
The 23rd ECMI Modelling Week
European Student Workshop
on Mathematical Modelling
in Industry and Commerce

Wrocław University of Technology, Wrocław, Poland, August 23-30, 2009

Report of project group 4 on

How to climb a mountain?

How to Climb a Mountain?
Simulating efficient ways to the

mountain top.

Marc-Nicolas Glöckner, University of Paderborn, Germany

Mi losz Marzec, Wroc law University , Poland

Nicodemus Banagaaya, Eindhoven University of Technology, The Netherlands

Rasmus Henningsson, Lund University, Sweden

Sina Meister, Dresden University, Germany

Till Schröter , Oxford University, UK

Instructor
Thomas Goetz, Kaiserslautern University, Germany

November 2, 2009

1 Introduction

During the recent 23rd ECMI Modelling Week in
the beautiful city of Wroclaw in Poland, our group
worked on the question of optimally reaching the
top of a mountain.
This question is of relevance for many regions of
the world. Whilst mountain rescue is an applica-
tion where this knowledge can make a difference be-
tween life and death, the question is of greater im-
portance for mountain communities that are mainly
reached by foot and where survival and the stan-
dard of living depends on finding efficient ways of
providing supply.
The problem was approached in two stages. The
first stage focused on quantifying the problem and

gaining the insights necessary to formulate the
problem consistently. The second stage was con-
cerned with implementing the quantitative proce-
dures eventually leading to a solution of the prob-
lem.

To formalise the problem, we focused on two
quantities that are pertinent in the given setting.
One is the amount of the energy (in kcal) needed
to reach the mountain top. The other is the time
needed to arrive at the summit. Both quantities
provide information about the quality of a chosen
path. The total energy needed is of interest if the
aim is to transport goods, whereas in emergency
situations time is of greater importance.
To model the behaviour of a person walking at
steady pace in mountainous terrain we had to

1

make sure that routes which are only accessible to
climbers are not considered by the algorithm. This
lead to a restriction on the maximum steepness of
the walkers path to 45 degrees.
Based on those assumptions empirical data is avail-
able that links the slope of a path to the energy
consumed [1], and to the velocity along the way
[2].
Finally, using the available data we had to decide on
a model of the hiker movements along data points.
Altitude data of mountains is usually given on a
square basis, where every square represents a re-
gion of same altitude. Based on that a hiker situ-
ated at the lower left corner of a square is in our
simulation allowed to walk along the horizontal and
vertical sides of the square and able to traverse it
in some specific angles (as can be seen in figure 3).

Figure 1: Energy optimal path up the mountain
‘Wank’. - The colour represents the steepness of
the slope. (red=steep)

In terms of the energy the slope a of a line
between two grid points relates to the energy
needed per unit length via

2.635 + 17.37a + 42.37a2 − 21.43a3 + 14.93a4

according to [1]. In terms of time the slope a
relates to the velocity in kilometres per hour via
6e(−3.5|a+0.05|) according to [2].

Upon implementation of the Dijkstra algo-
rithm, altitude data of the mountain ‘Wank’,
situated in the Bavarian alps, along a 5m × 5m
grid was available to test the modelling approach.

The next section will be used to discuss the al-
gorithm and its implementation.
Section 3 is concerned with the data interpretation.
Finally in Section 4 we discuss different modelling
approaches to the same problem and conclude.

2 Dijkstra’s Algorithm

Dijkstra’s algorithm is an algorithm to find the best
path between a starting node and any other node in
a graph with weighted edges. The weights should
be nonnegative. Figure 2 illustrates a simple graph
with two different paths between a start and an end
node. The red path is optimal since it has a lower
total cost.

The idea behind the algorithm is to search many
paths at once and to always explore the cheapest
paths first. This guarantees that whenever a path
is extended to a new node, that must be the best
path to that node from the starting node. (See 2.1
for details.)

To use Dijkstra’s algorithm to solve our prob-
lem, we constructed a graph from the map data as
follows:

• Nodes at map grid points (unless too steep).

• Edges between neighbouring points (as de-
picted in figure 3).

• Edge weight given by cost function.

It is considered too steep to walk through a node
if the mountain slopes more than 45 degrees in any
direction at that grid point.

2

Figure 2: Simple graph

Figure 3: Node paths

2.1 Implementation of the algorithm

Since the graph is constructed from a map, data
that needs to be stored per node can be conve-
niently put in a M×N matrix, where each element
corresponds to a grid point in the map. For each
node we need to store:

• The total cost to reach that node (initialised
at infinity).

• The previous node in the optimal path leading
to this node.

To keep track of what node to visit next, a priority
queue is used. The queue is sorted by cost, i.e. at
the front of the queue is the cheapest node to visit
next. To get good performance, we implemented
the queue using a binary heap. At initialisation,
the starting node is put in the queue (with zero
cost). The algorithm then runs like this:

• Get the next node from the priority queue.

• For each neighbour of this node:
If this is the cheapest path found so far to that
neighbour:

– Update the cost matrix with the new cost.

– Store this node as the previous node of
the neighbour.

– Put the neighbour in the priority queue.

• Repeat until the priority queue is empty.

The worst case performance can be shown to be
O((E+N)·log(N)), where E is the number of edges
and N the number of nodes, when using a binary
queue for the priority queue. To illustrate the algo-
rithm running, figure 5-11 shows the state as more
and more iterations are performed. We are looking
at a small area around the starting node. Note that
while it does not show in the images, each node is
associated with a height and each edge with a cost.
At the first iteration, the pattern of reachable nodes
matches figure 3 as expected. During the next few
iterations, paths to the left (downwards) are ex-
plored. Whenever we retrieve the next node from
the priority queue, we have found the best path
to that node. This is true since all other paths to
that node must go through other nodes that are
not yet visited and thereby the cost is greater (oth-
erwise, one of those nodes would be at the front of

3

the queue). Thus by extending the visited area one
node at a time, we are guaranteed to find the opti-
mal path to each node. The last image shows the
paths when all nodes in the area are visited. At two
places close to the starting point, we can see paths
crossing. We would normally not expect intersec-
tions when using Dijkstra’s algorithm since there
are never two paths arriving at the same node(the
cheapest one would always be chosen). But these
intersections do not occur at nodes but rather in
between nodes. This is due to the discretization we
have chosen of the map, where there are not nodes
at all intersecting paths. Consider the case in fig-
ure 4. The two bottom nodes are at height a and
the top ones at height b. Assume that the costs
to arrive at the bottom nodes are equal (or almost
equal). In this case, due to the non-linearity of the
cost function, it might be cheaper to go from the
bottom left node to the top right node than going
from the bottom left node to the top left node. I.e.
even if the path is longer, the cost might be lower
since it is not as steep. The same argument holds
for the bottom right node, thus giving the inter-
secting paths. In this light, the intersections can
be viewed as an example of that it sometimes is
more efficient to zigzag when it’s too steep.

Figure 4: Paths might intersect when it’s steep if
it’s cheaper to go diagonally than to go straight.

Figure 5: Step 1,,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

Figure 6: Step 2,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

4

Figure 7: Step 3,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

Figure 8: Step 10,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

Figure 9: Step 20,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

Figure 10: Step 40,White = visited nodes, Blue =
reachable nodes, Black = unreachable nodes, Red
= paths

5

Figure 11: Step 2000,White = visited nodes, Blue
= reachable nodes,
Black = unreachable nodes, Red = paths

3 Numerical outputs

Our default situation is to climb up mountain Wank
starting nearby ‘Garmisch-Partenkirchen’ on a en-
ergy optimal path and not walking on flanks which
are steeper than 45 degrees.

Figure 12: Solution of the default situation

This solution (see figure 12 and figure 13) is a
little bit different to the actual paths on mountain
Wank (see figure 14).

Figure 13: Solution of the default situation - The
height is depicted with contours. (red=high)

Figure 14: Map of mountain Wank

But it starts zigzagging along steep flanks of the
mountain (see figure 15), a path pattern frequently
observed in mountainous areas, and successfully
avoids too steep slopes as can be seen in figure 16.
The path is nowhere steeper than 25 degrees.

6

Figure 15: Zigzagging

Figure 16: Solution of the default situation -
The colour represents the steepness of the slope.
(red=steep)

3.1 Different starting points

The starting point influences the path just in the
beginning. The two different paths are meeting af-
ter half of the way (see figure 17).

Figure 17: Different starting points: starting near
‘Garmisch-Partenkirchen’ (black) and near ‘Bur-
grain’ (white)

3.2 Different cost functions: energy
& time optimal

Moreover, we tested time against energy optimal
scenarios and it turned out that the paths only dif-
fered slightly. This comes to no surprise as the en-
ergy consumption function and the inverse of the
velocity function are the same at every slope angle
despite a scaling factor (see figure 19).

Figure 18: The energy optimal path (black) and
the time optimal path (white).

7

Figure 19: The energy consumption and the veloc-
ity depending on the slope.

energy opt. time opt.
Energy in kcal 926 927
Total time in h 1.9971 1.9931
Distance in km 4.3033 4.0874

3.3 Going up & down

Going up and down while minimising the energy
consumption is leading to slightly different paths
since the energy consumption function is not sym-
metric to zero (see figure 19) as it costs least energy
to walk down a gentle slope.

Figure 20: up & down (optimal energy)

Going up and down while minimising the time
needed is leading to the same path. That is because

of the symmetry (to zero) of the velocity function
(see figure 19).

Figure 21: up & down (optimal time)

3.4 Steep flanks - unwalkable nodes

In our algorithm we prohibited walking on flanks
(’unwalkable nodes’) which are steeper than 45 de-
grees. Figures 22 to 25 show that this is a reason-
able angle for our problem.

Figure 22: Flanks steeper than 45 are prohibited
(red). Too steep areas are excluded, but the moun-
tain area is walkable in most parts.

8

Figure 23: Flanks steeper than 40 are prohibited
(red). The prohibited area is getting connected -
it is getting difficult to walk the mountain without
ending up at a dead end.

Figure 24: Flanks steeper than 35 are prohibited
(red).

Figure 25: Flanks steeper than 25 are prohibited
(red). Almost the whole mountain is unwalkable.

3.5 Another mountain: Mount
Everest

Finally we tested the algorithm on Mount Ever-
est altitude data (see figure 26). To our pleasant
surprise the energy optimal path suggested by our
algorithm coincides in general to the classical route
via the Southeast Ridge (see figure 27). However,
we had to loosen the steepness restriction of the
walkable flanks and allow climbing at up to 90 de-
grees steep slopes for this solution. Anyway the
path itself is not steeper than 30 degrees.

Figure 26: Mount Everest - Energy optimal path
to the Mount Everest summit from the Base Camp.
(red=high)

9

Figure 27: Mount Everest - Classical route to the
Mount Everest summit from the Base Camp via
Southeast Ridge.

4 Other models

In our solution we worked directly on the discrete
5m × 5m grid point map. Alternatively you could
search for the optimal path to the top on the con-
tinuous surface of the mountain. In our case the
5m× 5m grid point map is the most detailed infor-
mation we had about the surface of the mountain,
so you have to interpolate the surface.
Again we need a cost function dependent on the
slope of our path. But now our total cost is no
longer a sum but an integral along the path. To
be able to calculate the integral, of total energy
needed, along the path we have to be able to de-
termine the gradient in every point on the surface.
For this reason we need the surface to be differen-
tiable.
To find such a surface you can use bi-cubic splines
or Bezier surfaces. Because Bezier surfaces differ
too much in height on the grid points we prefer a
bi-cubic spline interpolation.
When you finally have a differentiable surface you
have to find am optimal way up the mountain. For
this problem you can use the calculus of variations.
In detail you search the path u : [a, b]→ R×R with
u(a) = x and u(b) = y, where x is the starting point
and y is the end point and u is continuous so that u
minimises the total energy spent. We define set of
all functions u that fit in these conditions as X. To
find this optimal u we have to define a cost function
F = F (x, u(x), u′(x)). In our case the cost function

depends on the slope of the path. We can find this
slope by using the information of the position and
direction of the path u in our 2-dimensional map
to calculate the derivative on the surface. You can
do this by algorithmic differentiation, for example.
When you have the cost function, you search for
inf{I(u) =

∫ b

a
F (x, u(x), u′(x)) dx : u ∈ X}. This is

a typical problem in calculus of variations and you
can solve it with algorithms from this theory.
The advantage of this alternative ansatz is that you
can choose between a lot more different paths to
climb the mountain. In our algorithm we are lim-
ited on the finite number on grid points we have
to walk on, if you use a continuous surface of the
mountain you can walk in a lot more directions
from each point and you are maybe able to walk
on higher slopes because you are able to do zigzag-
ging in a lot more different angles.
On the other hand the time needed to find a opti-
mal solution grows a lot. You first have to inter-
polate the whole surface and after this you have to
run very complex algorithms to find solutions for
the problem of calculus of variations or a discrete
approximation of it. Even if you limit the search
space X to a smaller number of functions, for ex-
ample continuous differentiable functions the time
is still a lot higher than in our algorithm, what is
important if we want to use the algorithm to find
optimal paths along a mountain for mountain res-
cue for example.

5 Conclusion

Finally, we found an optimal path up the moun-
tain in a very efficient way. There seems to be a
strict limitation on the paths available because of
the need to walk along grid points. But if we look
at the differences between time and energy opti-
mised paths, we see that the resulting energy spent
or time needed differs only very little. In respect to
the generality of the cost function, that has to be
quite a rough approximation to reality, our limita-
tion is not so bad.
To improve the model we propose to extend the cost
function and allow a dynamic energy management
along the path. Unfortunately we have no such
function available that combines energy, slope and
velocity. If you have such a function you can first
optimise the energy management along the optimal

10

path we found, or even include the energy manage-
ment in the search for an optimal path.
If you optimise the energy management along the
path you could maybe run faster on steep slopes
and slower on gentle slopes or the other way around
to arrive at the top in the same time with less en-
ergy. If you include the energy management in you
search algorithm, you maybe even choose a differ-
ent path, were you climb higher slopes but with
lower velocity to find a different optimal path.

References

[1] Llobera, Marcos and Tim Sluckin ”Zigzag-
ging: Theoretical Insights on climbing strate-
gies”, J. Theo. Bio, No 249, 206-217 (2007)

[2] Pingel, Thomas J. ”Modelling slope as a con-
tributor to route selection in mountainous ar-
eas”, Working Paper (2009)

11

