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ECKHARD PLATEN

Simulation of Risk
Processes

Introduction

The simulation of risk processes is a standard pro-
cedure for insurance companies. The generation of
aggregate claims is vital for the calculation of the
amount of loss that may occur. Simulation of risk
processes also appears naturally in rating triggered
step-up bonds, where the interest rate is bound to
random changes of the companies’ ratings.

Claims of random size {X;} arrive at random times
T;. The number of claims up to time 7 is described by
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the stochastic process {N,}. The risk process {R; };=0
of an insurance company can be therefore represented
in the form

Ny
R,:u—kc(r)—ZX{-. 1)

i=1

This standard model for insurance risk [9, 10] in-
volves the following:

. the claim arrival point process {N:}i>0,

. an independent claim sequence (X )32, of posi-
tive i.i.d. random variables with common mean [,

. the nonnegative constant u representing the initial
capital of the company,

o the premium function c(7).

The company sells insurance policies and receives
2 premium according to ¢(r). Claims up to time
: are represented by the aggregate claim process
{T_j}i’l X;}. The claim severities are described by the
random sequence {X;}.

The simulation of the risk process or the aggre-
cate claim process reduces therefore to modeling the
point process {N;} and the claim size sequence { Xk
Both processes are assumed independent; hence, can
he simulated independently of each other. The mod-
cling and computer generation of claim severities is
covered in [14] and [12].

Sometimes a generalization of the risk process
is considered, which admits gain in capital due to
interest earned. Although risk processes with com-
pounding assets have received some attention in the
literature (see e.g. [7, 16]), we will not deal with them
because generalization of the simulation schemes is
straightforward.

The focus of this chapter is therefore on the effi-
cient simulation of the claim arrival point process
(V). Typically, it is simulated via the arrival times
{T;}. that is, moments when the ith claim occurs,
or the interarrival times (or waiting times) W; =
T, — T;_,, that is, the time periods between succes-
sive claims. The prominent scenarios for {N.}, are
tiven by the following:

¢ the homogeneous Poisson process,

¢ the nonhomogeneous Poisson process,

¢ the mixed Poisson process,

» the Cox process (or doubly stochastic Poisson
process), and

* the renewal process.

In the section ‘Claim Arrival Process’, we present
simulation algorithms of these five models. In the
section ‘Simulation of Risk Processes’, we illustrate
the application of selected scenarios for modeling
the risk process. The analysis is conducted for the
PCS (Property Claim Services [15]) dataset covering
Josses resulting from catastrophic events in the United
States that occurred between 1990 and 1999.

Claim Arrival Process
Homogeneous Poisson Process

A continuous-time stochastic process {Ny:t = 0} is
a (homogeneous) Poisson process with intensity (or
rate) A > 0if (i) {N,} is a point process, and (i1) the
times between events are independent and identically
distributed with an exponential() distribution, that
is, exponential with mean 1/A. Therefore, successive
arrival times Ty, T2, .... T, of the Poisson process
can be generated by the following algorithm:

Step 1: set Tp =0
StepZ: 1ot I = 1,2 suug O
Step 2a: generate an exponential random

variable E with intensity A
Step 2b:  set Tt = Tg._I + E
To generate an exponential random variable E
with intensity A, we can use the inverse transform
method, which reduces to taking a random number
U distributed uniformly on (0, 1) and setting E =
F~Y(U), where F~!(x) = (—log(l —x))/A is the
inverse of the exponential cumulative distribution
function. In fact, we can just as well set E =
(—logU)/A since 1 — U has the same distribution
as U.

Since for the homogeneous Poisson process the
expected value EN, = Az, it is natural to define the
premium function in this case as c(f) = ¢t, where ¢ =
(1 +0)uh, i = EXy and @ > 0 is the relative safety
loading that ‘guarantees’ survival of the insurance
company. With such a choice of the risk function, we
obtain the classical form of the risk process [9, 10].

Nonhomogeneous Poisson Process

One can think of various generalizations of the homo-
geneous Poisson process in order to obtain a more
reasonable description of reality. Note that the choice
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of such a process implies that the size of the port-
folio cannot increase or decrease. In addition, there
are situations. like in automobile insurance, where
claim occurrence epochs are likely to depend on the
time of the year or of the week [10]. For model-
ing such phenomena the nonhomogeneous Poisson
process (NHPP) suits much better than the homoge-
neous one. The NHPP can be thought of as a Poisson
process with a variable intensity defined by the deter-
ministic intensity (rate) function A(r). Note that the
increments of an NHPP do not have to be stationary.
In the special case when A(f) takes the constant value
A, the NHPP reduces to the homogeneous Poisson
process with intensity A.

The simulation of the process in the nonhomo-
geneous case is slightly more complicated than in
the homogeneous one. The first approach is based
on the observation [10] that for an NHPP with rate
function A(f) the increment N, — Ny, 0 <s <1, 18
distributed as a Poisson random variable with inten-
sity = [ A(u)du. Hence, the cumulative distribu-
tion function F, of the waiting time W, is given by

Ft)=P(W,<r)=1—P(W; >1)
:l_P(Ns+r'_N§:0):

=1—exp (—f ) }L(u)du)
=1—exp (—f Als+v) dv) : (2)
0

If the function /() is such that we can find a formula
for the inverse F, g_', then for each s we can generate a
random quantity X with the distribution F; by using
the inverse transform method. The algorithm, often
called the ‘integration method’, can be summarized
as follows:

set Ty = 0

fori=1,2,...,ndo

Step 2a: generate a random variable U
distributed uniformly on (0, 1)

Step 2b:  set T; = Ti—y + F; 1 (U)

Step 1:
Step 2:

The second approach, known as the thinning or
‘rejection method’, is based on the following obser-
vation [3, 14]. Suppose that there exists a constant
% such that A(¢) < X for all t. Let T, I, Ty be
the successive arrival times of a homogeneous Pois-
son process with intensity . If we accept the ith

arrival time with probability 4(T;%)/, independently
of all other arrivals, then the sequence T, Tz, ... of
the accepted arrival times (in ascending order) forms
a sequence of the arrival times of a nonhomogeneous
Poisson process with rate function 4(r). The resulting
algorithm reads as follows:

Step 1: set T[y=0and T* =0
Step 2: fori=1,2,.5nd0
Step 2a: generate an exponential random
variable E with intensity A
Step2b: set T* =T+ E
Step 2c: generate a random variable U
distributed uniformly on (0, 1)
Step 2d: if U > A(T*)/%, then return to

step 2a (— reject the arrival
time), else set I; = T'* (— acc-
ept the arrival time)

As mentioned in the previous section, the interar-
rival times of a homogeneous Poisson process have
an exponential distribution. Therefore, steps 2a-2b
generate the next arrival time of a homogeneous Pois-
son process with intensity 4. Steps 2c—2d amount to
rejecting (hence the name of the method) or accept-
ing a particular arrival as part of the thinned process
(hence the alternative name).

We finally note that since in the nonhomoge-
neous case the expected value EN, = 5 A(s)ds, it
is natural to define the premium function as c(t) =
(1+8)u [y As)ds.

Mixed Poisson Process

The very high volatility of risk processes, for exam-
ple, expressed in terms of the index of dispersion
Var(N,)/E(N,) being greater than 1 — a value obt-
ained for the homogeneous and the nonhomogeneous
cases, led to the introduction of the mixed Poisson
process [2, 13]. In many situations, the portfolio of
an insurance company is diversified in the sense that
the risks associated with different groups of policy
holders are significantly different. For example, in
motor insurance, we might want to make a difference
between male and female drivers or between drivers
of different ages. We would then assume that the
claims come from a heterogeneous group of clients,
each one of them generating claims according t0 2
Poisson distribution with the intensity varying from
one group to another.



Simulation of Risk Processes 1567

In the mixed Poisson process, the distribution of
[N} is given by a mixture of Poisson processes.
This means that, conditioning on an extrinsic random
variable A (called a structure variable), the process
(N} behaves like a homogeneous Poisson process.
The process can be generated in the following way:
first a realization of a nonnegative random variable
A is generated and, conditioned upon its realization,
{N,} as a homogeneous Poisson process with that
realization as its intensity is constructed. Making the
algorithm more formal we can write:

Step 1: generate a realization A of the random inten-
sity A
Step 2: set Ty =0
Step3: fori=1,2,...,m do
Step 3a: generate an exponential random
variable E with intensity A
Step 3b: set ;=T +E

Since for each ¢ the claim numbers {N,} up to time
; are Poisson with intensity Az, in the mixed case,
it is reasonable to consider the premium function of
the form c(t) = (1 + @) Ar.

Cox Process

The Cox process, or doubly stochastic Poisson pro-
cess, provides flexibility by letting the intensity not
only depend on time but also by allowing it to be
a stochastic process. Cox processes seem to form
a natural class for modeling risk and size fluctua-
tions. Therefore, the doubly stochastic Poisson pro-
cess can be viewed as a two-step randomization
procedure. An intensity process {A()} is used to
senerate another process {N,} by acting as its inten-
sity; that is, {N,} is a Poisson process conditional
on {A(t)}, which itself is a stochastic process. If
{A(t)} is deterministic, then {N,} is a nonhomoge-
neous Poisson process. If A(t) = A for some positive
random variable A, then {N;} is a mixed Poisson
process.

This definition suggests that the Cox process can
be generated in the following way: first a realization
of a nonnegative stochastic process {A(f)} 1s gen-
crated and, conditioned upon its realization, {N,} as
a nonhomogeneous Poisson process with that real-
ization as its intensity is constructed. Making the
algorithm more formal we can write:

Step 1: generate a realization A(f) of the intensity
process {A(r)} for a sufficiently large time
period

Step 2: set A =max {A(1)}

Step3: setTp=0and T* =0

Stepds Torl =1 2o n do
Step 4a: generate an exponential random

variable E with intensity A
Step 4b: set T*=T*+E
Step 4c: generate a random variable U
distributed uniformly on (0, 1)
Step 4d: if U > A(T*)/X then return to

step 4a (— reject the arrival
time) else set 7; = T™ (— accepl
the arrival time)

In the doubly stochastic case, the premium func-
tion is a generalization of the former functions, in line
with the generalization of the claim arrival process.
Hence., it takes the form ¢(f) = (1 +6)u fU’ A(s)ds.

Renewal Process

Generalizing the point process we come to the
position where we can make a variety of distribu-
tional assumptions on the sequence of waiting times
(W, Ws,...}. In some particular cases, it might be
useful to assume that the sequence is generated by
a renewal process of claim arrival epochs, that
is, the random variables W; are i.i.d. and nonneg-
ative. Note that the homogeneous Poisson process
is a renewal process with exponentially distributed
interarrival times. This observation lets us write the
following algorithm for the generation of the arrival
times for a renewal process:

Step 1: setTp =0
Step2s Pori =1,2,....7 do
Step 2a: generate a random variable X
with an assumed distribution
function F
Step2b: set T, =T, +X

An important point in the previous generalizations
of the Poisson process was the possibility to compen-
sate risk and size fluctuations by the premiums. Thus,
the premium rate had to be constantly adapted to the
development of the total claims. For renewal claim
arrival processes, a constant premium rate allows for
a constant safety loading [8]. Let {N,} be a renewal
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process and assume that Wy has finite mean 1/A. Then
the premium function is defined in a natural way as
e(t) = (1 +@)pht, like in the homogeneous Poisson
process case.

Simulation of Risk Processes

In this section, we will illustrate some of the mod-
els described earlier. We will conduct the analysis on
the PCS [15] dataset covering losses resulting from
catastrophic events in the United States of Amer-
ica that occurred between 1990 and 1999. The data

Capital (USD billion)

0 1 2 3 4 56 7 89

160 F
= 140 4
g
:.E
0 120 -
oy
=
£ 100 -
i3
U
80 1 3
60 +— . - - r T T - T
0123456?8910
Time (years)
(c)

includes market’s loss amounts in USD adjusted for
inflation. Only natural perils, which caused dam-
ages exceeding five million dollars, were taken into
consideration. Two largest losses in this period were
caused by hurricane Andrew (August 24, 1992) and
the Northridge earthquake (January 17, 1994).

The claim arrival process was analyzed by Bur-
necki et al. [6]. They fitted exponential, log-normal,
Pareto, Burr and gamma distributions to the wait-
ing time data and tested the fit with the x2, Kol-
mogorov—Smirnov, Cramer—von Mises and Ander-
son—Darling test statistics; see [1, 5]. The %% test
favored the exponential distribution with &, = 30.97,

Capital (USD billion)

60 - T T T T - - T T r
0 1 2 3 4 5 6 7 8 9
Time (years)

(h)

160 1 £

140 -

Capital (USD billion)

-
4 5 6 7 8 9 10

Time (years)

8 L 2 2

(d)

Figure 1 Simulation results for a homogeneous Poisson process with log-normal claim sizes (a), a nonhomogeneou:

Poisson process with log-normal claim

sizes (b), a nonhomogeneous Poisson process with Pareto claim sizes (¢). and

renewal process with Pareto claim sizes and log-normal waiting times (d). Figures were created with the Insurance librar?

of XploRe [17]
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justifying application of the homogeneous Poisson
process. However, other tests suggested that the dis-
(ribution is rather log-normal with &, = —3.88 and
o = 0.86 leading to a renewal process. Since none
of the analyzed distributions was a unanimous win-
ner, Burnecki et al. [0] suggested to fit the rate func-
ton A(f) = 35.32+2.32(2x) sin[27(r — 0.20)] and
ireat the claim arrival process as a nonhomogeneous
Poisson process.

The claim severity distribution was studied by
Burnecki and Kukla [4]. They fitted log-normal,
pareto, Burr and gamma distributions and tested the
fit with various nonparametric tests. The log-normal
distribution with p; = 18.44 and o, = 1.13 passed
all tests and yielded the smallest errors. The Pareto
distribution with &, = 2.39 and A, = 3.03 10% came
in second.

The simulation results are presented in Figure 1.
We consider a hypothetical scenario where the insur-
ance company insures losses resulting from catas-
trophic events in the United States. The company’s
initial capital is assumed to be u =TUSD 100 bil-
lion and the relative safety loading used is 6 = 0.5.
We choose four models of the risk process whose
application is most justified by the statistical results
described above: a homogeneous Poisson process
with log-normal claim sizes, a nonhomogeneous Pois-
son process with log-normal claim sizes, a nonhomo-
geneous Poisson process with Pareto claim sizes, and
a renewal process with Pareto claim sizes and log-
normal waiting times. It is important to note that the
choice of the model has influence on both — the ruin
probability and the reinsurance of the company.

In all subplots of Figure 1, the thick solid line is
the ‘real’ risk process, that is, a trajectory constructed
from the historical arrival times and values of the
losses. The thin solid line is a sample trajectory. The
dotted lines are the sample 0.001, 0.01, 0.05, 0.25,
0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on
50000 trajectories of the risk process. Recall that the
function X, (¢) is called a sample p-quantile line if for
each 1 € [tg, T], £,(1) is the sample p-quantile, that
is, if it satisfies F,(x,—) < p = Fy (xp), where Fy is
the empirical distribution function. Quantile lines
are a very helpful tool in the analysis of stochastic
processes. For example, they can provide a simple
justification of the stationarity (or the lack of it) of
a process; see [11]. In Figure 1, they visualize the
evolution of the density of the risk process. Clearly,
if claim severities are Pareto distributed then extreme

events are more probable than in the log-normal
case. for which the historical trajectory falls even
outside the 0.001-quantile line. This suggests that
Pareto-distributed claim sizes are more adequate for
modeling the ‘real” risk process.
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Simulation of Stochastic
Processes

Many problems in insurance and finance require sim-
ulation of the sample path of a stochastic process
{X,}. This may be the case even when only a sin-
gle value X7 is required, but the distribution of X7
is inaccessible, say, the reserve at time 7 in a com-
pound Poisson risk process with the interest rate
described by a Cox-Ingersoll-Ross process. Other
problems may require a functional depending on the
whole sample path, like the average for X, dt arising
in Asian options.

Of course, only a finite segment of a sample path
can be generated and only at a finite set of time points,
not the whole continuum of values. Even so, the
generation on a computer may be nontrivial and usu-
ally depends heavily on the specific structure of the
process whereas there are few general methods appli-
cable to a broad spectrum of stochastic processes.

The Markov Case

We refer to Markov chains and Markov processes
for background. The simulation of a Markov chain
{Xn)n=o.1.... (with discrete state space E) being spec-
ified by the transition probabilities p;; and the initial
probabilities y; is straightforward: one just starts by
selecting Xy € E w.p. y; for i. If i is selected for Xo,
one then selects j for X w.p. p;;; k is then selected
for X» w.p. pjx and so on. Note, however, that in
practice one may choose to base the simulation on a

model description rather than the transition probabili-
ties: for example, if a bonus system in car insurance
works the way that the bonus class X, in year n is
calculated as @(X,—;. Y,—1) where Y,_; is the num-
ber of accidents in year n — 1, one would simulate
using this recursion, not the transition probabilities,

For a discrete Markov process {X;};=o in contin-
uous time, one would usually just use the fact that
the sequence {Z,},—o.1.. of different states visited
forms a Markov chain. and that the holding times are
exponential with a parameter depending on the cur-
rent state. The exponential distribution of interevent
times is also the most natural way to simulate a Pois-
son process (or compound Poisson process as arising
in the classical risk model).

Diffusions and SDEs

Standard Brownian motion {B;};>¢ is usually just
simulated as a discrete skeleton: if the time horizon
is [0, T]. one selects a large integer N, generates N
iid. r.v.’s. Vi.....Vy with a N(0,h) distribution
where h=T/N and let By =Vi+---+ Vi, k=
O DV

For a stochastic differential equation

dX, = b(t, X,)dt +a(t, X,)dB,, Xg=xp, (1)

the most straightforward way is the Euler scheme,
which generates an approximation {Xz;} to {Xgs} as

:}?Uc+l)h = b(kh, Xe)h
k=0,....N=1, (2

530 = X0
+a(khe Ekh)vk—%l?

where as above the V; are i.i.d. N(0, k) r.v.’s.
The obvious intuition behind the Euler scheme is

(k1)
[ a(t, X)) dr = alkh, Xgp)h, 3)
kh

(k+1)h
f b(t, X,) B, ~ b(kh, Xen) (Byes s — Bra)-
kh
4)
Here by the box calculus one expects the error from
(4) to be larger than that from (3) since By — Ben

if of order h!/?, not h. A more refined approximation
than (2) produces the Milstein scheme Xo = Xo,

Xsih = bh+aVip +bb(VE, —h), (9



