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Abstract

In this paper we investigate the use of forecast averaging for electricity spot prices. While there
is an increasing body of literature on the use of forecast combinations, there is only a small
number of applications of these techniques in the area of electricity markets. In this compre-
hensive empirical study we apply seven averaging and one selection scheme and perform a
backtesting analysis on day-ahead electricity prices in three major European and US markets.
Our findings support the additional benefit of combining forecasts for deriving more accurate
predictions, however, the performance is not uniform across the considered markets. Interest-
ingly, equally weighted pooling of forecasts emerges as a viable robust alternative compared
with other schemes that rely on estimated combination weights. Overall, we provide empiri-
cal evidence that also for the extremely volatile electricity markets, it is beneficial to combine
forecasts from various models for the prediction of day-ahead electricity prices. In addition,
we empirically demonstrate that not all forecast combination schemes are recommended.

Keywords: Electricity price forecasting, Forecasts combination, ARX model, Day-ahead
market

1. Introduction

Sincethe early 1990s, structural reforms and deregulation have lead to significant changes
in worldwide electricity markets. Like other commodities, electricity is now traded under com-
petitive rules using spot and derivative contracts (Bunn, 2004; Shahidehpour et al., 2002). How-
ever, one particular feature of most electricity markets is that the spot market is actually a day-
ahead market that does not allow for continuous trading. This is a result of system operators
requiring advance notice in order to verify that the schedule is feasible and lies within trans-
mission constraints. In a day-ahead market agents submit their bids and offers for delivery of
electricity during each hour (or half-hour) of the next day before a certain market closing time.
Thus, when dealing with the modeling and forecasting of intraday prices it is important to recall
that prices for all spot contracts of the next day are determined at the same time using the same
available information (Conejo et al., 2005; Huisman et al., 2007; Misiorek et al., 2006; Peña,
2012). The system price is then calculated as the equilibrium point for the aggregated supply
and demand curves and for each of the hourly or half-hourly intervals.
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In contrast to other tradable commodities, electricity is practically non-storable. As a result
the electricity spot (or day-ahead) price time series exhibit specific characteristics. The seasonal
character of the prices is a direct consequence of demand fluctuations that mostly arise from
business hours at the daily or weekly level or changing climate conditions like temperature or
the number of daylight hours at the yearly scale. In addition to seasonality and mean reversion,
electricity prices exhibit an extremely high price volatility as well as infrequent, but large price
spikes. These features have forced producers and wholesale consumers to hedge not only
against volume risk but also against price movements. This in turn has significantly enhanced
research efforts towards modeling and forecasting spot electricity prices.

A wide range of econometric or statistical models have been suggested in the literature in-
cluding regression models, jump-diffusions, GARCH-type models and regime-switching mod-
els (for reviews see e.g. Eydeland and Wolyniec, 2013; Huisman, 2009; Weron, 2006). How-
ever, in terms of predicting spot price movements, each model specification yields a different
forecast. Facing the variety of alternative models available in the literature, one could discard
all of the models but one on the basis of their goodness of fit and forecasting performance.
Alternatively, one can allocate weights to the various forecasts produced by individual models
in order to obtain a combined forecast for the day-ahead electricity price. The latter strategy
may be more favorable in the context of changing model and predictor relevance through time
and can potentially achieve a better forecasting performance by virtue of smoothed model se-
lection. The best model is not known in advance so allocating weights to the individual models
is used as a hedge against the possibility of an inaccurate model choice. That said, this strategy
can also decrease the overall accuracy, if the best model is easy to recognize beforehand.

Despite the increasing body of literature on the use of forecast combinations (also referred
to as ‘combining forecasts’, ‘forecast averaging’ or ‘model averaging’) for prediction, there is
only a small number of applications of these techniques in the area of electricity markets. To
our best knowledge, existing applications so far only include the work by Løland et al. (2012),
Smith (1989), Taylor (2010) and Taylor and Majithia (2000) in the context of load and trans-
mission congestion forecasting, and by Bordignon et al. (2013) and Raviv et al. (2013) in the
context of spot (day-ahead) price forecasting. The relatively small number of studies on com-
bining forecasts produced by various models is surprising since, in the context of electricity
price forecasting, research shows that performance of individual models is often unstable and
dependent on the considered periods of price behavior, see e.g. Conejo et al. (2005) and Weron
and Misiorek (2008). This motivates us to thoroughly investigate whether forecast combina-
tions are able to outperform individual methods.

The contribution of our paper is twofold. First, we apply a great variety of stochastic models
and forecast combination techniques to the data. These include, for example, standard autore-
gressive models, regime-switching models, mean-reversion jump diffusion models and semi-
parametric autoregressive models. Techniques for forecast combinations include simple equal
weighted averaging, forecast combinations based on OLS regression, constrained least squares
regression (CLS, PW), Least Absolute Deviation (LAD) regression, as well as model averaging
based on a Bayesian approach. The majority of the averaging techniques have not been applied
to forecasting electricity spot prices yet. Second, we provide the so far most extensive study,
using four datasets from key electricity markets worldwide. Considered markets include the
Nordic power exchange (Nord Pool), the European Energy Exchange in Leipzig (EEX) and the
Pennsylvania-New Jersey-Maryland Interconnection (PJM). For these markets we compare the
averaging techniques with the realistic situation where the market participants have to decide
ex ante which individual model to use. Hereby, we assume that participants decide to pick one
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of the models that performed well in the past, and then examinethe performance of this model
in comparison to the averaging techniques. We evaluate the performance based on different
criteria and conduct Diebold-Mariano tests in order to investigate whether combining forecasts
can significantly improve the performance. Our findings suggest that several of the examined
averaging schemes do generally provide better results than using individual models only.

The remainder of the article is organized as follows. Section 2 provides an overview of
the recent literature on forecast averaging and its limited applications in electricity markets.
Section 3 describes the four datasets used in this study, while Section 4 reviews the individual
models for forecasting electricity spot prices and the averaging techniques. Finally, Section 5
presents empirical results and Section 6 concludes.

2. Combining forecasts and electricity markets

The idea of combining forecasts goes back to the late 1960s, with the works of Bates and
Granger (1969), Crane and Crotty (1967) and Newbold and Granger (1974). Examining fore-
cast combinations using various models and weights based on mean squared errors, the authors
found a significant improvement in terms of reducing prediction errors. Since then, many
authors have suggested the superior performance of forecast combinations over the use of in-
dividual models, see e.g. Clemen (1989), Diebold and Pauly (1987), de Menezes et al. (2000),
Stock and Watson (2004), Timmermann (2006) and references therein. Forecast averaging has
become so popular, with so many different ways to combine forecasts, that Andrawis et al.
(2011) suggest to use hierarchical forecast combinations, i.e. combining combined forecasts.

While there is a large body of literature on forecasting day-ahead electricity prices and
loads, only few of these studies examine the performance of combining forecasts obtained
from individual models. To our best knowledge, existing applications so far only include the
work by Bordignon et al. (2013), Løland et al. (2012), Raviv et al. (2013), Smith (1989), Taylor
(2010) and Taylor and Majithia (2000). Hereby, earlier studies concentrate on forecasting elec-
tricity demand or transmission congestion, while only the two most recent focus on forecasting
electricity spot prices.

Smith (1989) combines several ARIMA time series models for electricity demand. Hereby,
the selection and combination of forecasts from different prediction methods is conducted on
the basis of recent forecasting performance only, with no a priori assumptions about demand
behavior. The author argues that such a procedure allows the prediction process to automat-
ically adapt to the changing nature of the demand series over different days of the week and
over different seasons. The weights of the forecast combinations change for different days of
the week, to overcome cyclic modeling weaknesses of the individual models. Results of the
empirical analysis suggest that the combined forecasts are significantly more accurate than any
of the forecasts obtained from the individual models.

Taylor and Majithia (2000) apply switching and smooth transition forecast combination
models for electricity demand profiling. The applied models allow for combining weights to
vary across half-hourly intervals which is an appealing feature as different forecast models may
be more suitable for different periods. A number of criteria are used to control the changing
weights, including weather and the shape of demand profiles. Empirical results suggest an
improved post-sample forecasting performance of the applied models.

Taylor (2010) applies so-called triple seasonal methods for short-term electricity demand
forecasting. Hereby, double seasonal ARMA and two different double exponential smoothing
methods are extended to accommodate an additional intra-year seasonal cycle. The author
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illustrates the superior performance of the developed models over double seasonal methods. A
result in particular relevant for our study is that further improvement in accuracy of the day-
ahead forecasts is produced by using a combination of the forecasts from two of the applied
methods.

Løland et al. (2012) forecast hourly day-ahead transmission congestion in the southern Nor-
way (NO1) price area of the Nord Pool system. They utilize a number of prediction methods,
including naive, exponential smoothing, ARIMA and TAR models. These forecasts are further
combined, using equal weights (see Section 4.2.1), a weighted average with respect to esti-
mated prediction error variances or a variant of the Bates and Granger (1969) averaging. The
authors report that the latter approach yields the best results overall and that equal weights aver-
aging is the worst of the three. However, for high absolute values of the net capacity utilization
(i.e. a measure of transmission congestion), combining does not beat the naive approach.

Raviv et al. (2013) model each hourly price by considering the intra-day relation between
the individual hours in the Nord Pool spot market. For the univariate analysis, they use hetero-
geneous autoregressive (HAR) and dynamic ARX models. For the multivariate analysis, they
use VAR-type, Bayesian VAR, reduced rank regression (RRR), principal component regression
and reduced rank Bayesian VAR models. The authors do not focus on investigating the use-
fulness of averaging forecasts, but in an empirical application they find that additional gain is
achieved by using forecast combinations of individual models: even the best individual model
is outperformed by forecast averaging (though not by a huge margin).

Finally, a recent paper by Bordignon et al. (2013) is the one most related to ours. Actually,
our paper can be considered as an extension of their study. The authors combine five mod-
els: ARMAX, linear regression, time-varying regression and two variants of Markov regime-
switching (MRS) to forecast British day-ahead electricity prices from five representative half-
hourly load periods. All individual models are estimated recursively on an expanding window
(as in this study), except for the MRS model which is additionally estimated using a rolling
window of 6 months. Bordignon et al. (2013) consider five forecast averaging methods: equal
weights (see Section 4.2.1), Bates-Granger (similar to IRMSE averaging, see Section 4.2.4),
adaptive Bates-Granger and two variants of the adaptive Aggregated Forecast Through Expo-
nential Re-weighting (AFTER) combination. The first two are calibrated using fixed 20- or
64-day selection periods, while the adaptive methods use either rolling or expanding windows,
like in our study.

In their analysis, Bordignon et al. (2013) examine whether forecast combinations outper-
form individual methods, both from an ex post, i.e. using full sample information, and a much
more realistic ex ante perspective, i.e. using only information available at the time the forecast
is made. In the ex post analysis, they find that only a few cases (9%) are significant, although
most combined forecasts (76%) perform better than individual forecasts. From the ex ante
perspective, they find that again combined forecasts perform better (79%) than individual fore-
casts but this time as many as 33% cases are significant. On the other hand, only in 1% of the
cases individual forecasts are significantly less accurate than the combined forecasts. While our
findings also support the additional benefit of combining forecasts for deriving more accurate
predictions, they are not as clear-cut. Using 12 individual models, four datasets from three dif-
ferent markets, longer calibration and out-of-sample time periods and, most importantly, seven
different averaging schemes, we find that the performance is not uniform across the considered
markets.
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Figure 1: Two upper panels: Nord Pool hourly system prices (in NOK/MWh) and hourly air temperatures (in
Celsius) for the period April 2, 1998 – December 5, 1999.Two lower panels: Nord Pool hourly system prices
(in EUR/MWh) and hourly air temperatures (in Fahrenheit) for the period February 2, 2009 – June 27, 2010. In
all subplots the out-of-sample test (‘Forecast’) periods are indicated by rectangles, while the vertical dotted lines
represent the beginning of the calibration windows for the forecast averaging methods (four weeks prior to the test
periods).

3. The datasets

The datasets used in this empirical study include four spot (or day-ahead) price time se-
ries from three major power markets: Nord Pool (NP; years 1998-1999 and 2009-2010), the
European Energy Exchange (EEX; 2009-2011) and the Pennsylvania-New Jersey-Maryland
Interconnection (PJM; 2010-2012). The oldest dataset (NP 1998-1999) was also studied by
Weron and Misiorek (2008); the forecast averaging results (see Table 1) can be easily com-
pared with those of the individual models (Table 2 in the cited paper). The three recent datasets
provide a more timely description of price behavior. In contrast to previous studies on combin-
ing electricity spot price forecasts (Bordignon et al., 2013; Raviv et al., 2013), the range of data
we use here allows for a thorough evaluation of the models under different conditions stemming
from the different time periods, geographical areas and the different exchanges (frequency and
severity of spikes, weather conditions, generation stack, market regulations, etc.).
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3.1. NP99 – Nord Pool (1998-1999)
This dataset comprises hourly Nord Pool market clearing prices (in NOK/MWh) and hourly

temperatures (in Celsius) for the period April 2, 1998 – December 5, 1999. The time series were
constructed using data published by the Nordic power exchange Nord Pool (www.nordpool.com)
and the Swedish Meteorological and Hydrological Institute (www.smhi.se) and preprocessed
to account for missing values and changes to/from the daylight saving time (like in Weron,
2006, Section 4.3.7). The missing data values and a few outliers (e.g. an extremely low price
surrounded by 4-5 times higher prices or a twice lower temperature figure than normal) were
substituted by the arithmetic average of the two neighboring values. The ‘doubled’ values
(corresponding to the changes from the daylight saving/summer time) were substituted by the
arithmetic average of the two values for the ‘doubled’ hour.

The air temperature was chosen as the exogenous (fundamental) variable; typically it is the
most influential on electricity prices weather variable (Weron, 2006). The actual temperatures
observed on dayT +1 were used as the 24 hourly day-ahead temperature forecasts available on
dayT . Slightly different – possibly better – results would be obtained if day-ahead temperature
forecasts were used, but these were not available to us.

Following earlier studies, see e.g. Conejo et al. (2005) and Misiorek et al. (2006), we ap-
plied the logarithmic transformation to the price series in order to attain a more stable variance
and removed the mean log-price and the median temperature to center the data around zero.
The dependence between log-prices and temperatures is moderately anticorrelated, i.e. low
temperatures in Scandinavia imply high electricity prices at Nord Pool and vice versa, see the
top two panels in Figure 1; Weron and Misiorek (2008) report that in the studied period the
Pearson correlation between log-prices and temperatures is negative (ρ= −0.47) and signifi-
cant (p-value≈ 0; null of no correlation). The ‘hourly air temperature’ is in fact a proxy for
the air temperature in the whole Nord Pool region. It is calculated as an arithmetic average
of the hourly air temperatures in six Scandinavian cities/locations (Bergen, Helsinki, Malmö,
Stockholm, Oslo and Trondheim).

Finally, note that in comparison to the study of Weron and Misiorek (2008), the forecast
period has been significantly extended. Instead of considering four five-week test periods cor-
responding to the seasons of the year, we analyze a 44 weeks long forecast window (February
1, 1999 – December 5, 1999). Weeks 1-5 correspond to period II (February) in Weron and
Misiorek (2008), weeks 13-17 to period V (May), weeks 27-31 to period VIII (August) and
weeks 40-44 to period XI (November). Like in the cited paper, the calibration window starts
on April 2, 1998.

3.2. NP10 – Nord Pool (2009-2010)
This dataset was constructed similarly to the previous one. It comprises Nord Pool hourly

system prices (in EUR/MWh) and hourly air temperatures (in Fahrenheit) for the period Febru-
ary 2, 2009 – June 27, 2010. However, this time the ‘hourly air temperature’ was calcu-
lated as an arithmetic average of the observed hourly air temperatures in five Scandinavian
cities/locations: Copenhagen, Helsinki, Oslo, Stockholm and Trondheim using data provided
by NOAA’s National Climatic Data Center (www.ncdc.noaa.gov).

The logarithms of hourly temperaturesTt (now in Fahrenheit, not Celsius) were used as the
exogenous variable in the time series models for the log-prices. More precisely, we applied the
following transform: log(Tt − minTt + 1), so that the obtained series is bound by zero from
below. A limited forecasting study we performed has shown that temperatures transformed in
such a way lead to more accurate spot price forecasts than the temperatures themselves. As
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Figure 2:Top panel: EEX hourly system prices (in EUR/MWh) for the period October 5, 2009 – February 27,
2011; note that the EEX dataset is the only one without a fundamental variable.Middle and bottom panels: PJM
hourly system prices (in USD/MWh) and hourly air temperatures (in Fahrenheit) for the period August 22, 2010 –
January 14, 2012. In all subplots the out-of-sample test (‘Forecast’) periods are indicated by rectangles, while the
vertical dotted lines represent the beginning of the calibration windows for the forecast averaging methods (four
weeks prior to the test periods).

before, the mean log-price and the median log-temperature were removed to center the data
around zero. The forecast period consists of 30 weeks, see the two lower panels in Figure 1.
It covers the period November 30, 2009 – June 27, 2010. The calibration window starts on
February 2, 2009.

3.3. EEX – European Energy Exchange (2009-2011)
The last European dataset comprises EEX hourly system prices (in EUR/MWh) for the

period October 5, 2009 – February 27, 2011 (source: www.eex.com). They were preprocessed
for missing, ‘doubled’ values and outliers in a way similar to that for the previous datasets.
Because negative electricity prices were recorded during the studied period (see the top panel
in Figure 2), no logarithm transform was used. This dataset is also the only one without a
fundamental (exogenous) variable. As a consequence, the number of considered time series
models is reduced by a half. Like for the NP10 and PJM datasets, the forecast period consists
of 30 weeks. It covers the period August 2, 2010 – February 27, 2011. The calibration window
starts on October 5, 2009.

3.4. PJM – Pennsylvania-New Jersey-Maryland Interconnection (2010-2012)
The last dataset comprises hourly day-ahead locational marginal prices (LPMs) for the PJM

JCPL zone and hourly air temperatures for New York City. The time series were constructed
using data published by EDF Suez (www.gdfsuezenergyresources.com) and NOAA’s National
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Climatic Data Center (www.ncdc.noaa.gov). They were preprocessed for missing, ‘doubled’
values and outliers in a way similar to the other datasets.

The logarithms of hourly temperaturesTt (in Fahrenheit) were used as the exogenous vari-
able in the time series models for the log-prices (no additional transformations were required
since the temperatures were above 1oF in the studied period). This selection was motivated by
a roughly linear dependence between these two variables. The mean log-price and the median
log-temperature were removed to center the data around zero. The forecast period consists of
30 weeks and covers the period June 19, 2011 – January 14, 2012, see the two lower panels in
Figure 2. The calibration window starts on August 22, 2010.

4. Individual models and averaging schemes

In all individual models the weekly seasonal behavior is captured by a combination of the
autoregressive structure of the models and daily dummy variables. Note that unlike in deriva-
tives pricing and risk management applications where daily average spot prices are typically
used (see e.g. Bierbrauer et al., 2007; Janczura et al., 2013), in day-ahead forecasting of hourly
electricity prices the long-term trend-seasonal component is usually not taken into account as
it adds unnecessary complexity to the already parameter-rich models (Conejo et al., 2005; No-
gales et al., 2002; Weron and Misiorek, 2008). However, if the price series is decomposed into
the trend-seasonal and stochastic components, then the former has to be assumed to be known
ex ante (like in Bordignon et al., 2013) or predicted (for a recent review, see Nowotarski et al.,
2013), and added back before computing the forecasting errors.

All models and all averaging schemes are estimated using an expanding window incorpo-
rating all possible information up to the point the forecast is made. For instance, to forecast
Nord Pool prices for the 24 hours of February 1, 1999 we use prices and temperatures from the
period April 2, 1998 – March 31, 1999. Next, to forecast the prices for the 24 hours of Febru-
ary 2 we use prices and temperatures from the period April 2, 1998 – February 1, 1999 and
so forth. For the averaging schemes we also require a calibration period in order to determine
the optimal model weights. We decided to use a period of four weeks, where forecasts from
individual models are already available, for the initial calibration of the averaging methods, see
the dotted vertical lines in Figures 1 and 2.

4.1. Individual models
A typical and obvious caveat shared by all empirical applications using forecast averaging

is that results depend on the specific choice of individual models. Eliminating this effect by
using all conceivable models is unreasonable, if not impossible. Thus, our choice of individual
models is guided by previous literature. In particular, we utilize a set of six carefully selected
model classes that have been analyzed by Weron and Misiorek (2008): AR/ARX models, spike
preprocessed AR/ARX models (where the model structure was estimated after replacing price
spikes with less extreme observations), threshold AR/ARX models, mean-reverting jump dif-
fusion models, and two classes of semiparametric AR/ARX models.

The modeling was implemented separately across the hours, leading to 24 sets of parameters
for each day the forecasting exercise was performed. This approach was inspired by the fact
that each hour displays a rather distinct price profile, reflecting the daily variation of demand,
costs and operational constraints, and by the extensive research on demand forecasting, which
has generally favored the multi-model specification for short-term predictions (see e.g. Bunn,
2000; Shahidehpour et al., 2002; Weron, 2006).
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In the following paragraphs we briefly review the time series models we use for generat-
ing individual model forecasts. We refer the reader to Weron and Misiorek (2008) to find a
complete description of these models and a thorough discussion of the model choices.

4.1.1. AR and ARX models
The basic autoregressive model structure used in the study is given by the following formula

(denoted later in the text asARX):

pt = φ1pt−24+ φ2pt−48+ φ3pt−168+ φ4mpt +
+ψ1zt + d1DMon + d2DS at + d3DS un + εt. (1)

The lagged log-pricespt−24, pt−48 andpt−168 account for the autoregressive effects of the previ-
ous days (the same hour yesterday, two days ago and one week ago), whilempt creates the link
between bidding and price signals from the entire previous day (it is the minimum of the pre-
vious day’s 24 hourly log-prices). The variablezt refers to the actual hourly temperature (Nord
Pool 1998-1999) or the logarithm of the hourly temperature (Nord Pool 2009-2010, PJM 2011-
2012). Recall that for the EEX dataset no fundamental variable is used. The three dummy
variables –DMon, DS at andDS un (for Monday, Saturday and Sunday, respectively) – account
for the weekly seasonality. Finally, theεt’s are assumed to be independent and identically dis-
tributed (i.i.d.) with zero mean and finite variance. Restricting the parameterψ1 = 0 yields the
AR model. Model parameters were estimated in Matlab by minimizing the Final Prediction
Error (FPE) criterion.

4.1.2. p-AR and p-ARX models
Linear models like AR and ARX are sensitive to outliers, i.e., extreme observations that de-

viate significantly from the ‘usual’ values. Although we do not believe that forecasters should
ignore the electricity price spikes, for the purpose of predicting the mean level of next day’s
prices we could follow a relatively popular approach of substituting the spikes with ‘less un-
usual’ values (Conejo et al., 2005; Nogales et al., 2002; Shahidehpour et al., 2002; Weron,
2006). This can be done in a number of ways. Here we use the ‘damping scheme’, where
an upper limitT ∗ is set on the price (equal to the mean plus three standard deviations of the
price in the calibration period) and all prices exceedingT ∗ are set toPt = T ∗ + T ∗ log10(Pt/T ∗).
The spike preprocessed models, denoted in the text asp-ARX andp-AR, also utilize formula
(1), with the only difference that the data used for calibration is spike preprocessed using the
damping scheme.

4.1.3. TAR and TARX models
As an alternative to ‘damping’ or eliminating price spikes we can use a time series model

that allows for changes of regime (or price behavior), like the Threshold Auto Regressive (TAR)
model of Tong and Lim (1980). In such a model the regime switching between two (or more, in
general) autoregressive processes is governed by the value of an observable threshold variable
vt relative to a chosen threshold levelT0. So the two additional models:TAR and TARX
are a two-state extension of (1) withT0 = 0 andvt equal to the difference in mean prices
for yesterday and eight days ago. Like for the autoregressive models, the parameters can be
estimated by minimizing the FPE criterion.
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4.1.4. MRJD and MRJDX models
The next pair of models is based on a discrete-time version of a mean-reverting jump diffu-

sion process. TheMRJDX (MRJD whenψ1 = 0) specification used in this study is given by
the following formula:

pt = φ1pt−24+ ψ1zt + d1DMon + d2DS at + d3DS un + εt,i, (2)

where the subscripti takes the value of 1 when there is no jump or 2 if there is a jump,εt,1 ∼

N(0, σ2) andεt,2 ∼ N(µ, σ2 + γ2). The model can be easily estimated by maximum likelihood,
with the likelihood function being a product of the densities of a mixture of two normals (Ball
and Torous, 1983).

4.1.5. IHMAR, IHMARX, SNAR and SNARX models
Finally, we use two additional more flexible AR specifications: the iterated Hsieh-Manski

estimator (IHMAR) and the smoothed nonparametric ML estimator (SNAR). These models
relax the normality assumption needed for the ML estimation in the standard AR model. We
keep the functional AR form but obtain the estimates from a numerical maximization of the
empirical likelihood as applied in Hsieh and Manski (1987), Cao et al. (2003) and in our context
of electricity price forecasting, in Weron and Misiorek (2008) where a more detailed description
is found. The corresponding models with the additional exogenous variables are denoted as
IHMARX andSNARX.

4.2. Forecast averaging techniques
As mentioned above, we are interested in how well the approach of combining forecasts

provided by individual models performs in the context of spot electricity prices. Given the
promising results of Bordignon et al. (2013) and Raviv et al. (2013), we aim to use a variety of
forecast averaging techniques in order to thoroughly examine the performance of these meth-
ods. In the following, we provide a description of the averaging approaches being applied in
the empirical analysis.

TheM individual log-price forecastŝp1t, . . . , p̂Mt calculated for timet are inverted back to
levelsP̂1t, . . . , P̂Mt and the combined spot price forecast is given by:

P̂ct =
M∑

i=1

witP̂it, (3)

wherewit is the weight assigned at timet to forecasti. We calculate the weights recursively at
each time step, using data covering the first prediction point (indicated by the dotted vertical
lines in Figures 1 and 2) untilt − 24 (i.e. 24 hours prior to the hour we forecast the price for).

4.2.1. Simple averaging
The most natural approach to forecast averaging is the use of the (arithmetic) mean of all

forecasts produced by the different models. It is highly robust and is widely used in business
and economic forecasting, see e.g. Clemen (1989), Stock and Watson (2004) and Genre et al.
(2013). In the following, we denote this approach asSimple.
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4.2.2. OLS and LAD averaging
Ordinary Least Squares (OLS) averaging is another easy-to-implement approach with a

good performance track-record. The idea was first described in Crane and Crotty (1967), but it
was the influential paper of Granger and Ramanathan (1984) to inspire more research effort in
this direction. Since then, OLS averaging took on numerous variations according to different
findings from different datasets.

In the the original proposal the combined forecast is determined using the following regres-
sion:

Pt = w0t +

M∑

i=1

witP̂it + et. (4)

Thus, the corresponding electricity price forecast combinationP̂ct at timet usingM models, is
calculated as

P̂ct = ŵ0t +

M∑

i=1

ŵitP̂it. (5)

This has the advantage of generating unbiased combined forecasts without the need to question
individual models bias, and, of course, the use of OLS carries all its good properties. However,
a few issues remain. It is natural to assume that different forecasts for the same target will be
correlated. This means that the vector of estimated weightswt is likely to exhibit an unstable
behavior, a problem sometimes dubbed ‘bouncing betas’. As a result, minor fluctuations in the
sample can cause major shifts of the weight vector.

To address this issue we propose here a more robust to outliers version of (4) for forecast
averaging. That is, we apply the absolute loss function

∑
t |et| instead of the quadratic loss

function
∑
t et2 in (4) to yield the Least Absolute Deviation (LAD) regression. A possible

advantage of using this absolute loss function is that it is more robust to electricity price spikes.
Consider, for example, a model that performs well in general, yet sharply misses on specific
dates, for example, during a period with a price spike. Using the quadratic loss function leads
to a relatively large decrease of this model’s weight, while using the absolute loss function may
yield a relatively smaller decrease of the weight.

The LAD regression may be viewed as a special case of quantile regression which allows
to develop explicit models for specific quantiles of the distribution of the dependent variable
(Koenker, 2005). In energy economics, quantile regression has been applied to forecasting
Value-at-Risk levels (Bunn et al., 2013) and computing predictive densities for day-ahead elec-
tricity prices (Jonsson et al., 2013), but not in the context of forecast averaging. Taking the
quantile to be 0.5 (i.e. the median) simply yields the LAD regression.

4.2.3. PW and CLS constrained averaging
Another issue in OLS averaging is the interpretation of the results. It is hard to explain

a linear combination with negative weights for some models, which is likely to result from
this approach. Therefore, we follow Sevket and Aksu (1989) and apply two more variants of
(4) using additional constraints on the estimated weights. First, we constrain the estimated
coefficients to some pre-defined regions, allowing only for positive weights (PW):

w0t = 0 and wit ≥ 0, ∀i, t. (6)

Restricting weights to be non-negative was found by Aksu and Sevket (1992) to be a strong
competitor to the robust simple average and to almost always outperform the unconstrained
OLS.
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Secondly, we use an additional condition forcing the weightsto sum up to one using con-
strained least squares (CLS) estimation:

w0t = 0 and
M∑

i=1

wit = 1, ∀t. (7)

Note that the first option allows individual forecasts to be biased, since the sum
∑M
i=1wit does

not necessarily sum to one. That said, when the forecasts are unbiased then
∑M
i=1wit should not

deviate substantially from one which holds in this case as well. Using (7), we gain a natural
interpretation of the coefficientswit which can be viewed as relative importance of each model
in comparison to all other models. Note that there is no closed form solution for the constrained
models PW and CLS, however, they can be solved using quadratic programming.

4.2.4. IRMSE averaging
Another performance-based approach is to choose the weights for each model based on

the inverse of the Root Mean Squared Errors (RMSE). Clearly, using this approach, models
producing smaller RMSE will be assigned larger weights in comparison to models with higher
RMSE. A similar approach has been suggested, for example, by Diebold and Pauly (1987) and
has been successfully applied by Stock and Watson (2004) for combining forecasts of output
growth. Overall, using the approach, model weights are determined based on their forecasting
performance and can be defined as:

wit =

(
RMSEit∑M
i=1 RMSEit

)−1

∑M
i=1

(
RMSEit∑M
i=1 RMSEit

)−1
=

1
RMSEit∑M
i=1

1
RMSEit

. (8)

Here,RMSEit denotes the out-of-sample performance for modeli and is computed in a recur-
sive manner using forecast errors from the first prediction point up tot − 24 hours. We denote
this method in the text asIRMSE.

4.2.5. Bayesian Model Averaging (BMA)
So far we have considered forecast combination schemes which apply weights to all con-

sidered models. The idea of Bayesian Model Averaging (denoted asBMA) is to relax this
assumption and avoid the a priori decision to use all models. Such an approach will result in
a substantial increase of possible forecast combinations, 2M to be exact. Even with a moderate
number of models, for exampleM = 50 such an approach is infeasible. However, in this study
we haveM = 12 models (apart from the EEX dataset withM = 6), making the process very
accurate albeit slow. Accurate since we can computeall possible models (this is done using
an efficient branch-and-bound algorithm implemented in R’s BMA package, see Raftery et al.,
2005). The model weights for BMA are given by the Bayes’ theorem where we compute the
posterior probabilities for each of the individual options:

wlt =
L(Pt|ml,D)ρ(ml)∑2M
j=1 L(Pt|m j,D)ρ(m j)

. (9)

Note thatm does not stand here for a particular individual model (e.g. AR), but for a model
combination option, i.e. one of the 2M available options. ThenL(pt|ml,D) denotes the likeli-
hood of the pricePt given optionml and dataD. We do not use the subscripti but l to reflect
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the fact thatw is not the weight vector for each model but a very long (i.e. of length 2M) weight
vector for each combination of models. Note that similar to the other approaches,D is the data
up to timet − 24. In order to estimate equation (9), a prior distribution over each optionρ(ml)
is required. Following the most common practice, we use a uniform prior over all options,
acknowledging our uncertainty with regard to the true combination of models. Madigan and
Raftery (1994) suggest that averaging over all the models in this fashion on average provides
a better predictive ability than any single model in the pool. Once the weights are set, the
conditional expectation of the forecast is calculated for each of the considered options, and the
resulting forecast combination is given by:

P̂ct =
2M∑

l=1

wltE(Pt|ml, θl). (10)

Hereθl is the collection of parameters required for combination optionl. For example, if the
combination optionl is the AR model and the TAR model with zeros for the rest, thenθl are
the estimated parameters for these two models.

4.2.6. Best Individual (BI) model selection and the benchmark model
Next to the suggested forecast combination models, it is of interest to examine the perfor-

mance of the best individual model. In a straightforward manner the best individual model
could be defined as the best performing individual model from an ex post perspective (as in
Bordignon et al., 2013). Although theoretically pleasing, an ex post analysis is not feasible in
practice – one cannot use information observed only at timeT + 1 for forecasting conducted
at timeT . Hence in this paper we investigate how well the approach of combining forecasts
performs versus the realistic alternative of selecting a single model specification beforehand.
We select the ARX model (or the AR model for the EEX dataset) as a relatively simple, yet
robust, benchmark. This particular ARX model specification, see formula (1), has been shown
to perform very well for the California market (Misiorek et al., 2006; Weron, 2006). However,
ARX models in general, sometimes referred to as ‘dynamic regressions’, were also found to
yield very good day-ahead price predictions for Nord Pool (Raviv et al., 2013), PJM (Conejo
et al., 2005), and the UK (Gonzalez et al., 2012) and Spanish markets (Nogales et al., 2002).

In another way, we can also consider the best individual ex ante model (BI), i.e. making
the decision to pick one of the models that performed best in the past, and examine its future
performance from timet onwards. The BI is essentially a model (or forecast) selection scheme,
but we can view it also as a special case of forecast averaging with degenerate weights given
by the vector:

wit =


1 if modeli achieves lowest forecast error during the calibration period,

0 otherwise.
(11)

We decide to choose the BI model as the one yielding the best forecasts in terms of RMSE
for the data covering the first prediction point up tot − 24 hours, like for the forecast averaging
schemes. Note that in what follows we use aweekly evaluation metric as in Weron and Misiorek
(2008), while the weights for the individual forecasts and in particular the choice of BI are
determined on a daily basis.
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5. Empirical results

We now present out-of-sample forecasting results for the considered datasets. We examine
day-ahead forecasts of hourly market clearing prices for the following markets and periods: (i)
the Nord Pool market for 44 weeks from February 1, 1999 to December 5, 1999 as well as (ii)
during the 30 week period November 30, 2009 – June 27, 2010; (iii) the EEX market during
the 30 week period from August 2, 2010 to February 27, 2011; and (iv) the PJM market for a
30 week period from June 19, 2011 to January 14, 2012. For further information on applied
calibration windows for each of these markets see Section 3.

Forecasts for the considered models are determined the following way: models (as well
as model parameters and combination weights) are reestimated on a daily basis and a forecast
for all 24 hours of the next day is determined at the same point in time. Forecasts are first
calculated for each of the 12 individual models (or six for the EEX dataset) and then combined
according to estimated weights for each of the seven forecast averaging approaches and one
model selection scheme.

Following Conejo et al. (2005) and Weron and Misiorek (2008), we compare the methods
in terms of the Weekly-weighted Mean Absolute Error (WMAE) loss function and evaluate the
forecast performance using weekly time intervals, each with 24× 7 = 168 hourly observations.
Note that we also analyzed the forecasts using squared error losses, however, results were
qualitatively similar and are omitted here due to space limitations. For each week we calculate
the WMAE for averaging methodi as:

WMAEi =
1

P̄168
MAEi =

1

168· P̄168

∑168

h=1

∣∣∣Ph − P̂ih
∣∣∣, (12)

wherePh is the actual price for hourh (not the log-priceph), P̂ih is the predicted price for that
hour obtained for averaging methodi and P̄168 =

1
168

∑168
h=1 Ph is the mean price for a given

week. The WMAE is similar to the Mean Absolute Percentage Error (MAPE) withPh replaced
by P̄168 in the denominator of (12). This is done to avoid the adverse effect of prices close to
zero.

Overall, we provide results for eight different approaches as well as for the benchmark ARX
(or AR for the EEX market) model:

1) Simple – a simple average of the forecasts provided by all 12 (or six for EEX) individual
models,

2) OLS – forecast combination with weights determined by eqn. (4) using standard OLS,

3) LAD – forecast combination with weights determined by eqn. (4) using least-absolute-
deviation regression,

4) PW – forecast combination with weights determined by eqn. (4) only allowing for posi-
tive weightswit ≥ 0,

5) CLS – forecast combination with weights determined by eqn. (4) with constraintswit ≥ 0
and
∑M
i=1wit = 1,

6) IRMSE – forecast combination with weights determined by eqn. (8),

7) BMA – forecast combination with weights determined using Bayesian Model Averaging,
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8) BI – the individual method that would have been chosen ex ante, based on its forecasting
performance from the first prediction point untilt − 24 hours earlier.

5.1. Performance evaluation
In Tables 1–4 we report the WMAE for each week in the forecasting period (rectangles

in Figures 1 and 2) and for the seven forecast averaging (FA) schemes, one model selection
technique (BI) and the benchmark model (ARX or AR). Note that we use the termmodel to
describe both individual models and averaging schemes. Summary statistics are presented in
the bottom rows and include:WMAE – the mean value of WMAE for a given model (with
standard deviation in parentheses),# better – the number of weeks a given averaging method
is better than the benchmark or the BI (in separate rows),# best – the number of weeks a given
averaging method performs best in terms of WMAE (only among the eight forecast averaging
and selection schemes, i.e. excluding the benchmark and other individual models) andm.d.f.b.
– the mean deviation from the best model (averaging or individual) in each week. The latter
measure indicates how similar is a models’ performance to the ‘optimal model’ composed of
the overall best performing (individual or combined) model in each week. Note that we do not
report here the WMAE errors of all individual models, only of the benchmark ARX (or AR)
model. The full error tables may be obtained from the authors upon request.

Let us first examine the results for the first forecasting period from the Nord Pool market.
It comprises 44 weeks from February 1, 1999 to December 5, 1999, see Table 1. During this
period all averaging techniques outperform the benchmark ARX model with respect to WMAE
and m.d.f.b. The best results are obtained for LAD and PW where the WMAE is reduced by
approximately 10% in comparison to the benchmark model, while the mean deviation from the
best model is reduced by even more than 40% over the considered 44 week period. All forecast
averaging techniques provide better results than the ARX model for at least 29 weeks, while
the PW approach outperforms the benchmark model for 34 out of the 40 weeks. Among the
eight forecast and selection schemes, LAD yields the best results for more than 25% of the
time, providing the smallest WMAE for 13 of the 44 weeks.

With respect to the other benchmark, the BI selection approach, we get the following re-
sults: while BI performs significantly better than the benchmark ARX model, we find that all
but one FA techniques outperform BI with respect to the considered WMAE and m.d.f.b. crite-
ria. Also, all forecast averaging techniques provide better results than BI for at least 25 out of
40 weeks. Only the OLS approach fails to consistently outperform BI, but still provides results
of the same quality. Overall, our results indicate that for the considered period, combining
forecasts clearly seems to outperform the benchmark ARX model, but also the BI approach,
with respect to the considered loss function and measures.

Table 2 provides out-of-sample forecasting results from Nord Pool market for the more
recent period which covers 30 weeks from November 30, 2009 to June 27, 2010. Also for
this dataset, the majority of averaging techniques clearly outperforms the ARX model with
respect to the WMAE and m.d.f.b. criteria. Only OLS and BMA averaging yield results that
are slightly worse than for the benchmark approach. For all other FA techniques the average
WMAE is reduced by 9%-17%, while the mean deviation from the best model is reduced
by 37%-72% over the considered 30 week period. Clearly, the best results are obtained for
the forecast combinations generated by the least-absolute-deviation (LAD) regression. For 26
out of the 30 weeks considered, LAD performs better than the ARX model, while it yields the
overall best results of all models for 13 weeks. LAD also provides the smallest average WMAE
and m.d.f.b., followed by simple averaging and IRMSE.
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Table 1:NP 1998-1999 dataset (NP99). WMAE for the seven forecast averaging schemes, one model selection
technique (BI) and the benchmark model (ARX). Summary statistics are provided in the bottom rows:WMAE is
the mean value of WMAE for a given model (with standard deviation in parentheses),# better is the number of
weeks a given averaging method is better than the benchmark or the BI,# best is the number of weeks a given
averaging method performs best in terms of WMAE (i.e. excluding the individual methods), and finallym.d.f.b.
is the mean deviation from the best model (averaging or individual) in each week. Emphasized in bold are the
WMAE, WMAE and m.d.f.b. values lower than those of the benchmark. Theout-of-sample period ranges from
February 1 to December 5, 1999.

Week Simple OLS LAD PW CLS IRMSE BMA BI ARX
1 4.15 3.25 2.83 4.49 4.59 4.22 3.17 4.17 4.63
2 3.07 3.89 3.27 3.01 3.28 3.07 3.86 3.31 3.59
3 2.82 2.33 2.01 2.62 3.12 2.90 2.25 3.24 3.65
4 3.58 3.43 3.22 2.81 3.99 3.69 3.51 4.41 4.85
5 4.22 3.44 2.90 3.10 4.17 4.34 3.67 4.55 5.63
6 3.36 3.65 3.28 3.33 3.30 3.40 3.71 3.37 3.94
7 3.22 2.47 1.76 2.38 2.93 3.31 2.51 3.16 4.29
8 2.58 1.51 1.21 1.52 2.27 2.63 1.50 2.56 3.54
9 4.76 2.88 2.63 3.31 4.01 4.83 2.89 4.31 5.68
10 7.16 6.16 6.02 6.18 6.81 7.18 6.21 6.87 7.51
11 5.89 6.00 6.17 5.92 6.39 5.88 5.96 6.08 5.73
12 5.19 4.13 4.51 4.36 5.36 5.17 4.07 5.04 5.02
13 4.29 3.62 3.62 3.66 3.97 4.30 3.61 4.00 4.59
14 6.40 6.44 6.48 6.42 6.95 6.35 6.41 6.99 5.84
15 8.82 9.28 9.86 9.38 9.22 8.74 9.23 9.23 8.04
16 6.67 5.75 6.04 5.68 6.60 6.59 5.67 6.21 5.97
17 4.96 5.33 5.15 4.83 4.95 4.95 5.36 5.03 5.11
18 4.16 4.82 4.89 4.24 4.17 4.09 4.74 3.81 3.59
19 6.81 5.99 6.28 5.87 6.54 6.79 5.89 6.60 6.49
20 4.98 5.01 5.19 4.99 5.00 4.91 4.89 4.69 4.66
21 5.54 4.65 4.59 4.67 5.32 5.49 4.59 5.33 5.44
22 7.59 7.51 7.76 7.27 7.60 7.50 7.44 7.19 6.89
23 5.81 6.28 6.18 6.45 5.78 5.75 6.19 5.82 5.98
24 5.33 4.20 3.82 3.73 4.84 5.31 4.10 4.88 4.91
25 7.04 8.21 6.60 5.37 6.65 6.96 8.24 6.69 6.88
26 4.79 5.19 4.76 5.23 4.79 4.84 5.25 5.26 5.70
27 3.33 5.94 5.46 5.08 3.72 3.37 5.80 4.29 4.64
28 4.88 7.53 6.88 6.42 5.09 4.89 7.61 5.44 5.89
29 4.38 8.23 7.18 6.34 4.64 4.36 8.30 5.13 5.82
30 4.25 6.17 5.46 5.42 4.34 4.30 6.14 5.10 5.81
31 2.85 4.11 3.35 3.62 2.94 2.83 4.07 3.15 3.66
32 1.87 2.53 2.20 2.27 1.92 1.89 2.47 2.25 2.77
33 2.84 3.18 3.03 3.19 2.74 2.83 3.21 3.01 3.59
34 2.91 2.70 2.91 2.64 2.96 2.92 2.69 3.13 2.74
35 2.35 2.31 2.20 2.39 2.40 2.38 2.32 2.37 2.61
36 4.36 4.52 4.42 4.62 4.13 4.31 4.46 4.36 4.68
37 3.54 3.50 3.54 3.71 3.40 3.57 3.50 3.56 4.07
38 2.39 2.36 2.32 2.46 2.32 2.40 2.37 2.47 2.71
39 2.40 2.22 2.34 2.22 2.47 2.41 2.22 2.52 2.30
40 2.73 2.47 2.36 2.47 2.76 2.79 2.47 2.80 2.94
41 3.49 3.37 3.54 3.61 3.38 3.55 3.42 3.65 3.91
42 2.55 2.54 2.52 2.54 2.47 2.54 2.53 2.66 2.77
43 2.22 1.79 1.77 1.95 2.25 2.24 1.75 2.16 2.33
44 3.16 3.04 3.23 3.30 2.94 3.21 3.10 3.30 3.47

Summary statistics
WMAE 4.31 4.41 4.22 4.21 4.31 4.32 4.39 4.41 4.66

(1.66) (1.93) (1.92) (1.69) (1.68) (1.63) (1.92) (1.60) (1.44)
# better than AR 30 29 30 34 33 30 29 33 –
# better than BI 29 27 30 28 35 25 27 – –
# best 4 1 13 7 5 6 5 3 –
m.d.f.b. 0.68 0.78 0.59 0.57 0.67 0.69 0.76 0.78 1.01
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Table 2:NP 2009-2010 dataset (NP10). WMAE for the seven forecast averaging schemes, one model selection
technique (BI) and the benchmark model (ARX). Summary statistics are provided in the bottom rows:WMAE is
the mean value of WMAE for a given model (with standard deviation in parentheses),# better is the number of
weeks a given averaging method is better than the benchmark or the BI,# best is the number of weeks a given
averaging method performs best in terms of WMAE (i.e. excluding the individual methods), and finallym.d.f.b.
is the mean deviation from the best model (averaging or individual) in each week. Emphasized in bold are the
WMAE, WMAE and m.d.f.b. values lower than those of the benchmark. Theout-of-sample period ranges from
November 30, 2009 to June 27, 2010.

Week Simple OLS LAD PW CLS IRMSE BMA BI ARX
1 5.11 5.73 4.61 5.37 5.13 5.15 5.75 5.86 5.36
2 2.97 2.56 1.91 2.29 2.56 3.00 2.38 3.32 3.39
3 14.38 18.75 15.03 15.04 14.53 14.34 18.90 15.60 14.98
4 6.04 9.66 5.03 7.81 6.72 6.04 9.09 6.95 7.66
5 4.16 7.45 3.58 5.63 5.10 4.16 7.35 4.57 4.62
6 28.73 31.48 27.31 30.53 30.28 28.74 31.20 31.59 31.50
7 10.58 12.24 10.25 10.16 10.41 10.60 12.33 10.24 9.92
8 5.18 5.27 4.08 3.49 4.88 5.16 5.44 4.97 4.97
9 14.95 12.32 13.92 12.71 14.69 14.97 12.35 14.69 14.91
10 7.44 7.70 6.35 6.30 7.97 7.43 7.85 8.03 8.60
11 7.66 6.17 5.57 5.56 8.26 7.67 6.36 8.61 9.13
12 9.63 5.83 6.31 7.14 10.46 9.65 5.94 11.47 11.57
13 14.51 22.37 16.62 14.83 14.72 14.51 22.10 16.97 15.15
14 4.76 8.68 4.27 5.49 4.73 4.75 8.58 4.60 6.38
15 3.01 8.48 4.47 6.46 3.32 3.01 8.38 2.82 4.58
16 3.99 7.71 4.28 6.82 3.90 3.98 7.69 3.66 4.64
17 3.08 6.03 3.71 6.88 2.88 3.08 6.01 2.93 3.73
18 3.42 4.95 2.67 5.19 3.67 3.43 4.87 2.97 4.81
19 4.58 4.96 3.19 4.67 5.23 4.60 4.82 4.27 7.22
20 2.77 3.66 1.96 3.53 3.29 2.77 3.60 2.11 4.96
21 2.54 3.20 1.68 3.60 2.98 2.55 3.06 1.95 4.43
22 3.50 3.92 2.84 3.68 3.87 3.50 3.94 3.09 5.42
23 3.38 3.00 2.10 3.07 4.25 3.40 3.06 2.87 6.69
24 6.69 7.59 7.47 8.20 6.80 6.69 7.71 6.97 7.72
25 16.41 18.13 18.25 17.73 16.78 16.41 18.07 17.29 16.56
26 16.39 16.00 16.33 15.45 16.28 16.39 16.12 16.57 16.45
27 14.15 15.06 12.96 13.01 14.26 14.14 15.02 12.52 15.28
28 12.30 11.99 12.04 11.68 12.80 12.30 12.15 11.68 13.52
29 9.18 9.70 8.74 8.77 9.77 9.19 9.47 9.41 11.54
30 6.11 6.91 6.41 6.23 6.62 6.10 6.73 6.30 7.03

Summary statistics
WMAE 8.25 9.58 7.80 8.58 8.57 8.26 9.54 8.50 9.42

(5.99) (6.52) (6.18) (5.88) (6.11) (5.99) (6.49) (6.54) (5.97)
# better than AR 27 17 26 19 27 27 17 22 –
# better than BI 15 8 21 14 14 15 8 – –
# best 1 2 13 5 1 4 0 4 –
m.d.f.b. 1.07 2.40 0.62 1.39 1.39 1.07 2.36 1.31 2.24

With respect to the comparison between FA and BI approaches, neither presents clear dom-
inance. Overall, simple averaging, LAD and IRMSE seem to outperform the BI approach with
respect to the considered criteria. Results for PW and CLS are of similar quality as for the
BI benchmark, while BI clearly provides better results than OLS and BMA for the considered
time period. As mentioned above, these two approaches provide results that are also worse
than the considered benchmark ARX model. As indicated by Figure 1, the November 2009
- June 2010 forecasting period also coincides with a more volatile and spiky behavior of spot
electricity prices in Scandinavia. In particular during weeks 3, 6, 9 and 13, a number of price
spikes is observed, while weeks 25-28 are characterized by a significantly higher volatility than
prior weeks. On the other hand, results in Table 2 for these periods do not indicate that the
benchmark approaches ARX and BI perform consistently better than the considered forecast
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Table 3:EEX 2009-2011 dataset. WMAE for the seven forecast averaging schemes, one model selection technique
(BI) and the benchmark model (AR). Summary statistics are provided in the bottom rows:WMAE is the mean
value of WMAE for a given model (with standard deviation in parentheses),# better is the number of weeks a
given averaging method is better than the benchmark or the BI,# best is the number of weeks a given averaging
method performs best in terms of WMAE (i.e. excluding the individual methods), and finallym.d.f.b. is the
mean deviation from the best model (averaging or individual) in each week. Emphasized in bold are the WMAE,
WMAE and m.d.f.b. values lower than those of the benchmark. Theout-of-sample period ranges from August 2,
2010 - February 27, 2011.

Week Simple OLS LAD PW CLS IRMSE BMA BI AR
1 7.04 10.19 9.51 9.05 7.01 6.95 10.07 7.15 7.09
2 7.69 7.32 7.08 7.51 7.52 7.69 7.52 8.10 8.14
3 10.18 9.68 9.58 9.76 9.82 10.00 9.86 9.97 9.99
4 15.42 14.84 15.14 14.81 15.38 15.24 14.89 15.03 14.96
5 10.41 9.45 9.40 9.58 10.92 10.56 9.39 11.10 10.95
6 10.85 10.88 10.65 10.98 10.87 10.87 10.88 11.20 10.94
7 9.71 8.62 8.87 8.92 9.69 9.57 8.73 9.47 8.93
8 11.64 10.52 10.16 10.69 12.14 11.94 10.44 12.74 12.58
9 10.71 8.18 7.70 8.25 10.04 10.69 8.15 11.21 11.37
10 10.71 9.48 9.35 9.98 10.47 10.82 9.52 10.36 11.32
11 12.23 8.93 8.72 8.97 11.24 12.19 8.85 10.33 12.74
12 10.97 9.62 9.51 10.01 10.35 10.81 9.63 10.09 10.94
13 11.73 9.93 9.69 10.67 11.90 11.70 9.92 12.07 11.68
14 13.34 13.22 13.09 13.39 13.56 13.51 13.23 13.88 13.89
15 13.97 14.45 14.89 14.04 13.55 13.86 14.41 13.35 13.79
16 10.57 6.98 6.86 7.02 9.20 10.62 6.96 8.61 11.34
17 10.73 8.25 7.95 8.56 9.59 10.67 8.29 9.31 11.11
18 14.87 12.26 12.27 12.87 13.69 14.76 12.35 13.39 15.12
19 19.09 17.75 18.06 17.91 17.40 18.90 17.85 17.02 19.11
20 16.45 13.25 13.75 13.11 15.15 16.35 13.38 15.04 16.69
21 17.64 17.40 17.19 17.58 17.39 17.63 17.43 17.37 17.64
22 17.32 17.02 16.45 18.04 17.73 17.34 17.08 17.71 17.59
23 13.17 12.26 12.39 12.44 13.05 13.04 12.36 13.04 12.81
24 11.69 12.02 12.22 11.68 11.61 11.59 12.01 11.67 11.47
25 10.56 6.60 6.25 6.75 8.42 10.57 6.50 8.16 11.65
26 8.21 6.26 5.92 6.82 7.59 8.17 6.18 7.60 8.86
27 18.29 18.50 18.26 18.94 16.98 18.21 18.40 17.00 18.42
28 12.33 10.69 10.32 10.85 11.56 12.44 10.67 11.51 13.59
29 9.47 7.12 6.79 7.54 8.38 9.47 7.17 8.34 10.36
30 8.32 4.83 4.51 5.15 6.39 8.27 4.85 6.31 9.20

Summary statistics
WMAE 12.18 10.88 10.75 11.06 11.62 12.15 10.90 11.60 12.48

(3.20) (3.62) (3.73) (3.64) (3.21) (3.18) (3.63) (3.18) (3.10)
# better than AR 21 26 26 24 24 23 27 20 –
# better than BI 9 24 24 23 12 11 24 – –
# best 0 3 19 2 1 2 1 2 –
m.d.f.b. 1.73 0.43 0.30 0.61 1.17 1.70 0.45 1.15 2.09

averaging techniques. However, for week 3 and week 13, the OLSand BMA approach yield
results that are much worse than those of all other approaches what explains their overall in-
ferior performance. Note especially the sharp increase in WMAE from week 12 to week 13.
For week 12, these models achieved excellent results (almost halving the error of the ARX and
BI approach) and might have been considered for continued use, underperforming only a week
later when volatility picked up. We will discuss this instability of the approaches later on.

Table 3 provides the out-of-sample forecasting results for the EEX market for the time pe-
riod August 2, 2010 - February 27, 2011. Recall that for this market no additional fundamental
variable is used in the individual models so that the benchmark is actually an AR model. We
find that, similar to the Nord pool market, also for the EEX all FA techniques provide sig-
nificantly better results than the benchmark model. The different FA approaches outperform

18



the AR benchmark with respect to the weekly WMAE loss function between 65% and 90%
of the time. In particular three of the combined forecasting approaches seem to perform quite
well. The OLS, LAD and BMA method reduce the average WMAE by at least 12%, while
m.d.f.b. is reduced by 78%-85% compared to the ARX model. Among these three models, it
is again the LAD regression yielding the best results with respect to WMAE and m.d.f.b. LAD
also provides the best performance of all models for 19 out of 30 weeks. The LAD emerges
as a useful averaging scheme. Note that the absolute loss function we consider for evaluation
of the forecasts matches the loss minimized by LAD. This, however, should not diminish the
method’s good performance since the weights are determined beforehand, while the evaluation
is done ex post, and so it is possible to obtain far less satisfactory results.

Like for the Nord Pool market, also for the EEX dataset BI is substantially better than
the benchmark AR model. Yet it is clearly outperformed by four of the combined forecasting
techniques, namely OLS, LAD, PW and BMA. Also, BI is the best model for merely 2 out of
the 30 weeks. On the other hand, simple averaging and IRMSE provide results that are worse
than the best individual ex ante model on average. These models are outperformed by the BI
model for over 60% of the time and also provide a higher average WMAE or m.d.f.b.

Overall, also for the EEX our results with respect to the superior performance of FA in com-
parison to the AR benchmark model are confirmed. All of the considered techniques provide
better results for the considered loss functions and performance measures. However, only four
out of seven FA techniques are able to outperform the BI model selection approach, while two
of the methods yield results that are worse with respect to the considered measures.

Finally, we examine the results for the PJM market, where the out-of-sample period con-
tains 30 weeks from June 19, 2011 to January 14, 2012. Interestingly, for this market, only four
of the averaging techniques, namely simple averaging, LAD, CLS and IRMSE, are able to out-
perform the ARX model. These techniques provide better results than the ARX benchmark for
approximately 60%-70% of the considered weeks and also yield slightly lower average WMAE
and m.d.f.b. when the entire period is considered. However, for the PJM market, even the best
performing FA techniques reduce the average WMAE by a small magnitude only of less than
3%, in comparison to the ARX model. LAD provides the best results for 12 out of 30 weeks,
but the lowest average WMAE and m.d.f.b. are observed for simple averaging and IRMSE.
Simple averaging also yields the best results for 9 out of 30 weeks. Note that the other three FA
techniques, OLS, PW and BMA, yield considerably higher forecast errors than the ARX model,
increasing the average WMAE by up to 25%. Also the BI selection approach performs only
slightly better than the ARX benchmark. Note that for the PJM market, the examined out-of-
sample period exhibits a times of quite volatile price behavior during week 4 and 5. However,
the forecasting performance of the models does not seem to be dominated by the results for
these weeks, since there are no substantial differences between the examined methods during
this period. Overall, simple averaging, LAD, CLS and IRMSE provide the best results for the
PJM market, while OLS, PW and BMA are outperformed by the benchmark ARX model and
the BI approach.

5.2. Diebold-Mariano tests
In order to formally investigate the advantages from combining forecasts over selecting an

individual model, we use the Diebold-Mariano (DM) test. Recall that predictions for all 24
hours of the next day are made at the same time using the same information set. Therefore,
forecast errors for a particular day will typically exhibit high serial correlation as they are
all affected by the same-day conditions. Therefore, we conduct these tests for each of the
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Table 4:PJM 2010-2012 dataset. WMAE for the seven forecast averaging schemes, one model selection technique
(BI) and the benchmark model (ARX). Summary statistics are provided in the bottom rows:WMAE is the mean
value of WMAE for a given model (with standard deviation in parentheses),# better is the number of weeks a
given averaging method is better than the benchmark or the BI,# best is the number of weeks a given averaging
method performs best in terms of WMAE (i.e. excluding the individual methods), and finallym.d.f.b. is the
mean deviation from the best model (averaging or individual) in each week. Emphasized in bold are the WMAE,
WMAE and m.d.f.b. values lower than those of the benchmark. Theout-of-sample period ranges from June 19,
2011 to January 14, 2012.

Week Simple OLS LAD PW CLS IRMSE BMA BI ARX
1 12.95 23.90 16.04 22.08 15.13 13.02 23.07 15.64 12.14
2 6.99 17.31 8.30 16.57 7.44 6.95 16.82 7.74 7.56
3 12.51 14.71 13.00 14.98 12.51 12.53 14.86 12.54 13.78
4 21.11 22.90 21.12 20.92 19.90 21.08 22.77 19.62 21.41
5 28.42 33.49 31.26 26.99 27.09 28.44 33.72 27.83 29.43
6 13.94 22.80 14.34 20.38 13.53 13.94 22.76 12.74 13.71
7 8.52 12.50 8.57 12.31 8.50 8.49 12.40 9.23 9.81
8 8.85 12.16 9.99 15.38 9.99 8.88 12.19 9.86 8.68
9 8.09 10.73 9.04 11.25 8.55 8.11 10.59 8.32 8.41
10 13.07 17.00 13.36 16.30 13.31 13.07 17.11 13.27 12.50
11 7.65 10.25 8.28 9.58 8.05 7.65 10.22 8.43 8.41
12 9.29 14.32 9.92 11.78 9.74 9.31 14.07 9.20 8.73
13 10.56 11.83 10.23 12.80 10.23 10.55 11.72 10.34 10.09
14 6.59 8.99 6.88 7.95 6.66 6.60 8.88 7.09 8.00
15 6.89 11.10 6.57 8.96 6.65 6.87 10.82 6.80 7.16
16 6.11 8.40 6.58 7.64 6.57 6.12 8.43 6.56 6.85
17 8.80 11.50 8.84 10.40 8.85 8.79 11.47 8.96 9.18
18 5.58 6.96 4.97 7.67 5.43 5.57 7.00 5.92 5.68
19 8.51 12.87 9.38 9.25 9.17 8.53 13.01 8.94 8.79
20 9.65 12.44 9.26 11.17 9.88 9.65 12.59 9.69 9.34
21 9.01 9.91 8.70 10.91 9.06 9.00 9.92 9.11 8.50
22 10.40 10.96 10.06 12.68 10.64 10.40 11.00 11.00 10.08
23 10.86 11.29 10.01 12.51 10.42 10.86 11.33 10.45 11.65
24 9.20 9.82 9.20 9.82 9.07 9.19 10.01 9.49 9.36
25 6.68 7.77 6.35 8.10 6.87 6.69 7.88 6.79 6.87
26 9.50 8.76 8.60 10.11 9.17 9.50 8.93 9.12 9.52
27 9.23 9.81 7.77 10.44 8.76 9.22 9.97 9.01 9.86
28 11.46 10.87 10.47 11.69 10.85 11.44 11.00 11.09 11.65
29 18.88 18.42 17.94 19.23 18.29 18.86 18.35 18.44 19.02
30 9.27 12.08 9.83 10.76 10.23 9.30 12.39 10.22 10.12

Summary statistics
WMAE 10.62 13.53 10.83 13.02 10.68 10.62 13.51 10.78 10.88

(4.80) (5.80) (5.21) (4.80) (4.50) (4.81) (5.75) (4.54) (4.84)
# better than AR 21 5 19 3 19 21 4 16 –
# better than BI 19 4 18 1 18 19 4 – –
# best 9 0 12 1 1 4 0 3 –
m.d.f.b. 0.66 3.57 0.87 3.06 0.73 0.66 3.55 0.82 0.92

h = 1, ..,24 hourly time series separately, using squared error losses of the model forecast:

L(εh,t) = (εh,t)
2 =
(
Ph,t − P̂h,t

)2
, h = {1, . . . ,24}. (13)

Note that Bordignon et al. (2013) used a similar approach, i.e. performed DM tests indepen-
dently for each of the five half-hourly load periods considered in their study. Further note
that we conducted additional DM tests for the absolute loss function, however, results were
qualitatively similar and are omitted here.

For each forecast averaging technique and each hour we calculate the loss differential series
dt = L(εFA,t) − L(εARX,t). We then conduct the DM tests for significant differences with respect
to the performance of the benchmark ARX model (AR model for the EEX) and the BI selection
technique. Note that we perform one-sided DM tests with the null hypothesisH0 : E(dt) ≤ 0,
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i.e. we test whether the considered forecast averaging approach can significantly outperform
the ARX benchmark model at the 5% significance level. Figure 3 provides a graphical repre-
sentation of the DM test statistic for each hour and method for two of the considered markets,
namely the NP99 and PJM dataset. Note that for each forecast averaging technique and market
we conduct 24 tests. Therefore, the figures illustrate results for 24 separately conducted tests
for each averaging method.

Let us first consider the results for the NP99 dataset that are provided in the upper three
panels of Figure 3. Recall that for this market the out-of-sample period refers to a relatively
quiet period of spot price behavior where hardly any price spikes are observed. We find that
most of the considered FA techniques significantly outperform the benchmark ARX approach
for a large number of hours. In particular, simple averaging and IRMSE provide significantly
better forecasting results than the ARX model for all hours considered. Also CLS and PW
provide significantly better forecasting results than the benchmark model for 18, respectively
21, hours. On the other hand, LAD, OLS and BMA as the worst performing methods still
significantly outperform the ARX model for 10, respectively 6, hours. Note that also the BI
model selection strategy significantly outperforms the benchmark model for 14 hours.

As indicated by the lower three panels in Figure 3, results for the PJM market are not as
clear cut as for the Nord Pool market. While simple averaging and IRMSE seem to provide
significantly better forecasts than ARX for several of the considered hours, results are not as
convincing for the other methods. CLS still seems to perform better than the benchmark model,
but for most of the hours the results are not significant. On the other hand, LAD, OLS, PW
and BMA all seem to perform worse than the ARX model. In particular OLS, PW and BMA
provide forecasts that are consistently worse than the ARX model. Note that while the BI
model selection strategy is signficantly better than the ARX benchmark for some of the hours,
the majority of conducted tests indicate no significant difference between these models.

Table 5 aggregates results with respect to the benchmark ARX (or AR) model from all
datasets. The upper part of the table provides a summary of the results for one-sided DM tests
with the null hypothesisH0 : E(dt) ≥ 0 based on the loss differential seriesdt = L(εFA,t) −
L(εARX,t). The lower part of Table 5 also includes complementary results for the reverse null
hypothesis:H0 : E(dt) ≤ 0, namely whether the ARX benchmark model could significantly
outperform the forecast averaging technique.

Note that all tests are conducted at the 5% significance level such that a rejection of the null
suggests a significantly better (respectively, worse in the lower part of the table) performance of
forecast averaging. In total 96 test-statistics were computed (4 datasets times 24 tests for each).
Results where a forecast averaging technique outperforms the benchmark for at least 25% of
the tests or vice versa (i.e. 6 or more significant results out of 24 for an individual market; 24
or more significant results out of 96 possible for all 4 datasets) are highlighted in bold.

For the two Nord Pool datasets, in particular simple averaging, PW, CLS and IRMSE per-
form significantly better than the ARX model for a high fraction of the conducted tests. Note
that simple averaging and IRMSE significantly outperform the ARX benchmark for all 24 hours
for the NP99 dataset and for 6 out of 24 hours for the NP10 dataset. Also PW and CLS perform
well, outperforming the ARX model for 21, respectively 18, hours for the NP99 dataset and
for 7 hours for the NP10 dataset. These findings complement results from Raviv et al. (2013)
who also document favorable performance of constrained least squares estimation for Nord
Pool data. BI model selection also outperforms the ARX benchmark for more than 55% of the
conducted tests for the NP99 dataset. In addition, as indicated in the lower part of Table 5,
the ARX model does not outperform any of the applied FA techniques or the BI approach for
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Figure 3: Results for conducted Diebold-Mariano tests for the NP99 (upper three panels) and PJM datasets (lower
three panels). Tests are conducted separately for each of the 24 hours. The figures report the value of the test
statistic for each test as well as the threshold where the null hypothesisH0 : E(dt) ≤ 0 is rejected at the 5%
significance level, where the loss functiondt = L(εFA,t) − L(εARX,t).
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Table 5: The percentage and the number (in parentheses) of hours for which an applied forecast averaging or
model selection scheme is able to outperform the benchmark ARX (or AR for EEX) model (upper part) and for
which the benchmark is able to outperform an averaging scheme (lower part), at the 5% significance level for the
conducted Diebold-Mariano test. Note that the tests are applied separately for each of the 24 hourly time series in
each market. The table also provides summary results for all markets, i.e. 4× 24 = 96 conducted tests. Results
where a technique outperforms the other for at least 25% of the series, i.e. at least six out of 24 hours for an
individual market, respectively at least 24 out of 96 hours when all markets are considered, are highlighted in
bold.

Method NP99 NP10 EEX PJM Total
Averaging better than ARX/AR

Simple 100% (24) 25% (6) 29% (7) 42% (10) 49% (47)
OLS 25% (6) 17% (4) 75% (18) 0% (0) 29% (28)
LAD 42% (10) 29% (7) 71% (17) 0% (0) 35% (34)
PW 88% (21) 29% (7) 67% (16) 0% (0) 46% (44)
CLS 75% (18) 29% (7) 50% (12) 13% (3) 42% (40)
IRMSE 100% (24) 25% (6) 46% (11) 42% (10) 53% (51)
BMA 25% (6) 17% (4) 79% (19) 0% (0) 30% (29)
BI 58% (14) 4% (1) 46% (11) 13% (3) 30% (29)

ARX/AR better than averaging
Simple 0% (0) 4% (1) 0% (0) 0% (0) 1% (1)
OLS 13% (3) 21% (5) 0% (0) 79% (19) 28% (27)
LAD 8% (2) 4% (1) 0% (0) 4% (1) 4% (4)
PW 0% (0) 21% (5) 0% (0) 83% (20) 26% (25)
CLS 0% (0) 8% (2) 0% (0) 0% (0) 2% (2)
IRMSE 0% (0) 4% (1) 0% (0) 0% (0) 1% (1)
BMA 8% (2) 21% (5) 0% (0) 79% (19) 27% (26)
BI 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

more than 25% of the hours for both datasets. Only for OLS, PW and BMA, the ARX model
performs significantly better for 5 out of 24 hours for the NP10 dataset.

For the EEX, we find that apart from simple model averaging all FA techniques perform
significantly better than the ARX model for at least 11 of the conducted tests. OLS, LAD, PW
and BMA significantly outperform the benchmark model for even 67% or more of the consid-
ered hours. On the other hand, for the EEX market the ARX never provides significantly better
results than any of the FA techniques. Also the BI selection technique significantly outperforms
the ARX benchmark for 11 of the conducted tests, while ARX is never significantly better than
BI.

Finally, for the PJM dataset, simple averaging and the IRMSE technique significantly out-
perform the ARX model for 10 out of 24 hours. It seems that for markets with few but very
extreme periods of volatile price behavior these forecast averaging techniques perform best,
what also confirms previous results on WMAE and m.d.f.b. However, none of the other meth-
ods, including BI, is able to outperform the ARX model for more than 3 out of 24 tests for the
PJM market. On the other hand, as indicated in the lower part of the table, in particular OLS,
PW and BMA are outperformed by the benchmark model for at least 19 out of 24 conducted
tests. This confirms the poor performance of these methods for the more volatile PJM market.

The last column in Table 5 summarizes the results across all markets. Simple averaging
and IRMSE outperform the benchmark ARX (or AR for EEX) model for more than 45 of
the conducted tests, while PW and CLS are significantly better for 44, respectively 40 of the
conducted tests. Therefore, these methods provide superior results in comparison to using
a single forecasting model only. Note that also the BI selection method yields significantly
better results than the benchmark model for 29 out of 96 tests, while the worst performing FA
techniques, OLS and BMA, still outperform the ARX model for at least 28 of the conducted
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Table 6: The percentage and the number (in parentheses) of hours for which an applied forecast averaging scheme
is able to outperform the BI model selection approach (upper part) and for which the BI approach is able to
outperform a forecast averaging scheme (lower part), at the 5% significance level for the conducted Diebold-
Mariano test. Note that the tests are applied separately for each of the 24 hourly time series in each market. The
table also provides summary results for all markets, i.e. 4× 24 = 96 conducted tests. Results where a technique
outperforms the other for at least 25% of the series, i.e. at least than six out of 24 hours for an individual market,
respectively at least 24 out of 96 hours when all markets are considered, are highlighted in bold.

Method NP99 NP10 EEX PJM Total
Averaging better than BI model selection

Simple 67% (16) 38% (9) 0% (0) 13% (3) 29% (28)
OLS 4% (1) 8% (2) 50% (12) 0% (0) 16% (15)
LAD 17% (4) 29% (7) 54% (13) 0% (0) 25% (24)
PW 50% (12) 50% (12) 33% (8) 0% (0) 33% (32)
CLS 71% (17) 29% (7) 0% (0) 13% (3) 28% (27)
IRMSE 58% (14) 38% (9) 0% (0) 13% (3) 27% (26)
BMA 0% (0) 8% (2) 50% (12) 0% (0) 15% (14)

BI model selection better than averaging
Simple 0% (0) 0% (0) 38% (9) 0% (0) 9% (9)
OLS 29% (7) 21% (5) 0% (0) 75% (18) 31% (30)
LAD 21% (5) 4% (1) 0% (0) 13% (3) 9% (9)
PW 8% (2) 8% (2) 0% (0) 58% (14) 19% (18)
CLS 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)
IRMSE 0% (0) 0% (0) 33% (8) 0% (0) 8% (8)
BMA 29% (7) 21% (5) 0% (0) 71% (17) 30% (29)

tests. However, the latter two techniques, as well as PW, are also outperformed by the ARX
technique for a relatively high number of tests (between 25 and 27). Notwithstanding, all other
FA techniques and the BI method show significantly worse results than the ARX benchmark
only for a very small number of hours, i.e. less than 5%. Overall, our results for conducted DM
tests confirm results previously reported for the WMAE and m.d.f.b. measures and strongly
support the superior performance of most FA techniques in comparison to the ARX benchmark
model. Also the BI selection technique tends to perform significantly better than the ARX
model. Only the OLS, PW and BMA approaches are also outperformed by the benchmark
ARX model for a relatively high number of tests. We discuss possible reasons for this later on.

In a last step we also conduct DM tests in order to compare the FA techniques with the BI
approach, see Table 6. Recall that BI could be viewed as a special case of forecast averaging
with degenerate weights as indicated by equation (11). However, it is essentially a model (or
forecast) selection scheme and may be considered as a second, more sophisticated, benchmark
against the choice of forecast averaging. As pointed out before, similar to the FA techniques,
BI generally performed significantly better than the ARX benchmark model. We now further
continue to discuss whether results are comparable to the rest of the FA techniques. Considering
the upper part of Table 6, we find that in particular simple averaging, PW, CLS and IRMSE
seem to outperform BI for three of the considered datasets, namely the two Nord Pool and the
EEX out-of-sample test periods. On the other hand, BI significantly outperforms OLS, PW, and
BMA for the PJM dataset for at least 14 and up to 18 of the conducted tests (see lower part of
the table). Overall, five out of seven FA methods provide significantly better results than the BI
technique for at least 25% of the conducted tests. On the other hand, the BI selection scheme
also seems to give a better performance than two of the FA techniques, namely the unrestricted
averaging schemes OLS and BMA. Thus, while forecast averaging overall still seems to be the
preferred technique, results are not as clear-cut as for the ARX benchmark model.
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5.3. Summary
Tables 5 and 6 taken together along with the previous analysis are very much in line with

the abundant related literature regarding forecast averaging. First, combining forecasts is su-
perior in terms of accuracy to selecting forecasts. Second, though there is nothing sacred in
restricting the weights during the averaging process, it is preferred over an unrestricted version.
A restricted version such as CLS provides a sub-optimal solution in-sample, however, the un-
restricted version which provides a global optimum in-sample, potentially provides extremely
bad results out-of-sample, as is viewed for week 13 in Table 2. Third, next to CLS and IRMSE
also simple forecast averaging emerges as a stable choice which may not be optimal, yet apart
from the EEX data, our significance testing shows that one will never significantly worsen
prediction accuracy by using an equally weighted combined forecast instead of selecting an
ARX/AR model or the best individual ex ante model. This robustness property of the equal
weighting scheme is shown, perhaps counter-intuitively, to be expected by Smith and Wallis
(2009) when the quality of the individual forecasts is similar. This argument does not hold true
when applied to the EEX dataset. We believe that the reason is the lower number of models we
consider for this dataset. Due to data limitations, we only use 6 individual forecasts, instead of
the usual 12 for the other datasets. This means that there is less noise in parameter estimation,
so in the case of EEX, a more sophisticated averaging method might be a better choice. Support
for this argument is found in the portfolio management literature; DeMiguel et al. (2009) show
that optimal portfolio construction is more likely to outperform a simple weighting scheme
when fewer assets are present, so fewer weights to estimate. On the other hand, the equally
weighted portfolio is expected to outperform optimal weighting in the presence of substantial
estimation noise.

6. Conclusions

We examine possible accuracy gains from forecast averaging in the context of electricity
spot price prediction. While there is a significant number of studies on the use of forecast
combinations for predicting economic and financial variables, there is only a small number of
applications of these important techniques in the area of electricity markets, and even fewer
where electricity spot price forecasts are discussed. Our paper can be considered as an exten-
sion of the empirical study by Bordignon et al. (2013). While our findings are similar in spirit,
they are not as clear-cut, possibly due to the fact that we consider more (12 vs. 5) and differ-
ent individual models, more datasets (4 vs. 1) and, most importantly, more diverse averaging
schemes.

Namely, we apply seven averaging approaches and one selection method and perform
a backtesting analysis on electricity spot (or day-ahead) prices for the Scandinavian Nord
Pool market, the European Energy Exchange in Germany and the Pennsylvania-New Jersey-
Maryland Interconnection (PJM) in the US. We compare the averaging techniques in a realistic
setting where market participants have to decide ex ante which individual model will be applied
for forecasting. We evaluate the results using two feasible benchmarks:

• an ARX model (or an AR model for the EEX dataset), based on its ease of implemen-
tation and good forecasting performance in other studies (see e.g. Conejo et al., 2005;
Gonzalez et al., 2012; Misiorek et al., 2006; Nogales et al., 2002; Raviv et al., 2013), and

• the best individual (BI) ex ante model, i.e. at each point in timet, pick the model that
performed best up to timet − 24.
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Note that the latter is essentially a model (or forecast) selection scheme, but we can also view
it as a special case of forecast averaging with degenerate weights.

Overall, our findings support the additional benefits of combining forecasts for deriving
more accurate price forecasts in the considered markets. Five out of seven forecast averaging
methods clearly outperform the benchmark ARX model. Also, the majority of averaging tech-
niques seem to outperform the best individual ex ante scheme. That said, methods that allow
for unconstrained weights, such as OLS averaging should be avoided. Due to the specific be-
havior of electricity prices an unconstrained weight vector which, if poorly estimated, can be
severely punished in terms of accuracy, arguably much more than for other commodities.

Despite extensive research efforts, in general, and specifically for electricity markets, there
is no clear prior guidance as to which forecast combination scheme works best. A point ap-
parent from our results as well. IRMSE and simple averaging perform best with respect to the
ARX model – they are significantly more accurate than the benchmark in about 50% of cases
and significantly less accurate only in 1% of cases. While these combination schemes still per-
form extremely well against the best individual ex ante model in general, for the German EEX
market they are significantly less accurate than BI in as many as 33-38% of cases. On the other
hand, CLS averaging stands out as a choice which may not be optimal, but will never signifi-
cantly worsen prediction accuracy compared to the best individual ex ante model. As no single
forecasting method clearly dominates all others for all datasets considered, we recommend a
backtesting exercise to identify the preferred forecast averaging method for the data at hand.
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