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Abstract

In the article we consider accumulated values of annuities-certain with yearly payments with independent random interest
rates. We present the variance formulae of the final values of the annuities, which leads to a correction of Theorems 4.2, 4.3,
4.5 and 4.6 from Zaks [Insurance: Mathematics and Economics 28 (2001) 1].
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An annuity is defined as a sequence of payments of a limited duration which we deno{ed®; e.gGerber,

1997. The accumulated or final values of annuities are of our interest. Typically, for simplicity, it is assumed that
underlying interest rate is fixed and the same for all years. However, the interest rate that will apply in future years
is of course neither known nor constant. Thus, it seems reasonable to let interest rates vary in a random way over
time, cf. e.gKellison (1991)

We assume that annual rates of interest are independent random variables with common mean and variance. We
apply this assumption in order to compute, via recursive relationships, fundamental characteristics, namely mean
and variance, of the accumulated values of annuities with payments varying in arithmetic and geometric progression
(see, e.gKellison, 199). Since these important varying annuities can be reduced to the cases considéaéd by
(2001) we discover several mistakes in main resultZaks (2001) Of courseerrare humanum esbut for the
benefit of the readers we correct all of them here. Moreover, we note that the errors in main rezals (#001)
are ‘independent’, namely they are not merely a consequence of one incorrect result, e.g. formula (2.8).

We follow basic notation used in the theory of annuities, see Gegber (1997.)Suppose tha is the positive
annual interest rate and fixed through the period g€ars. We assume that< n throughout, unless otherwise
specified. Let us now consider a standard increasing annuity-due. It corresponds to the case of an annuity-due with
payments varying in arithmetic progression wjth= 1 andg = 1. The accumulated value of such annuity with
annual payments of, 2, .. ., k, respectively, is

Sy —k
(), = "'fd . )
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This can be expressed recursively as
U, = QA+ D +20+ P+ + k@A + ) = A+ DK+ T, 2

which corrects formula (2.8) frordaks (2001)

Let us suppose that the annual rate of interest irkthegyear is a random variabig. We assume that, for each
k, we haveE(iy) = j > 0 and Vatiy) = s2, and thatiy, io, ..., i, are independent random variables. We write
EA+iy) =1+ j=pandE[A+i)?] = A+ )2 +s?> =1+ f =m, wheref = 2j + j? + s°. Obviously
Var(1+ i) = m — u?. Next we define to be the solution of % r = (1+ f)/(1+ j). Using the relation between
f andj we haver = j + (s2/(1+ ))).

For ak-year variable annuity-due with annual paymentsioto, . . ., ¢k, respectively, we denote their final value
by Cy.

Fact 1. If Cy denotes the final value of an increasing annuity-due éhnual payments df 2, . . ., k, respectively
and if the annual rate of interest during the kth year is a random variapkeuch thateE(1 + iy) = 1+ j and
Var(1+ iy) = s2, andiq, io, .. ., i, are independent random variableken

(a) E(Cy) = (I:S:)Hj»
b) My = %)y,
@+ PPUSE, — A+ U, — A+ DU

(c) Mo, = 7 ,
21+ PH2I)g, — 2L+ HUS)g  — j+ HUT%);
(d) my = ki 7z klf kS

Part (b) corrects (4.6) frordaks (2001)and (d) corrects Theorem 4.2 froAaks (2001) These results can be
summarized in the following corollary:

Fact 2. Under the assumptions &fact 1we have

201+ ) H2USE, — 20+ DUy, — JR+ DUy, Uz, — 20+ kd Uiy, — k>
.2 *

Var(Cy) = ; 42

®3)

Fact 2 corrects Theorem 4.3 frodaks (2001) Let us now consider the case of a decreasing annuity-due. It
corresponds to the case of an annuity-due with payments varying in arithmetic progressipr=witAndg = —1.

Fact 3. If C; denotes the final value of a decreasing annuity-due i@hnual payments ef, n — 1, ..., n —k+1,
respectivelyand if the annual rate of interest during the kth year is a random varigkdeich thatt (1+i;) = 1+

andVar(1+ i) = s%, andiy, io, . . ., i, are independent random variable¢ben
varcy = L [T WRAE Dy, 20 - iPAE Py, 0= D%y
R 1+¢ 1+r 1+f
200 = YPA+ HEUIDE, 20— YPUSy, Uy, "
1+r 1+ f 1+ 7 |’

wheret = (s/(1+ j))2.

Fact 3 corrects Theorem 4.5 frafiaks (2001)
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We now study the case of an annuity-due witinnual payments of 1+u, (1+u)?, ..., (1+u)*~1, respectively.
It corresponds to an annuity-due with payments varying in geometric progressiop with andg = 1 + u. We
assumethat ¥ u = (1+ H(1+0,14+ f= A+ w?@A+h) and 1+ f = 1+ H?A+ D1+ w).

Fact 4. If C; denotes the final value of an annuity-due viitmnual payments df 1+u, (1+u)?, ..., (1+u)*1,
respectivelyand if the annual rate of interest during the kth year is a random varighdeich thatt (1+i;) = 1+

andVar(1 + i) = s%, andiy, io, ... ., i, are independent random variableben
A+ w2+ g, — 2L+ D*A+ 055, L+ DGz, — 27,
Var(Cy) = - . (5)
t t(1+1

Fact 4 corrects Theorem 4.6 fratiaks (2001) For details se8urnecki et al. (2003)

Finally, we note that one can approximate mean and variance of the final values of general annuities using

numerical approach (cKellison, 199). In order to apply it let us assume that random variahldémve common
normal distribution with parameters= 0.08 ands = 0.02. This yields thaj = 0.08 ands? = 0.0004. Moreover,
we setrn = 10 and the number of simulations = 100 000. We focus on the variance results. We plo{¥gy as
a function ofk for the preceding annuity using the analytical and numerical outcomes.

Fig. 1depicts the comparison for an annuity with payments varying in geometric progression, see Fact 4, where
we setu = 0.1. We can observe in the left panel that our analytical (see Fact 4) and numerical results agree while

the corresponding Theorem 4.6 frataks (2001)ields outcome which is essentially smaller (right paneiy. 1
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Fig. 1. Comparison of the analyticalf and numerical ©) results on variance of the final value of an annuity-due with payments varying in

geometric progression with= 1 andg = 1+ u.



460 K. Burnecki et al./ Insurance: Mathematics and Economics 32 (2003) 457-460

shows that the variance of the final values of annuitiedaks (2001)can be 100 000 (!!!) times smaller than the
correct number. Moreover, the variance is negative fer 1.
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