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a b s t r a c t

Problem of informative frequency band (IFB) selection in vibration signal processing for
local damage detection is discussed. It is proposed to extend the concept of automatic and
objective IFB selection proposed by several authors. Till now, kurtosis was preferred as
criterion for IFB search. Thus, it is offered to study set of statistics, namely Jarque–Bera,
Kolmogorov–Smirnov, Cramer–von Mises, Anderson–Darling, quantile–quantile plot and a
method based on the local maxima approach in order to verify their abilities of IFB
selection. Also similarities between them are described. It has been proved by simulation
and real data analysis that proposed selectors (because they allow us to “select” frequency
band) might be equivalent to the spectral kurtosis (SK) in ordinary cases. Moreover, some
of the novel selectors are better, because they are less sensitive to incidental spikes that
might occur during the signal acquisition process. Proposed selectors might be (as SK) the
basis for filter design for informative signal extraction.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Local damage detection is one of the most widely explored problems in modern condition monitoring. One might notice
two serious reasons of that. First, detection of such damage in industrial reality might be practically difficult due to poor
signal to noise ratio and specific properties of informative signal. Second, localized damage causes significant, local increase
of interaction of surfaces being in contact. It means that at these time moments forces/moments are several (or more) times
bigger than during normal operation. It accelerates degradation and might rapidly (much quicker than distributed damage)
cause catastrophic failure. Vibration analysis seems to be the most effective approach for this problem. Mechanism of
generation of informative signals is well recognized [1–4]. Local change of stiffness associated with crack or loss of surface
causes impulsive disturbance in the signal. Due to rotation of elements, these disturbances should be cyclic. In simple case,
these impulses are visible in time domain and basic techniques might be effective enough to detect damage. Next step after
detection is association of damage with particular element with predefined (based on design factors and operating
conditions), so-called characteristic frequencies. Motivation of advanced study for local damage detection is provided by
industrial signals from machines with complexity of design, corruption of signals by significant noise or early stage of
damage. In such industrial case, mentioned cyclic pulse train might be hardly seen. One needs to “extract” informative signal
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from mixture of signals coming from different sources. By “noise” in such context one might consider discrete component
coming from shaft, mesh, resonance, ghost, etc. components, wideband Gaussian noise, or other. The most reasonable
approach is to design a filter that would be able to extract the signal of interest (SOI).

The key issue is a data-driven filter design procedure. It is known that filter can be described by its impulse response in
time domain or transfer function (amplitude and phase characteristics) in frequency domain. In the second approach one
has to specify which frequencies are informative (should be passed without changes) and non-informative (should be
suppressed). Knowledge about location of informative frequency bands might allow to use simple band-pass filter, wavelet
filter, so-called Wiener filter, etc. How to find the signal of interest? How to find frequency bands where signal of interest
after filtering is clearly visible? In the paper we propose solutions to these problems.

The rest of the paper is organized as follows: in Section 2 we briefly review works which are strictly connected to the
subject of this paper. In Section 3 a proposal of new frequency band selectors is presented. Section 4 contains analysis of
simulated data according to the presented procedure. In Section 5 we present the results for the real industrial data. Last
section contains conclusions.

2. State of the art

A signal that represents local damage is often amplitude or frequency modulated by AM or FM phenomena, thus we
incorporate the concept of IFB defined as a frequency band with carrier frequency as the center frequency and the
bandwidth that depends on modulation depth. The key question is to find the carrier and the bandwidth. The carrier is
related to mesh frequencies or resonance frequencies. The idea of signal filtering and further demodulation around
structural resonance was described in [1] (for bearings) and [5] (for gears). It is known that for resonance area signal is
enhanced “naturally” by resonance related amplification.

In Authors' belief, the work proposed by Lin and Zuo in [6] is in some sense a breakthrough in automatic determining of
informative frequency band. They proposed an adaptive wavelet filter based on Morlet wavelet. The Morlet wavelet
parameters optimization scheme was proposed with the kurtosis as maximization principle. It has been shown that in a set
of scale parameters and β parameters of daughter Morlet wavelet the kurtosis value is significantly higher for parameters
chosen by that scheme. It means that for such shape of wavelet, the results of filtering are the most impulsive, which leads
to conclusion about the highest visibility of damage. In fact, this approach is in some sense extended in other works.

There is a collection of papers where the authors try to optimize or adapt wavelet based filtering [7–13]. In [7] authors
use a complex shifted Morlet wavelet family for demodulation. Authors of [8] proposed a novel wavelet transform called
exact wavelet analysis which design is based on genetic algorithms. The method minimizes the undesirable effect of
overlapping and makes it easier to detect faults and distinguish the causes of faults. Bozchalooi and Liang [9] introduced a
smoothness index defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli of the
vibration signal. It guides to select proper wavelet parameters. In [10] a method of impulsive features extraction in the
vibration signal is proposed which combines Morlet wavelet filter and sparse code shrinkage (SCS). Another usage of Morlet
wavelet is presented in [11] where authors use it to determine a bandpass filter to eliminate the frequency related to
interferential vibrations. Then an autocorrelation enhancement algorithm is applied to obtain a signal with only few spectral
lines remained. In a two-part work done by Tse and Wang [12,13] a new sparsogram is introduced. It quickly determines the
resonant frequency bands which contain information about damage.

Another idea that influenced researches was introduced to condition monitoring community by Antoni in [14]. He
proposed to apply the kurtosis for sub-signals taken from spectrogram for each frequency bin, i.e. spectral kurtosis as a
statistical tool which can indicate the presence of series of transients and their locations in the frequency domain. It might
be calculated using time–frequency map and point out these frequency bins on time–frequency map that reveal the most
impulsive nature. Extension of this approach and practical implementation was presented by Antoni and Randall in [15].
Antoni also proposed dyadic signal decomposition scheme that also uses kurtosis to select frequency band. The approach
was called kurtogram. Further extension and application of SK and kurtogram might be found in many papers [16–20]. It is
worth mentioning that Zhang and Randall [20] proposed kurtogram with genetic algorithm based optimization, Wang and
Liang [17] proposed an adaptation scheme for SK and Lei et al. [19] adapted wavelet packet transform (WPT) for kurtogram.
Wang et al. [18] proposed an enhanced kurtogram, with kurtosis values calculated based on the power spectrum of the
envelope of the signals extracted from wavelet packet nodes at different depths. Barszcz and Jabłoński [21] proposed a
technique called the protrugram that is based on kurtosis of the envelope spectrum amplitudes of the demodulated signal,
instead of the kurtosis of the filtered time signal. They claim that the advantage of the method is the ability to detect
transients with smaller signal-to-noise ratio comparing to the SK-based fast kurtogram.

Urbanek et al. [22] has proposed a novel technique called modulation intensity distribution for estimation of informative
frequency band. The basic assumption is that local damage produces non-linear phenomena that might be modeled as
amplitude modulation. If in the bi-frequency plane a non-zero component with frequency corresponding to a carrier and a
sideband is present, it means that the carrier and the sideband are correlated and the frequency band is informative.
Makowski and Zimroz [23] proposed a procedure based on statistical analysis of parametric time–frequency map that allows
to extract set of informative bands and further processing of energy flow at these ranges. Obuchowski et al. [24] introduced
a family of statistical criteria that might be used instead of kurtosis for informative frequency band search.
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It should be said that there are other possible approaches that might provide serious signal enhancement without pre-
defining frequency band as EMD [25,26,27] or adaptive filters [2,28–30]. In both cases, proposed procedures do not specify
any particular frequency band, it is adaptively obtained depending on data (data-driven filters).

3. Informative frequency band selectors

In this section we introduce the novel procedure that leads to the local damage detection in rotating machinery. This
procedure is based on the time–frequency representation of examined signal. More precisely, in the first step of our analysis
we decompose the signal into set of narrowband sub-signals using a time–frequency representation. Here we propose to use
the short-time Fourier transform (STFT) that is defined as follows [31]:

STFTðt; f Þ ¼
Z 1

�1
wðt�τÞXðτÞe2jπf τ dτ; ð1Þ

where wðt�τÞ is the shifted window and XðτÞ is the input signal. Discrete version of Eq. (1) for observations X1;X2;…;XN ,
time point tAT and frequency f AF is defined as follows:

STFTðt; f Þ ¼ ∑
N�1

k ¼ 0
Xkwðt�kÞe2jπfk=N : ð2Þ

In the second step of our analysis we use several statistics, called selectors, that can be useful as tools for assessment of the
sub-signals. Each sub-signal is slice for a given narrow frequency range that arises after mentioned time–frequency
decomposition. In this paper we extend the classical approach, where the kurtosis of sub-signals is calculated and propose
new selectors based on statistical properties of examined sub-signals. The primary analysis of rotating machinery indicates
that sub-signals related to machine in healthy condition are closer to Gaussian than sub-signals related to a damaged one, so
some of the proposed statistics are based on the distance between empirical distribution of examined sub-signal and the
base distribution, namely the Gaussian one. The selectors mentioned in this paper might be grouped with respect to
their statistical properties. In the following subsections we describe the selectors grouped with respect to their statistical
properties.

3.1. Moment-based selectors

One of the most popular selectors that might be applied to local damage detection of underlying signal is the spectral
kurtosis (SK), [15]. The spectral kurtosis was first introduced as a statistical tool which can indicate not only non-Gaussian
components in a signal, but also their locations in the frequency domain. The spectral kurtosis at the frequency band f is
defined as follows [15]:

SK fð Þ ¼#T
∑tAT jSTFTðt; f Þj4

ð∑tAT jSTFTðt; f Þj2Þ2
�2; ð3Þ

where #T denotes the number of elements of the set T, i.e. number of time points at which STFT is calculated.
Since the spectral kurtosis is based on the fourth-order moment, this group of selectors will be complemented with a

statistic which is based on both fourth and third moments, namely the Jarque–Bera (JB) statistic. It is strictly related to the
Jarque–Bera test, which is a goodness-of-fit test of whether sample data has the skewness and kurtosis matching a Gaussian
distribution. This methodology is an extension of the widely used scheme where only the empirical kurtosis is being
investigated. The JB statistic calculated for sub-signal corresponding to frequency band f is defined as [32]

JB fð Þ ¼ #T
6

Sðf Þ2þðKðf Þ�1Þ2
4

 !
; ð4Þ

where S(f) and K(f) are the empirical skewness and kurtosis, respectively, calculated for given sub-signal corresponding to
frequency band f.

The value of the JB statistic forms a random variable which converges to zero if the underlying distribution has skewness
zero and kurtosis 3 (e.g. Gaussian). Any deviation from zero skewness and kurtosis equal to 3 increases the JB statistic. In this
paper the JB statistic is one of the proposed selectors used for local damage detection. If the data come from Gaussian
distribution, the JB statistic asymptotically has a chi-squared distributionwith two degrees of freedom, so the statistic can be
used to test the hypothesis that the data are derived from a Gaussian distribution. The null hypothesis is a joint hypothesis of
the skewness being zero and the excess kurtosis being zero. As the definition of JB shows, any deviation from these values
increases the JB statistic.

3.2. ECDF-based selectors

In this section we describe selectors based on the empirical cumulative distribution function (ECDF). The fundamental
statistical property of them is that, for specific distributions, moments of a random variable might be infinite, while
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cumulative distribution function is always well-defined. Moreover, these two groups are different from the computational
point of view – calculating ECDF requires sorting of the sample. The first proposed selector in this group is a Kolmogorov–
Smirnov statistic (KSS) that for sub-signal corresponding to the frequency band f is defined as follows [33,34]:

KSSðf Þ ¼ supxjECDFðf ; xÞ�Φðf ; xÞj; ð5Þ
where Φðf ; �Þ is the cumulative distribution function of the Gaussian distribution with parameters estimated from the sub-
signal corresponding to the frequency band f. Therefore this function is given by

Φ f ; xð Þ ¼
Z x

�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πdsðf Þq 2 exp � ðx�dμðf ÞÞ2

2dsðf Þ
2

0@ 1A dx; ð6Þ

where dμðf Þ is the empirical mean of the sub-signal fjSTFTðt; f ÞjgtAT , and dsðf Þ is the empirical standard deviation of
fjSTFTðt; f ÞjgtAT . Moreover ECDFðf ; xÞ is the empirical cumulative distribution function calculated for the sub-signal
corresponding to the frequency band f:

ECDF f ; xð Þ ¼ 1
#T

∑
tAT

1f STFT tk; fð Þ rxgj
�� ð7Þ

In the above definition 1fAg denotes the indicator of the set A.
The idea of using the Kolmogorov–Smirnov statistic for spikiness detection is illustrated in Fig. 1, where we present the

empirical and theoretical cumulative distribution functions for real data set analyzed in Section 5.1. In the left panel of Fig. 1
we show the cumulative distribution functions (empirical and theoretical – Gaussian) for sub-signal corresponding to the
frequency f¼2325 Hz for machine in good condition while in the right panel for the damaged one. One can observe in the
left panel the analyzed functions are closer than in the right panel, therefore the KSS for this frequency band has lower value
for the sub-signal from machine in good condition. In [35,36] one can find more properties of the KSS statistic and statistical
test based on it. We only mention here the KSS statistic tends to zero (almost surely) when number of elements in set T
tends to infinity. Moreover the distribution of KSS statistic defined in (5) is normal. The first fact is a result of Glivenko–
Cantelli theorem [37] while the second one is so-called the distribution-free property.

The next statistic that might be a useful tool for informative band selection is an extension of the mentioned
Kolmogorov–Smirnov. Similar to KSS, it is based on the distance between theoretical and empirical cumulative distribution
functions for underlying sub-signal. The selector, called Anderson–Darling statistic, belongs to the Cramer–von Mises family
of statistics which incorporate the idea of quadratic norm. The Cramer–von Mises statistic for frequency band f is defined
by [36].

Q ðf Þ ¼#T
Z 1

�1
ðECDFðf ; xÞ�Φðf ; xÞÞ2ϕðxÞ dx ð8Þ

where ϕðxÞ is a suitable function which puts weights to the squared difference ðECDFðf ; xÞ�Φðf ; xÞÞ2. Moreover functions
ECDFðf ; xÞ and Φðf ; xÞ are defined in (6) and (7), respectively. When ϕðxÞ ¼ 1, Q(f) is called the Cramer–von Mises statistic. In
this case we denote it as CVM. If ϕðxÞ ¼ ½Φðf ; xÞð1�Φðf ; xÞÞ��1, the above definition yields the Anderson–Darling statistic. In
the further analysis it is denoted as AD. Similar to the Kolmogorov–Smirnov statistic there exist statistical tests that allow to
test the proper distribution of examined data by using the CVM and AD statistics. More details can be found in [38-40].
The Cramer–von Mises test has better properties than the Kolmogorov–Smirnov test, but has some disadvantages. In order
to extend the CVM test the Anderson–Darling test was introduced. The Anderson–Darling test is a statistical test of whether
a given sample of data is drawn from a given probability distribution. In our case the base distribution is Gaussian. The test is
one of the most powerful statistical tools for detecting deviations from gaussianity.
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Fig. 1. The empirical and theoretical (Gaussian) cumulative distribution functions for exemplary sub-signals from machine in good condition (left panel)
and damaged one (right panel). The black dashed line represents the reference cumulative distribution function of Gaussian distribution.
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3.3. Quantile–quantile plot-based selectors

Except of statistical tests with explicit hypothesis, there are some visual tests to compare two distributions, e.g. the
theoretical distribution and the empirical one. One of the most famous examples is the quantile–quantile plot (QQplot), [41].
Plot of the theoretical distribution quantiles versus the underlying ones might be useful to recognize goodness-of-fit.
Straight line on the QQplot means that compared distributions have the same shape. Straight line with equal scales on the
axes means equal distributions. If there is no straight line, then one can compare, for example, tail heaviness of both
distributions. In most of numerical packages (MATLAB, R) there is an additional straight line plotted to make analysis easier.
This line connects two points: first and third quartiles of both distributions. To make this test numerical, we propose to
measure the horizontal distance between the QQplot markers and the additional straight line. One can note that statistics
contained in this group require sorting, similar to the previous group. Nevertheless, the lack of explicit hypothesis of
gaussianity test based on the QQplot tends us to classify them into an individual group.

For this test, we propose to compute mean and maximum of those distances. The formula for the maximum distance
between the Gaussian distribution and the sub-signal corresponding to the frequency band f is as follows:

Hmax fð Þ ¼ max
1rkr#T

~Φ
�1 2k�1

2#T

� �
�aS k; fð Þ�b

���� ����; ð9Þ

where ~Φ
�1ð�Þ is the inverse of cumulative distribution function of standard Gaussian distribution, i.e.

~Φ xð Þ ¼
Z x

�1

1ffiffiffiffiffiffi
2π

p exp �x2

2

� �
dx;

Sðk; f Þ is the k-th value of ascending sorted sub-signal fjSTFTðt; f ÞjgtAT , a¼ ð ~Φ�1ð0:75Þ� ~Φ
�1ð0:25ÞÞ=ðqðf ;0:75Þ�qðf ;0:25ÞÞ,

b¼ ~Φ
�1ð0:75Þ�aqðf ;0:75Þ and qðf ; pÞ is a p-th order quantile of a sub-signal fjSTFTðt; f ÞjgtAT . The formula for the average

distance is analogous with the max function substituted by the arithmetic mean. We denote the corresponding statistic as
Haver. The exemplary QQplots for real data examined in Section 5.1 of a healthy signal (for a given frequency bin) are
presented in Fig. 2 (left panel) while for the sub-signal with defect – in the right panel of Fig. 2. We observe that the healthy
signal is closer to Gaussian distribution than the unhealthy one. Both average and maximum horizontal distances between
straight line and markers are significantly larger in the right panel.

3.4. Local maxima method-based selector

The last procedure that allows for construction of a selector for local damage detection is based on the local maxima
method [42,43]. For each frequency band (i.e. each sub-signal) we check the local maximum occurrence. We assume that
local maximum occurs at a given time point when the modulus of STFT value therein is higher than the other values in its
neighborhood of a length not less than a certain value – r. Then, for each frequency band we create a new binary vector
which is a transformation of the original data into zero-one series. More precisely, we put 1 at a time point when the local
maximum occurs and 0 otherwise. Let us point that the binary values obtained in this way minimize influence of
insignificant signals for local damage detection as well as maximize influence of characteristic signals for locally damaged
machinery. In our methodology for each time point we use the vector of weights (VoW), which is a vector of averaged
maxima occurrence, i.e. VoW at point t is defined as follows:

W tð Þ ¼ 1
#F

∑
f A F

M t; fð Þ; ð10Þ
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Fig. 2. QQplot of the healthy (left panel) and unhealthy (right panel) sub-signal compared to the normal distribution. The black dashed line represents the
reference quantile line for Gaussian distribution. Note that only horizontal distance between markers and line is quantified by Haver and Hmax.
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where Mðt; f Þ represents binary valued vector of the local maxima occurrence at the time point t and frequency f. After
multiplying each previously computed binary value by the value of VoW at the corresponding time point we obtain an
enhanced spectrogram. Therefore the enhanced spectrogram at point (t,f) is defined as follows:

ENHðt; f Þ ¼WðtÞMðt; f Þ: ð11Þ
More details of the procedure for the enhanced spectrogram construction for different applications one can find in [42]. The
selector based on the local maxima method for frequency band f is constructed as follows:

LM fð Þ ¼ 1
#T

∑
tAT

ENH t; fð Þ: ð12Þ

4. Simulated data analysis

In this section we illustrate how the proposed selectors deal with simulated data set representing vibrations of
hypothetical rotating machines, one of which is locally damaged and the second is in healthy condition. The signal fXðtÞg is
obtained using the following formula:

XðtÞ ¼ ∑
n

i ¼ 1
Aai sin ð2πf itÞþsNðtÞ; ð13Þ

where n¼6, A¼10, ai ¼ 0:75ði�1Þ, f i ¼ 190i, s¼ 0:1 and fNðtÞg is white standard Gaussian noise in case of healthy machine. In
case of local damage fNðtÞg is divided by filtering into 3 groups: (a) fN1ðtÞg – lowpass filtered fNðtÞg with cut-off frequency
1000 Hz, (b) fN2ðtÞg – bandpass filtered fNðtÞg with cut-off frequencies 1000 Hz and 6000 Hz and (c) fN1ðtÞg – highpass
filtered fNðtÞg with cut-off frequency 6000 Hz. We use ideal filters, i.e. filters with characteristics equal to 1 along the passed
band and 0 elsewhere. To simulate the pulse train we modulate amplitude of fN2ðtÞg using an impulsive signal – sum of a
lot of sine waves with frequencies that are multiples of the fault frequency. Amplitude of the result is adjusted to make
level of noise between pulses similar to the level of fNðtÞg in healthy case. Signal to noise ratio defined as SNRdB ¼
10 log10ðPsignal=PnoiseÞ, where Psignal denotes power of sNðtÞ and Pnoise – power of Aai sin ð2πf itÞ, equal to �42.5 in healthy
case and �36.2 in faulty case. Frequency sampling is fs¼16 384 Hz and length of the signals is 2.5 s. The signal of interest
occurs as an impulsive amplitude modulation of the noise with frequency 13 Hz. The resulting frequency band of the SOI is
limited to 1000–6000 Hz. Frequencies of the 6 sine waves are successive multiplies of fh¼190 Hz, so the band of SOI
overlaps them at 1000–1140 Hz. Signal sfNðtÞg (Gaussian noise in healthy case and amplitude modulated Gaussian noise in
faulty case), raw signals and corresponding spectrograms are presented in Figs. 3, 4 and 5, respectively. Fig. 6 presents
results of applying selectors described in Section 3 to the simulated data. Spectrograms used in Fig. 5 are obtained by using
non-overlapping Kaiser windows of 219 samples and fast Fourier transform (FFT) calculated in 1024 points. In each of 8
cases the selectors are normalized by the maximum value to preserve possibility of comparison. One can note that in this
simple case of simulated data all of the selectors indicated the informative frequency band correctly, but each one behaves
in a different way.

Goodness of each of 8 selectors will be assessed with respect to few aspects. The ideal selector in the locally damaged
rotating machine case should be close to 1 through the whole informative frequency band, i.e. from 1000 to 6000 Hz except
band related to the 6-th mesh harmonic (1140 Hz). Above 6000 Hz and below 1000 Hz the most valuable selector should be
close to 0 and not distinguish between deterministic components and high-frequency noise. Transition from values close to
1 to values close to 0 should be as sharp as possible. While the machine is not damaged, no one of frequency bins should be
indicated as informative, thus values close to 0 are expected through the whole spectrum.
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Fig. 3. Signal of noise – fsNðtÞg from healthy (top panel) and faulty (bottom panel) rotating machine. The whole signals last 2.5 s. Note some disturbations
at 0.077, 0.15 and 0.23 s in bottom panel.
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Fig. 6 clearly shows that the selector value closest to 1 through the informative frequency band is owned by selector
based on the KSS and the local maxima method (panels (c) and (h), respectively). Other selectors based on empirical
cumulative distribution function share a behavior of value varying with the selector based on average horizontal distance on
the QQplot (panels (d), (e) and (f), respectively). The most varying behavior is presented by moment-based selectors
(SK – (a) and JB – (b)) and the second selector based on QQplot (panel (g)). No one selector clearly indicated the informative
frequency band between 1000 and 1140 Hz, but this feature might depend on frequency resolution of the STFT used for
calculating the selectors. To reveal such narrowband properties of the signal relatively high frequency resolution must be
ensured.

While analyzing differences between behavior of the selectors in low frequency bands and the highest ones only in four
of eight panels an acceptable result can be observed (panels (a), (b), (g) and (h)). Other selectors are more sensitive to rigid
sine waves with a small amount of noise (amplitude modulated or not). The most sensitive one is the KSS (panel (c)). One
can see that the lower sensitivity to deterministic components, the lower dispersion of a selector value through the whole
spectrum in a healthy machine case. Low dispersion is very important while setting a uniform threshold distinguishing
selector related to the healthy machine from damaged one. Otherwise, individual thresholds for every frequency bin should
be set.

The last aspect in respect of which we analyze goodness of selector is sharpeness of transition from values indicating
information related to local damage to the non-informative ones. Every selector owns this feature at frequency close
to 6000 Hz. On the left edge of the informative frequency band only the local maxima based selector behaves acceptably.
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Fig. 4. Raw vibration signal from healthy (top panel) and faulty (bottom panel) rotating machine. The whole signals last 2.5 s. Note some barely visible
disturbations at 0.077, 0.15 and 0.23 s marked by ellipses.

Fig. 5. Spectrograms of raw vibration data from healthy (top panel) and faulty (bottom panel) rotating machine. The whole signals last 2.5 s. Note energy
difference between low-frequency deterministic components and noise.

J. Obuchowski et al. / Mechanical Systems and Signal Processing 48 (2014) 138–152144



Author's personal copy

Slope of other selectors at the left edge of IFB is less sharp. Rigid transition between informative and non-informative
components is important when a rigid frequency band must be specified for further processing, e.g. a band-pass filter.

To sum up, every new selector recognized the IFB comparably to the SK. There are some differences in behavior of each
one but they are important only in particular further processing methods. Nevertheless, the differences are not significantly
large and they might disappear by improving further processing methods (e.g. individual thresholds instead of a uniform
one for filter design). It might be said that the new selectors provide similar information as SK in the simple signal case.

5. Real data analysis

To prove efficacy of the proposed methodology we will show results of application of selectors to real vibration data from
complex mechanical system operating in mining industry. To provide “good condition” reference, two vibration signals
representing a healthy rotating machine and a damaged one are considered. The first set represents vibrations of bearings
and the second one – gearboxes’ vibrations. Different sets of data are related to different types of damage. In Case A, there is
an outer race damage in bearings pulley. In Case B, tooth local damage in gear-wheel mounted on second (middle) shaft in
the gearbox. Both components (bearings from pulley, gearwheel from two stage gearbox) come from driving system used in
belt conveyor, very popular technology for transporting of bulk materials in mining industry. In fact signal from bearings
and gearbox come from different driving stations, however design of drive unit is the same as presented in Fig. 7.
Measurements have been performed using Bruel Kjaer Pulse system. Parameters of data acquisition depend on the
investigated object. Details (duration of signal, sampling frequency, location of the sensor) are provided in
subsections below.

In both cases, due to high amplitudes of mesh components, cyclic and impulsive nature of the signal can be hardly seen.
For gearbox vibration, there are some barely visible disturbances in the vibration signal, however, any diagnose without
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Fig. 6. Selectors calculated for raw vibration data from faulty (thin black lines) and healthy (thick red lines) rotating machine: SK (a), JB (b), KSS (c), CVM (d),
AD (e), Haver (f), Hmax (g) and LM (h). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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performing detailed analysis might lead to misinterpretation of the results. In case of acquisition of vibration from pulleys
bearing, the level of contamination is very high and mask signal of interest completely. In both cases, there are serious
differences in amplitudes of selectors between good and bad conditions.

5.1. Bearing with a two-stage gearbox located nearby

Here we analyze signals related to two bearings. As mentioned, one is healthy and the second is locally damaged (outer
race problem). Data were acquired using commercial system. Parameters of vibration acquisition are: sensor located in
horizontal direction (see Fig. 7d), sampling frequency 19 200 Hz, duration of signal 2.5 s and the expected fault frequency
12.69 Hz. Figs. 8 and 9 present raw signals and corresponding spectrograms, respectively. As one can see, both signals are
strongly amplitude modulated. Cycle of modulation is related to pulley's shaft rotation, it does not indicate local nature of
the problem. Impulses related to the damage are not visible in time domain, wideband excitations in the spectrogram are
not so clear due to high energy band at approx. 0–1000 Hz.

Thus, the proposed selectors might be reasonable to apply in order to distinguish informative frequency band from
uninformative. To obtain the spectrograms we use non-overlapping Kaiser windows of length 129 samples and calculate FFT
in 1024 points. Relatively short window preserves a proper size of samples used for calculating the selectors and good time
resolution at the expense of frequency resolution.

Recall that in Section 4 a model-driven analysis was performed. Since the whole structure of the signals was known,
selectors were examined if they are sensitive to individual properties of the signals. While a real signal is analyzed, only a
limited information about the data is given. Thus, we do not analyze selectors for a rigid informative frequency band
detection here. In our analysis we focus on similarities between shape of the selectors at particular frequency bands,
sensitivity to high-energy amplitude modulated components and low-energy noise, bandwidth indicated as informative and
possibilities of performing future analyzes, e.g. band-pass filtering. The differences are also assessed beside their basis, i.e.
the group to which they belong.

From a theoretical point of view selectors are grouped into four sets. The first is a set of moment-based selectors and
consists of the SK and JB. The second set consists of selectors based on empirical cumulative distribution function (KSS, CVM
and AD). Selectors that quantify average and maximum horizontal distance in QQplots form the third set. The last one
consists the last selector – based on the local maxima method. In Section 4 it was observed that selectors contained within
the first set share similar behavior. Also selectors within the second group behave in a similar way. Only QQplot-based
selectors are different from each other, especially in the lowest frequency bands. Here, as it can be observed in Fig. 10, shapes

Fig. 7. (a) – Scheme of the investigated machinery, (b) – sensor location in gearbox case, (c) – coupling between gearbox and pulley, (d) – sensor location in
pulley case.
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presented in panels (c), (d) and (e) look very similar, excluding higher values in KSS case for both healthy and damaged data
outside the indicated IFB. In the case of locally damaged bearing three large peaks at about 1500, 2350 and 3050 Hz with
increasing height and three small peaks near 3800, 4750 and 5300 Hz with decreasing height are observed (panels (c)–(e)).
No other significant peaks are visible in both damaged and healthy cases. Maximum horizontal distance behaves similar
them, but the damaged bearing is characterized by additional small peak at frequency of 7550 Hz (panel (g)). This single
peak is also shared by moment-based selectors (panels (a) and (b)). Moreover, SK and JB are more dispersed than other
selectors. Contrary to them, LM is the least scattered selector. All of the selectors that require sorting indicate frequency of
3050 Hz as the most informative. The most distinctive selector is the one based on the local maxima method. It indicates
almost whole frequency band as informative except low-frequency contamination from the gearbox and high-frequency
noise at band higher than 8000 Hz. Inside the indicated informative frequency band it can be observed that the curve
related to damaged bearing slowly decreases with increasing frequency. All of the selectors behave similarly in the healthy
bearing case. The only difference is visible in level of selectors, but all of them do not distinguish between low, middle and
high frequency bands. In every case, band-bass filter design procedure should decide which choose leads to the best result:
1500–4000 Hz, 1500–6000 Hz or 1500–8000 Hz. In the case of more complicated linear filtering procedure exploiting KSS,
the problem of relatively high scatter of the selector must be solved. In further work an interesting result obtained by using
the local maxima method for IFB selection must be validated. Before performing filtering procedure it cannot be said if such
wide indicated IFB leads to better enhancement of the raw signal or not.

To sum up, the new selectors might provide similar information as SK about informativeness of each frequency bin in the
simple real data case. JB might provide more selective filter characteristic (passing only set of narrow band around the
indicated ones), preserving clear difference between signal from healthy and damaged machine. Selectors based on ECDF
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Fig. 8. Raw vibration signal from healthy (top panel) and faulty (bottom panel) bearing. Note deep amplitude modulation present in both signals.

Fig. 9. Spectrograms of raw vibration data from healthy (top panel) and faulty (bottom panel) bearing. The whole signals last 2.5 s. Note three energy-
different bands: high-energy contamination from a gearbox, middle-energy informative components and low energy noise.
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and QQplot indicated the same frequency bin as the most informative. While performing further analyzes one can decrease
the number of selectors contained in this group. Surprising result obtained by LM is difficult to interpret and it must be
examined if such wide IFB is better (e.g. other selectors does not indicate crucial frequency bins) or just leads to more noisy
filtered signal.

5.2. Two stage gearbox

In this section we present how the selectors deal with another real data set.
The signals represent vibration of two gearboxes, one healthy and one which is damaged. Parameters of signal

acquisition are: duration 2.5 s, sampling frequency 8192 Hz and the expected fault frequency 4.1 Hz. Several channels were
used. Location of sensor associated with the signal used here is pointed by arrow in Fig. 7b.

Raw signals and corresponding time–frequency maps are presented in Figs. 11 and 12, respectively. Spectrograms are
obtained by STFT with non-overlapping Kaiser windows of length 111 samples and FFT calculated in 1024 points. As it can be
seen, both impulses in time domain and horizontal lines in time–frequency domain are barely visible. Moreover, there is an
artifact, i.e. undesirable disturbance occurred during data acquisition. It can be seen in Fig. 12 (bottom panel) at frequencies
lower than 250 Hz and higher than 3500 Hz, at 0.25 s.

We propose to analyze the selectors presented in Fig. 13 in two main aspects. Since the frequency band related to damage
is narrow and it overlaps with a lot of high-energy components, the best selector should at first accurately distinguish the
damaged gearbox from a healthy one. It is a real challenge because high-energy components differ in the two analyzed
signals. The second feature which the best selector should deal with is the artifact. While its whole energy is relatively low,
its energy contained in high-frequency bands is relatively high, so selectors have to deal with an outlier present in
spectrogram slices above 3000 Hz.
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Fig. 10. Selectors calculated for raw vibration data from faulty (thin black lines) and healthy (thick red lines) bearing: SK (a), JB (b), KSS (c), CVM (d), AD (e),
Haver (f), Hmax (g) and LM (h). Frequencies marked with vertical red dashed lines correspond to 1500, 2350, 3050, 3800, 4750, 5300, 7550 Hz.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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The artifact affected the Jarque–Bera statistic based selector the most and the spectral kurtosis is also very large at
highest frequencies (panels (b) and (a), respectively). Thus, other frequency bands are relatively barely indicated. One can
see a little higher values at SOI2 (800–1200 Hz) and SOI3 (2700–3100 Hz) in SK but JB presents slightly higher values only at
SOI3 (except frequency bins related to the artifact). Among other selectors, the artifact affected also selectors in panels (c),
(d), (e) and (g) but peaks SOI2 and SOI3 are clearly visible. The least affected selector is LM (panel (h)). Sensitivity of Haver to
single excitations is average (panel (f)).

As it can be observed in Fig. 12 the informative frequency band is composed of three parts. The first is narrow and is
located near 200 Hz (SOI1). Two other are relatively wide and are located close to 1000 Hz (SOI2) and 3000 Hz (SOI3). The
only selectors that indicated the first part are presented in panels (f) (Haver) and (h) (LM) but the latter one is better visible.
Most of other selectors also has higher levels at about 200 Hz (SOI1), but in these cases values of selectors for the healthy
gearbox are on the same level. Thus it disappears while a uniform threshold of selector value is established to distinguish
damaged from a healthy one. The SOI2 is indicated by all the selectors but JB. The highest relative indication of it is presented
in panels (d), (e), (f) (ECDF-based selectors) and (h) (LM).

The last aspect in respect of which we analyze the selectors is the artifact above 3000 Hz. The best behavior here is
shared by CVM, AD and both average and maximum distances in QQplot (panels (d), (e), (f) and (g), respectively).

To sum up, the artifact is a serious challenge for informative band selectors. Since both moment-based selectors fail, the
other ones are promising with a view to further processing. One might greatly benefit from a procedure that establishes
thresholds for every frequency bin individually, because every selector that decreases influence of the artifact is very
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Fig. 11. Raw vibration signal from healthy (top panel) and faulty (bottom panel) gearbox. Note barely visible impulses related to the fault frequency
(bottom panel).

Fig. 12. Spectrograms of raw vibration data from healthy (top panel) and faulty (bottom panel) gearbox. Note the artifact at 0.25 s occurred during data
acquisition. Note 3 informative frequency bands (SOI1, SOI2, SOI3) and the artifact marked with an ellipse.
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scattered. It can be said that the lower sensitivity to the artifact the larger dispersion of a selector's values. Thus, in such case
LM and Haver might be the most effective selectors. While a uniform threshold has to be designed to distinguish between
data from healthy and damaged machine the best choice must be a compromise between relatively low influence of the
artifact and small dispersion of the data.

6. Conclusions

In this paper we propose novel procedures for efficient local damage detection in rotating machinery. In some sense they
are extension of existing approaches for selection of informative frequency band for further filtering of raw signal. The
methods are based on the statistical analysis of underlying signal. Novelty of the paper is that the classical approaches i.e.
filtering around resonance, mesh component or tools for band selection based on the spectral kurtosis or kurtosis [44,45]
are replaced with novel statistical tools, called selectors.

Selectors based on statistical moments are more sensitive to single, incidental impulses. Contrary to them, there are
novel selectors (based on the empirical cumulative distribution function, quantile–quantile plot and the local maxima
method) that are less sensitive to such artifacts. In some cases there is a need for adopting further processing methods to
fully benefit from the novel selectors. In simple cases new selectors provide similar information as the spectral kurtosis but
there are some differences between them. It is worth mentioning that the selector based on the Jarqe–Bera statistic is more
selective than SK which might result in lower level of noise of the filtered signal. Selector based on the local maxima method
is also distinctive. It is insensitive to incidental spikes and able to identify even narrow informative frequency bands.
However, its behavior in simple real data case is disputably successful, because before further analyzes it cannot be said if
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Fig. 13. Selectors calculated for raw vibration data from faulty (thin black lines) and healthy (thick red lines) gearbox: SK (a), JB (b), KSS (c), CVM (d), AD (e),
Haver (f), Hmax (g) and LM (h). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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such wide indicated IFB is valuable. Analysis demonstrated that selectors similar to each other due to their basis provide
results that do not differ each other significantly. Thus, number of selectors for further analysis might be reduced.
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