internal forces
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Active contours – Snakes 

• Find v(s)=[x(s),y(s)] that minimizes

• Examples of external energies
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Solution

• The Euler-Lagrange equations gives:

• Dynamic snake – Active contour
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Numeric solution

• Discretising

• Linear system of equations
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• Re-sampling
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An Example

200 iterationsInitialization 700 iterations

Gradient field
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GVF Field

• Definition: g(x,y)=[u(x,y),v(x,y)], that minimizes 

2 22 2 2 2

x y x yu u v v f f dxdyg

2 1, , , , , , , ( , )tu x y t u x y t b x y u x y t c x y

• Calculus of variations and the introduction of a time variabel gives

• Generalized diffusion equations



Lund University / LTH / Centre for Math Sc / Mathematics / ECMIMIM / 090403

The Example again

GVF-field 160 iterations50 iterations
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GVF-field Initialization Result

GVF-field and snake
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Alfa and Beta

Initialization = 10, = 3 = 2, = 3

Initialization = 1, = 1 = 2, = 3
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Results, initialisering from the outside
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Results, initialization from the inside
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Segmenting white blood cells
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Contour evolution

L: Local properties

G: Global properties

I: Independent properties

F: Speed function
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The speed function F

• Depends on image intensities

• Depends on image derivatives

• Depends on local curvature

• Depends on a global flow fields

• etc

The speed function has to be 

carefully selected and adapted to the 

application!!



Lund University / LTH / Centre for Math Sc / Mathematics / ECMIMIM / 090403

Segmentation – Fast Marching Methods

Assume F>0 (i.e. the contour only moves outwards)

Define the contour at time T is defined as the collection of points with 

arrival time = T

In several dimensions the arrival time is calculated from the speed 

function using the Eikonal equation

|r T|F=1     T=0 at intial location

Start from distance = rate * time in one dimension:

dx=F dT  =>  1=F T´(x)
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Practical Aspects

1. Start with inital contour (known points)

2. Compute T for all neighbours to the contour (trial points)

3. Add the point in trial with the smallest T to known

4. Update T for all neighbours not in known and add to trial

5. Repeat 3-4 until all points are in known

• Linear complexity

• Use a heap and a heap sort
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Level Set Methods

Model the contour as the level set to a 3D-function , i.e. 

(x(t),t)=c (usually c=0), x(t)=(x(t),y(t)), with

(x(t))<0  inside S

(x(t))=0        on S

(x(t))>0 outside S

Differentiate with respect to t:

t + r (x(t),t) ¢ x´(t) = 0

The fundamental equation of motion.
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Level Set Methods (ctd.)

The outward unit normal of the level set is given by

n=r /|r |

Assume that F is normal to the level set, i.e.

F = x´(t) ¢ n

Now

t + r (x(t),t) ¢ x´(t) = 0

can be written as

+ F |r |=0

The level-set equation.
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Practical Aspects

• needs only to be known close to the level-set

• is usually shosen as a signed distance function

• can be constructed using distance transform or fast marching

+ sign( 0 (|r | - 1)) = 0

( =0) = 0

• narrow band algorithm (update in each step) 

• numerical scheme: fixed grid, multigrid
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Level-set example

Observe that level sets can easily change topology!
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Experiments
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Experiments
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Example: Segmented 2D-gel image
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Another example
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Variational methods

1. Define the “best” segmentation of an image as the 

local minima to an energy functional

2. Write down the Euler-Lagrange equations, giving

dE( )=0

3. Introduce a “dummy” variable t (time) and solve

t=dE( )

Where is a level set function corresponding to 
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The Classical Chan-Vese Model

• Divide the image I(x) into two subsets D0, D1 such that the 

following segmentation functional is minimized:

where 0 and 1 are constant image intensities on D0 and D1

• If the subsets are fixed, then the optimal parameter values are 

given by

• This model may be sensitive to noise and outliers!!
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The Reduced Functional

• Define the reduced functional:

• The solution is found by gradient descent:
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Variational methods

Minimize a functional of the following form (Chan-Vese)

where c1 and c2 denote the constant image intensities inside 

and outside the curve respectively and the last term denote a 

measure on the curve.
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HMC-images of human embryos
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Variational formulation
The outer circumference:

w: direction along which the intensity varies most

x0: the centroid of 

The inner circumference:

avarage over the zona

standard deviation of model error
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Segmentation of the Zona Pellucida
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Segmentation – Continuous graph cuts

• The Chan-Vese functional can be formulated in terms of the 

characteristic function, u, for the internal subset

• The functional is non-convex, since u is a set function

• If u is relaxed to a soft set-function with values in [0,1], then the 

Chan-Vese functional is convex in u

• Chen and Esidouglo showed that the given a solution to the 

convex relaxation, a solution to the original problem can be 

obtained by arbitrarily thresholding u!

• Continuous graph cuts
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A modeling example:

Analysis of the 3D-shape of chewing gums
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Problem

Chewing gums sometimes stick together during
processing. This is assumed to happen when the 

chewing gums are ”flat”:
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Manual classification
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Goal

• Develop a method for automatic classification of 
chewing gums.

• Method: Analys the shape of the chewing gums based on 
measurements.
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Proposed method

• Measurment system: TMS-100

• Construction of fixture

• Development of algorithm for shape analysis

• Statistical validation
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Measurment machine and fixture
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Measurments
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Algorithm

• Model the shape of the chewing
gum mathematically

• Fit a geometrical model to the 
measurments

• Develop a suitable quality
measure

X Y Z

. . .

. . .

19.847 6.769 1.3326874

19.883 6.769 1.3829173

19.920 6.769 1.2791595

19.956 6.769 1.2594673

19.993 6.769 1.1855045

20.029 6.769 1.1687934

20.320 6.769 1.2254806

20.357 6.769 1.2330464

20.612 6.769 1.0770782

20.685 6.769 1.1264039

20.721 6.769 1.0626094

20.757 6.769 1.1141516

. . .

. . .
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Chewing gum-model 1

k3z
2 k2y

2 k1x
2 k4x

2y2 R
2
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Chewing gum-model 2

k5 (z z0 ) k1(x x0 )
4 k2(y y0 )

4 k3(x x0 )
2 k4 (y y0 )

2
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Ellipsoidal model

k3(z z0 )
2 k2(y y0 )

2 k1(x x0 )
2 R 0

2
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Pre-conditioning

• Eliminate by changing the coordinate systemx0 & y0
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The new coordinate system

Implies that

changes to

xny x
1

n
x

n

yny y
1

n
y

n

k3(z z0 )
2 k2(y y0 )

2 k1(x x0 )
2 R 0

k3(z z0 )
2 k2yny

2 k1xny
2 R 0

2

2
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Fitting

Each measurment gives a linear constraint on the surface
parameters. Collecting all these equatioins give:

Require

The least squares solution is given from the singular value
decomposition:

Ax 0

x 1

A USV H
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Forming the equations

Assume

Gives

Form the system of eq:s

with

k1 k3

k1(z z0 )
2 k2yny

2 k1xny
2 R 0

Ax 0

A z2 x2 2z y2 1

x k1 k1z k2 k1z0 R
T

2

2
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Fitting: chewing gum model vs ellipsoidal
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A two-step procedure

The ellipsoidens equation was

is fixed from this solution in order to estimate

in

k1(z z0 )
2 k2yny

2 k1xny
2 R 0

z0

k1,k2,k3& R

k3(z z0 )
2 k2yny

2 k1xny
2 R 0
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Quality measure

• Use the volume of the ellipsoid

• Take into account all the radii

• A flatter chewing gum gives a higher volume



Lunds universitet / LTH Presentation 2010

Adding extra skew terms

k1(z z0 )
2 k2yny

2 k1xny
2 k4xz k5yz k6xy R 0

2
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Skewing
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Volume variation for different classes


