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Rocket car 1

Objective: Reach target as fast as possible.

Control: Acceleration.

Constraints: Stop at target, control constraints.
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THE model 2

Quantities: t .. time, x(t) ∈ R position, u(t) ∈ [−1,+1] control,

m > 0 mass, x0 6= 0 initial position

Equation of motion:

m x ′′(t) = u(t)

x(0) = x0
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THE model 2

Quantities: t .. time, x(t) ∈ R position, u(t) ∈ [−1,+1] control,

m > 0 mass, x0 6= 0 initial position

Equation of motion:

m x ′′(t) = u(t)

x(0) = x0

Optimal control problem:

Minimize T subject to

• Equation of motion

• x(T ) = 0, x ′(T ) = 0

• |u(t)| ≤ 1
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THE model 2

Quantities: t .. time, x(t) ∈ R position, u(t) ∈ [−1,+1] control,

m > 0 mass, x0 6= 0 initial position

Equation of motion:

m x ′′(t) = u(t)

x(0) = x0

Optimal control problem:

Minimize T subject to

• Equation of motion

• x(T ) = 0, x ′(T ) = 0

• |u(t)| ≤ 1

Problem: Find a solution!
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Optimal control problem 3

Features:

• optimization problem

• some optimization variable are functions → infinite-dimensional

optimization

• differential equations (ode / pde)

• inequalities
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Generic optimal control problem 4

Minimize functional J given by

J(x, u, T ) :=

∫ T

0

f0(x(t), u(t), t) dt

subject to the ODE

x ′(t) = f (x(t), u(t)) a.e. on (0, T ),

initial and terminal conditions

x(0) = x0, x(T ) = z

control constraints

u(t) ⊂ U.

Setting f0 = 1 the case of the time-optimal problem is contained as

special case.

Unknowns: measurable functions u, x with u(t) ∈ Rm, x(t) ∈ Rn.

Problem: Find a solution!
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Characterization of optimal controls 5

Consider the simpler problem of minimizing f : R→ R,

min f (x), x ∈ R.

If f is differentiable, then every solution x̄ satisfies

f ′(x) = 0.

Solve this equation to find candidates for solutions!

EMS school Bedlewo Daniel Wachsmuth



Characterization of optimal controls 5

Consider the simpler problem of minimizing f : R→ R,

min f (x), x ∈ R.

If f is differentiable, then every solution x̄ satisfies

f ′(x) = 0.

Solve this equation to find candidates for solutions!

What is f ′ in the optimal control problem??
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Directional derivative 6

Assumption: For every control function u there exists a uniquely

determined solution of the ODE x = x(u).

Simplification: No terminal constraint.

Task: Compute directional derivative Given control u0, x0, direction

h

J ′(x0, u0)h ≈
1

ǫ
(J(x(u0 + ǫh), u0 + ǫh)− J ′(x0, u0))

Disadvantages:

• Choice of ǫ

• Each evaluation of one difference quotient requires one (nonlinear)

ODE solve
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Derivatives 7

Chain rule:

d

du
J(x0, u0) = Jx(x

0, u0)
d

du
x(u0) + Ju(x

0, u0)

(Total) Directional derivative

d

du
J(x0, u0)h = Jx(x

0, u0)
d

du
x(u0)h + Ju(x

0, u0)h

The quantity z := d

du
x(u0)h is the solution of the linearized ode

z ′ = fx(x
0, u0)z + fu(x

0, u0)h, z(0) = 0

The quantity Jx(x
0, u0) d

du
x(u0)h is a dual product:

Jx(x
0, u0)

d

du
x(u0)h = 〈Jx(x

0, u0),
d

du
x(u0)h〉
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Derivatives 7

Chain rule:

d

du
J(x0, u0) = Jx(x

0, u0)
d

du
x(u0) + Ju(x

0, u0)

(Total) Directional derivative

d

du
J(x0, u0)h = Jx(x

0, u0)
d

du
x(u0)h + Ju(x

0, u0)h

The quantity z := d

du
x(u0)h is the solution of the linearized ode

z ′ = fx(x
0, u0)z + fu(x

0, u0)h, z(0) = 0

The quantity Jx(x
0, u0) d

du
x(u0)h is a dual product:

Jx(x
0, u0)

d

du
x(u0)h = 〈Jx(x

0, u0),
d

du
x(u0)h〉 =

〈(

d

du
x(u0)

)

∗

Jx(x
0, u0), h
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Adjoint equation 8

How can we characterize

q :=

(

d

du
x(u0)

)

∗

Jx(x
0, u0)?

It turns out that

q = fu(x
0, u0)T p,

where p solves the linear ODE [Recall J =
R

f0(x, u)]

−p′(t) = fx (x
0, u0)T p + f0,x(x

0, u0)T , p(T ) = 0.

Conclusion: Given (x0, u0) and p0. Then

d

du
J(x0, u0)h =

∫ T

0

pT fu(x
0, u0)h + f0,u(x

0, u0)h

Advantage: One linear ODE needed to evaluate many directional

derivatives.
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Universal applicability 9

Adjoint equation:

−p′(t) = fx (x
0, u0)T p + f0,x(x

0, u0)T , p(T ) = 0.

Properties:

• Linear in p

• Operator in the equation is the linearized and transposed (adjoint)

operator of the state equation

• Inhomogeneities originate from objective functional

• Nonzero data only where observation takes place

Advantage:

• One linear ODE solve to obtain all derivative information

• Works for many problems: PDE, shape optimization, etc
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10

We only wanted to evaluate f ′ ...
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Recall optimal control problem 11

Minimize functional J given by

J(x, u, T ) :=

∫ T

0

f0(x(t), u(t), t) dt

subject to the ODE

x ′(t) = f (x(t), u(t)) a.e. on (0, T ),

initial and terminal conditions

x(0) = x0, x(T ) = z

control constraints

u(t) ⊂ U.

Optimal control: (x∗, u∗, T ∗) is optimal if

J(x∗, u∗, T ∗) ≤ J(x, u, T )

for all admissible (x, u, T ).
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Pontryagin maximum principle 12

Define Hamilton-Function:

H(t, x, u, p, λ0) = p
T f (x, u)− λ0f0(x, u, t)

Theorem: Let the functions f , f0 be continuous wrt (x, u, t) and

continuously differentiable wrt (t, u). Let U ⊂ Rm be given.

Let (x∗, u∗, T ∗) be optimal.

Then there exists pT ∗ ∈ R
n, λ0 ∈ R with (λ0, pT ∗) 6= 0, λ0 ≥ 0 such

that the following conditions are satisfied

• Adjoint equation

−p′(t) = fx (x
∗(t), u∗(t), t)T p(t)− λ0f0,x(x

∗(t), u∗(t), t)T

p(T ∗) = pT ∗

• Maximum condition

H(t, x∗(t), u∗(t), p(t), λ0) = max
v∈U
H(t, x∗(t), v , p(t), λ0) a.e. on (0, T ∗)
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Pontryagin maximum principle 13

• Maximum function

max
v∈U
H(t, x∗(t), v , p(t), λ0)

is continuous on [0, T ∗] and satisfies at T ∗

max
v∈U
H(T ∗, x∗(T ∗), v , p(T ∗), λ0) = 0.

In particular, the maximum condition is satisfied in all points of

left/right-continuity of u∗.

Message: The maximum principle generalizes the equation f ′(x) = 0.

Solve the system given by PMP to obtain solution candidates.
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Comments 14

• PMP is a necessary optimality condition: sometimes sufficient

(convex problems)

• Comparison to Kuhn-Tucker-type optimality conditions: Here no

derivatives wrt u needed!

• Role of λ0: Indicates (non-)degeneracy of constraints.

If one knows λ0 > 0 a-priori, the PMP-system can be scaled such

that λ0 = 1.

The point (λ0, pT ∗) = 0 is a solution of the PMP-system.

There is no equation to determine λ0 -in computations set λ0 = 1.
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Rocket car 15

Here: non-degenerate case λ0 > 0 if x0 6= 0.

Control u∗ is bang-bang

u∗(t) =







− sign(x0) if t ∈ (0, T ∗/2)

sign(x0) if t ∈ (T ∗/2, T ∗)
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PMP as boundary value problem 16

Suppose that f is continuously differentiable wrt u, and U = Rm (no

control constraints). Then the maximum condition implies

Hu(t, x
∗(t), u∗(t), p(t), λ0) = 0,

which gives

−p(t)T fu(x
∗(t), u∗(t), t) + f0,u(x

∗(t), u∗(t), t) = 0

If we can solve this equation for u∗ = u∗(p), then we can replace the

control u by the function u(p) in the state equation, and obtain a

boundary value problem for (x∗, p).

Solve with ODE-integration methods.
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Discretize-then-optimize 17

1. Discretize ODE by some discretization method (e.g. finite

differences)

2. Obtain finite-dimensional optimization problem

3. Use optimization software
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Optimize-then-discretize 18

1. Derive formulas for derivatives (gradient, Hessian) of optimal

control problem

2. Use (infinite-dimensional) optimization algorithm

3. Discretize and run the algorithm in finite-dimensional space
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High-lift configuration: Lift maximization 19

Maximize Lift

under the constraints











Navier-Stokes equations

Maximal drag

Control constraints
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Adjoint equation 20

Navier-Stokes equations:

yt − ν∆y + (y · ∇)y +∇p = 0

div y = 0

y |Γ = u

y(0) = y0.

Adjoint equations:

−λt − ν∆λ+ (∇y)
Tλ− (y · ∇)λ+∇π = 0

divλ = 0

λ|Γ = ~e

λ(T ) = 0.

d

du
J(y 0, p0, u0)h =

∫

(0,T )×Γ

−(ν
∂λ

∂n
− πn)h
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Results 21

Snapshots of vorticity: uncontrolled / controlled

Adjoint velocity field: Large near wing and near stagnation point

streamline
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