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1 The problem description

• We are drying the sausage - reducing amount of water from 70% to
60%.

• Sometimes we have a sharp separation between wet and dry regions
- the ’EYE’ problem.

– The humidity inside of the eye - 70%.

– The humidity above the eye (inside of the sausage) - 60%.

– The diameter of the eye - 5 cm.

– The diameter of the sausage - 6 cm (after drying).

• “Perfect sausage” - the sausage without of the eye - our target.

– The drying time has to be no longer than 4 days.

– External humidity and external temperature can be con-
trolled.

• In each model a good calibration is impossible, because of

– We have too many unknown parameters (4 ÷ 5): permeability,
porosity, etc.

– We have only one experiment.

2 The general model

We consider the problem in isothermal condition, that is we assume the tem-
perature T to be constant. The general model is governed by the diffusion
equation for porous media based on Darcy’s law. Such an equation reads
as:
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(1)

where: R – radius of the sausage, R̂ – gas constant,
T – temperature, Φ – porosity of the sausage, Sw(t, r) – water saturation,
p – pressure, µ – viscosity, K – hydraulic conductivity, k – permeability,
p∗c – maximum value of the function pc(Sw), Tc ≈ 86400 s (one day).
Subscripts and superscripts: v – vapour, w – water, c – capillary,
g – vapour + air.

Equation (1) can be written in the form:
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where the following quantities have been introduced:
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Numerical estimations lead to: A1 = O(10−2), A2 = O(10−7), A3 =
O(1), A4 = O(10−3), A5 = O(10−7).
Therefore, the scaling process turns out that we are dealing with a multi-
scale problem.
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The shortage of time to full numerical treatment of the equation forced
considering constants with highest order. However assuming only A3 6= 0
gives the constant solution (i.e. the function Sw is constant). Taking into
account the terms with lower order reveals the existence of the boundary
layer in the sausage. In the drying sausage function Sw is constant till the
boundary layer, where Sw decreases. The point where it happens might be
a singular point for Sw, since Sw can be nondifferentiable there.

To solve the problem (i.e. to dry the sausage without an ”eye” left)
mathematically means to lower Sw below the level under which the sausage
is considered to be dry.

3 The simplified model

3.1 An estimate of the drying time

In this very simple model we roughly estimate the drying time of the sausage.
We make the following assumptions:

• The sausage does not shrink during the drying process.

• There is only water in the inner part of the sausage (wet region) and
the evaporation takes place at revap = R− ε. Close to the skin, i.e. for
r ∈ (R− ε, R), water and vapour coexist.

• The saturation of water in the wet region is constant along the radius
of the sausage, but can change in time, i.e.

Sw(t, r) = Sevap(t) for r ∈ (0, R− ε).

• The saturation of water close to the skin is given by a linear function

Sw(t, r) =
Sevap(t)− Sres

ε
(R− r) + Sres for r ∈ (R− ε, R),

where Sres denotes the residual saturation of water at the skin. This
means that we impose a linear solution in the boundary layers, instead
of solving the full problem there. This approximation, although quite
rough, seems to be reasonable.The saturation of vapour close to the
skin is given by

Sv = 1− Sw.

• The flux of water close to the skin is constant

qw = C in (R− ε, R).
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We define here the drying time Td to be the time after which the satu-
ration Sevap is equal to that of the ”dried sausage”.

In view of the above assumptions we neglect the problem in the wet
region and consider only the region close to the skin. Hence we have to
solve the following mass balance equation

Φ
∂

∂t

(
ρwSw + ρv(1− Sw)

)
=

∂

∂r
(ρvqv) for r ∈ (R− ε, R),

where ε is the thickness of the boundary layer.
To estimate the drying time we first integrate the above equation over

our domain (R − ε, R). This procedure can be interpreted as averaging the
amount of water in the domain. We get
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Next we use the boundary condition at the skin ρvqv|R = ν(1−Hext), where
ν is a mass flux across the skin, and the fact that at r = R−ε the saturation
of water is equal to Sevap. Moreover we neglect the term ρv(1 − Sw) (since
the vapour density is much smaller than the water density) and use the
assumption on the form of Sw to get

εΦρw
2
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Now we discretize the derivative (assuming the initial saturation equal
to 1)
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and we get the estimate of the drying time Td:

Td =
εΦρw(S0 − Sdry)

2
(
ν(1−Hext)− ρv(Sdry)qv(Sdry)

) .
3.2 Simulations

We run numerical simulations to present the dependence of the drying time
on the external humidity, the temperature and the value of saturation for
the dried sausage obtained from the considered simple model. In all the
simulations we set ε = 0.03R.

In Figure 1 we show the drying time as a function of the external hu-
midity and the temperature for Sdry = 0.8 and Sdry = 0.9. These values
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of the saturation correspond to 56% and 63% content of water in the dried
sausage.

In Figures 2-4 we present the dependence of the drying time on the tem-
perature, the saturation of the dried sausage and the external humidity. In
this very simple model the dependence of the drying time on the temperature
is very low and the drying time is longer at the higher external humidity.

4 The model with the free boundary

In this section, we propose another simplified model for the sausage drying
process in which we introduce the free boundary. The assumptions concern-
ing this model are the following:

• There is only water in the wet region.

• There is a sharp interface (free boundary) between wet and dry region.

• We neglect the problem in the dry region. That is, we assume that
the dry region is a zone completely saturated by vapour. Therefore,
the flux is constant and equal to the one at the external boundary.

• Therefore: all the evaporation takes place at the evaporation front.

• We assume a shrinkage, but the shrinkage appears only as a reduction
of radius, without influencing the mechanical structure of the medium.
Therefore, the porosity is constant. We have a moving boundary,
which actually is another free boundary.

4.1 The free boundary problem

Let S(r, t) denotes the saturation of water at position r ∈ (0, R) and at time
t ≥ 0. We assume that a position of the evaporation front σ is a function of
time, and the condition at σ(t) is given by

S(σ(t), t) = Sevap. (3)

Futhermore, we assume that the velocity of the external front R (the skin
of a sausage) is proportional to the velocity of water lost, and reads

Ṙ(t) = −γR0φ

(
∂S

∂t

∣∣∣∣
r=σ

)
. (4)

Here R0 denotes the initial radius of a sausage, φ is the porosity and γ is a
positive constant.
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Figure 1: Time of drying for Sdry = 0.8 and Sdry = 0.9.
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Figure 2: Dependence of drying time on the temperature for Sdry = 0.8 and
Hext = 73%.
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Figure 3: Dependence of drying time on the saturation for the dried sausage
for T = 20 ◦C and Hext = 73%.
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Figure 4: Dependence of drying time on the external humidity for Sdry = 0.8
and T = 20 ◦C.

The free boundary model considered in this section is the one corre-
sponding to the Darcy flow in the wet region, and is given by
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S(r, 0) = 1, (6)
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(0, t) = 0, (7)

S(σ(t), t) = Sevap. (8)

In next two subsections, we derive some estimates allowing of qualitative
analysis of the sausage drying process.

4.2 The estimate of the no eye condition

In this subsection, we introduce the condition that has to be satisfied so that
the eye would not appear in a sausage. In order to avoid this undesirable
effect, we observe that two fronts σ and R should move with the same
velocity, what implies that the ratio between σ̇ and Ṙ must be equal 1.

In order to find an explicit formula for σ̇(t), first, we differentiate (3)
w.r.t. time, obtaining (

∂S

∂r
|σ
)
σ̇(t) +

∂S

∂t
|σ = 0 ,
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what yields to

σ̇(t) = − 1

∂S

∂r
|σ

∂S
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|σ . (9)

Next, we need to express the condition at the boundary in a different
way. To that end, we assume that the mass flux at the evaporation front is
proportional to the difference between the mass at the front and the one in
the external part. Next, we use the condition of the external humidity, and
so we have

ρwq = νρsatv (T )(1−Hext).

whereHext is the external humidity, ρsatv (T ) is the saturated vapour pressure,
and ν is a positive constant.

Therefore, comparing the above formula for the flux q with the one
obtained from the Darcy law, we get the equality[
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which has to be used with S = Sevap.
Therefore, combining (10) with (9) and using the formula (4), we have
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Imposing V = 1, we find the optimal dependence of temperature on external
humidity Hext that is given by the formula

Hext = 1− 1

γφR0

ρw
νρsatv (T )

[
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µ
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dp
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)]
. (11)

Therefore, we conclude that once the temperature T has been fixed, the
relative humidity given by (11) represents the best condition (according to
our model) to avoid the eye formation.

4.3 An estimate of the drying time

We define the drying time as that time Td such that

< S > (Td) = Sdry,

where

< · >:=
1

σ(t)

∫ σ(t)

0
(·)dr,

and Sdry is the degree of saturation (to be fixed) at which we say that “the
sausage is dry”. Thus, < S > denotes the average value of the saturation
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on the interval (0, σ(t)).

Let us integrate both sides the equation (5) over the interval (0, σ(t)).
Then, we have

ρφ
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0
ρw
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qdr,

Using the boundary conditions, we get
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ρφσ(t)
ν(1−Hext). (12)

We discretize the derivative by

∂
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< S >≈
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Td

,

and we get

Td ≈
(1− Sdry)φρR0

ν(1−Hext)ρsatv (T )
σ(Td).

Since we do not know σ(t), from the above relation we get only an upper
estimate for Td,

Td ≤
(1− Sdry)φρR0

ν(1−Hext)ρsatv (T )
R0. (13)

4.4 Simulations

In Figures 5 and 6, we present the depedence (for fixed parameters) of
drying time and the ratio V , respectively, on the external humidity Hext

and temperature T .

The plot in Figure 7 presents the optimal value of the external humidity
Hext for fixed temperature T that should be set in order to avoid the eye
formation in a sausage. This plot can be used to set the best value for the
temperature once the external humidity has been fixed, or viceversa. For
instance: assuming a humidity of 0.6 we should set a temperature of almost
27C◦.

5 Mass transport equation as a model for a pro-
cess of drying a sausage

In this section we present an alternative modelling approach to the sausage
drying process using the mass transport equation.
As in the previous modelling approaches we investigate the one dimensional
problem. We consider a mass of liquid m(x, t) inside the sausage. The
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dynamics of the mass of liquid is given by the mass transport equation,
where the velocity of transport is the proportional to the gradient of the
pressure of the liquid. We assume that the whole outflow of the mass takes
place at the sausage casing with the rate Q. This outflow process depends
on the external temperature, humidity and the level of liquid at the sausage
casing. Thus, the dynamics of the drying process is given by the equation:

∂m

∂t
+ γ(m)

∂m

∂x
= 0, (14)

with the initial condition
m(x, 0) = 1,

and with the boundary condition

∂m

∂x

∣∣∣∣
x=R

= −Q(H,T,m(R, t)),

where the velocity of transport is proportional to the gradient of pressure
γ(m) ∝ ∇p, H denotes external humidity and T is external temperature .

In further analysis we consider the p = αm, where α is a nonnegative
constant. Thus, the investigated model is defined by

∂m

∂t
+ α

(
∂m

∂x

)2

= 0 (15)
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with the initial condition
m(x, 0) = 1,

and with the boundary condition

∂m

∂x

∣∣∣∣
x=R

= −Q(H,T,m(R, t)).

We say that the sausage is dry at time t, when ∀x m(x, t) ≤ mdry, where
mdry is equal to some threshold. For our experimental data, we know that
mdry is equal to 0.8 and the drying process lasts 4 days.

Due to the lack of sufficient experimental data describing the dynamics
of m(x, t), we investigate model (15) wheater it exhibts the behevoiur of ’eye’
and ’non-eye’ sausage after 4 days of drying. We solve the problem (15) using
MATLAB software and its numerical procedure pdepe. In our numerical
experiments we assume that during the drying process developed by the
sausage producer the constant α is an optimal one, since most of the drying
processes leads to the non-eyed sausage. Of course the factor α is strictly
related to the porosity, permeability of the sausage, but we have not enough
data to estimate it in a better way. Several numerical experiment resulted
in finding the optimal one, namely α = 0.45. Then we change the external
condition to recover an ’eye’ and ’no-eye’ drying process, for this purpose
we assume that Q = βm(R, t). In next stage of our experiments we try to
find the value of β which results in ’eye’ and ’non-eye’ sausage after a fixed
time of drying.

In figure 5 we see the dynamics of the drying process which lead to the
’eye’ sausage - in this case β = 0.15. It is seen that after a fixed time tend
of drying, the mass of liquid in some region of the sausage is not below the
desired threshold mdry, it means that in that region we have an ’eye’. On
the other hand, we find the value of β = 0.17 resulting in ’non-eye’ sausage
- we see that after the fixed time of drying tend the mass of the liquid inside
the sausage is below the desired level mdry.

In further work, as we received experimental data describing the mass
of the liquid inside a sausage during the drying process, using for instance
the oridinary techniques of data analysis (such as corelation, etc), we can
estimate more precisely the function Q(H,T,m(R, t)) and the velocity of
the transport γ(m(x, t)). We believe that these estimates can result in more
realistic model of drying the sausage.

6 Conclusions and future work

In this report, we have proposed three different approaches to model the
process of a sausage drying. Based on the introduced models, we have de-
rived formulas for the optimal dependence between two parameters (external
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Figure 8: Dynamics of the drying process, which leads to ’eye’ sausage. The
mass of liquid m(x, t) is presented at 5 time-points: t0, t1, t2, t3, tend.

temperature and humidity) that should be tuned to control the considered
process. Obtained qualitative results are satisfactory and corresponds to
the expected ones. In order to have quantitative results, more experimental
data and more detailed description of the sausage drying process is required.
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