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Universal Algorithm for Identification of Fractional Brownian Motion.
A Case of Telomere Subdiffusion
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ABSTRACT We present a systematic statistical analysis of the recently measured individual trajectories of fluorescently
labeled telomeres in the nucleus of living human cells. The experiments were performed in the U2OS cancer cell line. We
propose an algorithm for identification of the telomere motion. By expanding the previously published data set, we are able
to explore the dynamics in six time orders, a task not possible earlier. As a result, we establish a rigorous mathematical char-
acterization of the stochastic process and identify the basic mathematical mechanisms behind the telomere motion. We find that
the increments of the motion are stationary, Gaussian, ergodic, and even more chaotic—mixing. Moreover, the obtained
memory parameter estimates, as well as the ensemble average mean square displacement reveal subdiffusive behavior at
all time spans. All these findings statistically prove a fractional Brownian motion for the telomere trajectories, which is confirmed
by a generalized p-variation test. Taking into account the biophysical nature of telomeres as monomers in the chromatin chain,
we suggest polymer dynamics as a sufficient framework for their motion with no influence of other models. In addition, these
results shed light on other studies of telomere motion and the alternative telomere lengthening mechanism. We hope that iden-
tification of these mechanisms will allow the development of a proper physical and biological model for telomere subdynamics.
This array of tests can be easily implemented to other data sets to enable quick and accurate analysis of their statistical
characteristics.
INTRODUCTION
Our work is motivated from one side by the growing interest
in single molecule spectroscopy (1–16), in particular by
single-particle tracking (SPT) in a context of anomalous
diffusion (11,18–25) and from the other side by the
discovery of how chromosomes are protected by telomeres
and the enzyme telomerase (26). By performing a thorough
statistical analysis on a very large data set of telomere
motions, we set new perspectives, to our knowledge, on
telomere dynamics and show how to systematically analyze
future SPT results.

SPT measurements can provide new experimental knowl-
edge even with basic analysis. For example, diffusion coeffi-
cients and qualitative behavior of themeasured species can be
found by analyzing the mean square displacement hx2ðtÞi
(MSD). However, there is much more to be obtained if one
dives deeper into the statistical nature of the data, possibly
even contradicting the results of simpler analysis. In the
case of anomalous diffusion, i.e., when theMSD is not linear
in t, the importance of thorough analysis is intensified as there
aremanymathematical and physicalmodels that can give rise
to similar forms of MSDs (27). A recent example of the
strength of stochastic analysis is the study of the dynamics
of Kv2.1 potassium channels in cellular membranes (28)
that showed compartmentalization and binding.

A phenomenon observed in recent nanoscale single-
molecule biophysics experiments is subdiffusion, which
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largely departs from the classical Brownian diffusion theory.
Determining the origin anomalous diffusion in crowded
fluids, e.g., in the cytoplasm of living cells (29), or in
more controlled in vitro experiments (9), is a challenging
problem. The most popular theoretical models that are
commonly employed are continuous-time random walk
(CTRW), obstructed diffusion (OD), fractional Brownian
motion (FBM), fractional Levy stable motion (FLSM),
and fractional Langevin equation (FLE) (30–40). These
models can be divided into two categories: with short
memory (CTRW, OD) and fractional with long (power
law) memory (FBM, FLSM, FLE, and fractional autoregres-
sive moving average (FARIMA)). The FARIMA model
unifies the latter category (31).

To date, there is no standard analysis scheme that can
identify the mathematical model behind a wide variety of
measured anomalous trajectories. Each of these models
has a unique definition, which implies unique characteristics
and thus various tests have been proposed to differentiate
between them (35–39). However, each of these tests covers
only a limited set of characteristics, and hence does not
capture the complete stochastic picture. It is therefore ex-
pected that a standardized testing scheme for different
models that would encompass a variety of different experi-
mental scenarios would be highly beneficial.

FBM statistically behaves identical to FLE in the over-
damped limit. However, the noise in FBM is external and
not coupled to fluctuations, in contrast to the FLE motion,
for which a proper temperature is defined (40). FBM/FLE
motion is the effective motion of a labeled, single particle
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connectedwith amany-particle system, such as amonomer in
a long polymer, or an individual particle in a single file (41).

One system that was suggested to obey such fractional
dynamics is the motion of telomeres in the eukaryotic
nucleus (42). Telomeres form the capping structures at the
ends of each chromosome. They consist of a repeating
DNA sequence and a specific protein complex surrounding
it (named shelterin). The telomeres play an important role in
maintaining the chromosomal integrity, preventing adhesion
of chromosomes to one another, as well as degradation of
the ends of the chromosomes through enzymes that are
abundant in the nucleus (43–45). The telomeres lose a short
piece of the DNA each time the chromosome is replicated.
This shortening is believed to be related to aging, although
the actual mechanisms are much more complex (46).

Because there are a significant number of telomeres (92 in
humans) that are, generally speaking, uniformly distributed
in the nucleus, they form excellent probes for investigating
the dynamics of the DNA and its accompanying proteins
called chromatin. The telomeres can be labeled in living
cells through one of the native shelterin proteins using fluo-
rescent proteins such as the green fluorescent protein. The
first publication of telomeres diffusion appeared in (47).

During the last few years, the dynamics of telomeres
was studied more carefully by analyzing their diffusion
properties. This method can provide important information
on the structure and function of the chromatin in general,
and the telomeres themselves in particular. Previous study
has found the telomeres motion to be subdiffusive up
to 102 s with an anomalous exponent of a ¼ 0:325
0:12� 0:5150:20 and a higher anomalous exponent at
longer times (48). Because anomalous diffusion can origi-
nate from various mechanisms (19,27), further analysis
can shed light on the nuclear mechanisms behind telomere
motion. Thus, a better picture of in vivo chromatin motion
and nuclear structure can be obtained.

A follow-up analysis of short time motion of telomeres
proved (42) that binding and CTRW models are not the
origin of the subdiffusive regime. Displacements were
found to be correlated in time and weak ergodicity conver-
gence complied with the prediction for fractional processes.
Thus, it was proposed that some correlative mechanism
stands behind the local motion of chromatin and telomeres,
specifically throughout the interphase. In this study, the
possibility that the anomalous diffusion of telomeres stems
from obstruction of motion in the nucleus by quasistatic
obstacles was also looked into and found inadequate.

In parallel, a series of studies have connected telomere
motion to their elongation and maintenance. This was
proposed for telomerase-positive cancer cells (UMUC3)
(49) and for U2OS cancer cells that use the alternative
lengthening of telomeres (ALT) mechanism (50). In both
cases, heterogeneity of the telomere population was
claimed. It was proposed that this heterogeneity enables
a motion-based control mechanism for telomere elongation.
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Recently, another study (51) showed that transcription
activity also influences telomere motion.

In this work, we first present a universal, systematic, and
intuitive algorithm for the identification and validation of
FBM. The proposed algorithm tests all the fundamental
characteristics of FBM. In addition, ergodicity is also tested
for and its significance in the context of data analysis ex-
plained. Furthermore, the important property of the self-
similarity of the process is validated with two independent
tests. Compliance with the testing scheme given here proves
that FBM is the only mathematical model suitable for the
data tested.

To prove the ability of the proposed algorithms to test
various data structures, we analyze an expanded version of
the data presented in (48). The data are divided into three
time domains, each with a different measurement rate and
amount of trajectories. The telomere motion is found to
follow the FBM process in over five time orders, a conclu-
sion not possible with previous analysis. This, to our knowl-
edge, sheds new light on the motion of telomeres measured
in the previously mentioned works and on chromatin
dynamics in general.
METHODS

Experimental methodology

A full description of the experimental procedure is given in the Supporting

Material and in (48). In short, telomeres in U2OS osteosarcoma cells are

labeled with a protein composed of a green fluorescent protein attached

to a TRF-1 protein. Cells are then imaged from millisecond time frames

and up to 30 min. Images are analyzed for telomere tracks with the use

of Imaris and Image J software. Tracks are then analyzed for stochastic

traits with in-house written scripts and programs.

The experimental noise was measured by measuring telomere motion

after fixating the cells. It was found that the effective noise in all timescales

is Gaussian with zero mean and a variance of 22 nm. For more details see

the Supporting Material.
Identification and validation algorithm

It is natural to expect a universal identification algorithm for FBM that

would encompass a variety of different experimental scenarios. Such an

algorithm would give rise to confidence levels of results and enable bench-

marking between different experiments and systems. Ultimately such an

algorithm would direct the experimental process because it would indicate

which tests should be applied to the analyzed data.

What are the requirements for such an algorithm? First of all, it should be

applicable to any trajectory data, i.e., it should be universal. An SPT data

structure is composed of independent trajectories for single particles,

measured at a certain frame rate. Each trajectory can be in a single dimen-

sion or more. Both the number of trajectories and the amount of data points

may vary between data sets. A good algorithm should work sufficiently well

both in the case of many trajectories with a few data points or a few trajec-

tories with many data points.

Second, such an algorithm should be systematic. It should identify all

fundamental characteristics of a certain mathematical model. When looking

at a single characteristic, it is possible to eliminate a certain model but not to

validate one. However, if all fundamental characteristics of a model are

verified, we can then confirm that the measured process is indeed of that
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type. Erroneous results have been known to arise when not all assumptions

of a stochastic model have been tested for (52).

Finally, any algorithm should be easy to implement and its conclusions

clear. This implies that one should be able to derive a valid biophysical

conclusion about the process even without diving into all the subtle math-

ematical details of the tests.

Following, we propose such a complete algorithm for the identification

and validation of the FBM process. Each step requires only standard data

found in any SPT measurement. Some steps use the results of the previous

steps to reach accurate conclusions. Hence, conclusions of a single test

should be drawn in compliance with the previous steps. Upon completion

of all steps, one can reach a conclusion as of the nature of the measured

process with the ability to assess the error bounds of the results.
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FIGURE 1 Sample trajectories of X time series (A) and of their incre-

ments (B) corresponding to each of the time regimes: CCD (top panel),

2D (middle panel), 3D (bottom panel).
Fractional Brownian motion identification
and validation algorithm

� Check stationarity of the data using the quantile lines test—parallel for

increments of FBM.

� Verify probability distribution of the increments using Jarque-Bera (JB),

Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Cramer-von Mises

(CM), and Kuiper (K) tests—Gaussian for FBM.

� Check ergodicity behavior of the data with the dynamical functional

test—ergodic and mixing for increments of FBM.

� Find the self-similarity parameter H and memory parameter d from the

sample and ensemble average MSD using the Boltzmann ergodic hypoth-

esis. FBM has a negative d and H<0:5.

� Validate the subdiffusion model of motion and self-similarity parameter

H with the generalized p-variation test.

A detailed description of the consecutive steps of the algorithm will be

given in the Results section.

From a statistical point of view, experimental noise does not affect crucial

properties of the underlying process like self-similarity and type of diffusion.

The tests we present will give the correct nature of the process as long as the

added noise is not of a much larger magnitude than the true process, which is

true in our experiment, see Figs. S1–S3 in the Supporting Material.

For the identification of the memory parameter, it has been shown (53)

that noise can lower the apparent MSD exponent. However, this will only

change the exact value of parameters found and not the stochastic nature

of the data.
RESULTS

We analyze data recorded in three time regimes related to
three different measurement methods: 10�2 � 10 [s]
(CCD), 1 � 102 [s] (2D confocal), and 10 � 103 [s] (3D
confocal), Fig 1. X and Y coordinates are studied separately.
We show that the telomere trajectories have stationary,
Gaussian, ergodic, and even mixing increments. Both the
time average and ensemble average MSD reveal subdiffu-
sive behavior. All the analyses lead to the conclusion that
the telomere motion can be described by a FBM. This is
strengthened by the generalized p-variation test, which
clearly shows the self-similar nature of the data and together
with the results of ergodicity rejects the CTRW hypothesis.
Stationarity and probability distribution

As mentioned previously, stationarity of the process or its
increments is a fundamental characteristic of a stochastic
process. Hence, we start with verifying the stationarity prop-
erty of the analyzed data sets. We plot the quantile lines, see
Fig. 2, a standard test for stationarity (54), calculated from
the analyzed trajectories. Let us assume that we observe
M samples of length N and denote their values by fZk

ng,
n ¼ 1; 2;.N, k ¼ 1;.;M, and 0<pj < 1, j ¼ 1;.; J are
given probabilities. It is possible to derive estimators of
the corresponding quantiles qjðnÞ ¼ F�1

n ðpjÞ, where
Fn ¼ FnðxÞ denotes the unknown cumulative distribution
function of the random variable Zn represented by the statis-
tical sample Zk

n, k ¼ 1;.;M. In this way we obtain the
approximation of the so-called quantile lines, i.e., the curves

qj ¼ qjðnÞ;

defined by the condition
P
�
Zn%qjðnÞ

� ¼ pj: (1)

In layman terms, the quantile lines represent the value qj for

which pj � 100% of the data are below at a certain time
point n. For a stationary process the quantile lines
qjðnÞ ¼ const, whereas for a self-similar process they
behave like nH (55).

Observe that the obtained curves are not parallel and
resemble a power function, see Fig. 2A, which indicates non-
stationarity and self-similarity. On the other hand, quantile
Biophysical Journal 103(9) 1839–1847
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FIGURE 2 Quantile lines of X trajectories (A) and of their increments (B)

corresponding to each of the time regimes: CCD (top panel), 2D confocal

(middle panel), 3D confocal (bottom panel). The shape of the quantile lines

shows the self-similar (A) and stationary (B) behaviors.
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FIGURE 3 Probability density functions of dX time series (A) and histo-

grams of the memory parameter d obtained for X time series (B) corre-

sponding to each of the time regimes: CCD (top panel), 2D confocal

(middle panel), 3D confocal (bottom panel).

TABLE 1 Percentage of trajectories for which we can reject (at

the 5% significance level) a hypothesis that the increments

follow the Gaussian law

Test

CCD 2D confocal 3D confocal

dX dY dX dY dX dY

JB 5.5% 7.2% 4.3% 3.2% 10.6% 11.3%

KS 5.5% 5.5% 5.4% 6.5% 6.1% 6.9%

AD 4.4% 6.7% 5.4% 4.3% 6.4% 7.1%

CM 2.8% 6.1% 5.4% 4.3% 6.0% 6.8%

K 3.9% 5.5% 7.5% 6.5% 5.6% 7.0%
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lines obtained for the increments of the process are parallel
(see Fig. 2 B), therefore the stationarity hypothesis for the
increments cannot be rejected. The increments are defined
as dXn ¼ Xnþ1 � Xn and dYn ¼ Ynþ1 � Yn. Sample time
series of dXn are plotted in Fig. 1 B. Observe that each time
series corresponds to one trajectory from Fig. 1 A.

Another important characteristic of a stochastic motion is
Gaussianity, required, for example, in the case of FBM. To
assess the Gaussianity of the increments we analyze the
probability density functions (PDFs). In Fig. 3 A we plot
PDF of dX time series, which are estimated using the kernel
density method (54). Each panel consists of 20 PDFs calcu-
lated for sample trajectories recorded within the correspond-
ing time regime. The obtained curves resemble a Gaussian
PDF, but the standard deviation of the distribution differs
for different trajectories and time regimes (observe different
scales in panels of Fig. 3 A).

To confirm a visual observation that the increments of
the analyzed data sets are Gaussian, we perform statistical
goodness-of-fit tests on all telomere trajectories in both
X and Y. Precisely, we conduct the JB, KS, AD, CM, and
K tests (56,57). In Table 1 we provide percentages of
the trajectories for which we can reject (at the 5% signifi-
cance level) a hypothesis that the increments follow the
Gaussian law.
Biophysical Journal 103(9) 1839–1847
Observe that in almost all cases percentage of the trajec-
tories with rejected normality of increments is close to the
significance level, i.e., 5%. Hence, we can conclude that
the motion of telomere can be described by Gaussian
increments.
Ergodicity and mixing

Next, we will study another two fundamental properties of
the data: ergodicity and mixing. Ergodicity of the stationary
process ZðnÞ means that its phase space cannot be divided
into two nontrivial sets such that a point starting in one set
will never get to the second set. Let us emphasize that for
every stationary and ergodic process the Boltzmann ergodic
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hypothesis, enabling better analysis of the data characteris-
tics is satisfied, i.e., the temporal and ensemble averages
coincide (58,59).

Another fundamental property is mixing, i.e., the asymp-
totic independence of the random variables ZðnÞ and Zð0Þ as
n goes to infinity. It is well known that mixing is a stronger
property than ergodicity (60). Thus, to show ergodicity it is
enough to prove mixing, which is easier in many cases.

To this end, we use the dynamical functional (DF) test
recently developed in (61). It is based on a concept of the
dynamical functional (54)

DðnÞ ¼ hexpfiðZðnÞ � Zð0ÞÞgi: (2)

Note that DðnÞ is actually a Fourier transform of the process

increment evaluated for the Fourier-space variable k ¼ 1.
Denote by EðnÞ ¼ DðnÞ � jhexpfiZð0Þgij2. It turns out
that stationary process ZðnÞ is mixing if and only if

lim
n/N

EðnÞ ¼ 0: (3)

Similarly, ZðnÞ is ergodic if and only if
lim
n/N

1

n

Xn�1

k¼ 0

EðkÞ ¼ 0: (4)

The DF test holds for all infinitely divisible stationary
TABLE 2 Means, standard deviations, and 95% confidence

intervals ððCB2:5%;CB97:5%ÞÞ of the MSD exponent, where CB

denotes the confidence bound, memory parameter d and the

self-similarity parameterH estimates obtained for different time

ranges

CCD 2D 3D

X Y X Y X Y

MSD exponent a ¼ 2d þ 1

Mean 0.37 0.36 0.40 0.43 0.71 0.71
processes (61,62). Because telomere data have stationary
and Gaussian increments we can apply it. In Fig. S5 A we
show the ergodicity test results (calculated as the ensemble
average over all trajectories within a certain time range),
whereas in Fig. S5 B the mixing test results. Note, the test
indicates ergodicity (or mixing, respectively) if the plotted
curves converge to zero.

The DF test confirms that the increments of telomere
motion have the ergodicity (and mixing) property. Because
such properties are also valid for the increments of FBM,
we cannot reject FBM as a proper model for the analyzed
data. Analogous results are obtained for the Y coordinate.
This result allows us to reject a CTRW model for the
motion. Furthermore, according to the Boltzmann ergodic
hypothesis we can now use either the time-averaged or the
ensemble-averaged results of any analysis according to
our preference (61,62). We also note that the weak ergo-
dicity convergence was already checked in (42).
STD 0.20 0.18 0.20 0.23 0.33 0.34

CB2:5% 0.08 0.09 0.07 0.10 0.14 0.15

CB97:5% 0.83 0.77 0.82 1.09 1.35 1.39

Memory parameter d

Mean �0.31 �0.32 �0.30 �0.28 �0.14 �0.15

STD 0.10 0.09 0.08 0.12 0.17 0.17

CB2:5% �0.48 �0.45 �0.46 �0.45 �0.43 �0.42

CB97:5% �0.08 �0.12 �0.09 0.04 0.18 0.19

Self-similarity parameter H

Mean 0.18 0.18 0.20 0.21 0.35 0.35

STD 0.10 0.09 0.10 0.11 0.17 0.17

CB2:5% 0.04 0.05 0.03 0.05 0.07 0.08

CB97:5% 0.42 0.38 0.41 0.54 0.68 0.69
Memory parameter

A necessary property of fractional processes is the correla-
tion of the increments in time. Usually this correlation takes
the form of a power law. In what follows, we analyze the
memory property of the considered telomere motion. Using
the time average mean square displacement we calculate the
memory parameter d.

Let fZi; i ¼ 1;.;Ng be a sample of lengthN. The sample
MSD was introduced in (63). as
MNðtÞ ¼ 1

N � t

XN�t

k¼ 1

ðZkþt � ZkÞ2: (5)

The sample MSD is a time average MSD on a finite sample
regarded as a function of difference t between observations.
It is a random variable in contrast to the ensemble average,
which is deterministic.

If the sample comes from an H-self-similar process with
stationary increments belonging to the domain of attraction
of the Lévy a-stable law, then for large N

MNðtÞ � t2dþ1Sa=2; (6)

where ~ means similarity in distribution, d ¼ H � 1=a, and

Sa=2 is a totally skewed a=2 -stable random variable (56,63).

If a ¼ 2, i.e., we have a Gaussian law or data with
finite second moment, then for large N and small t
MNðtÞ � t2dþ1hZ2

1i; where d ¼ H � 1=2. In particular, for
a FBM we obtain the well-known result that MNðtÞ � t2H,
and for a Brownian motion we arrive at the diffusion case,
namely MNðtÞ � t since d ¼ 0, see also (64).

As a consequence, we see that the memory parameter
d controls the type of anomalous diffusion. If d < 0

ðH< 1=2Þ, therefore in the negative dependence case, the
process follows the subdiffusive dynamics, if d > 0

ðH> 1=2Þ, the character of the process changes to superdif-
fusive. The subdiffusion pattern arises when the dependence
is negative; therefore, positive increments are quickly
compensated by the negative.

In Table 2 we present the means and standard deviations
(STDs) of the anomalous exponent a ¼ 2 d þ 1 and
memory parameter d estimates obtained for each coordinate
Biophysical Journal 103(9) 1839–1847
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and each time range. For the CCD and 2D confocal
measurement data sets we obtain a strong evidence for the
negative memory, as the mean of the obtained d estimates
is around –0.35 and the STD does not exceed 0.09. For
the 3D confocal measurements the mean of the memory
parameter estimates is higher (around –0.18) and the STD
of the estimates is larger (up to 0.15), but still the obtained
values indicate a negative memory. Looking at the histo-
gram of d in the 3D confocal case (see Fig. 3 B) we may
see that values obtained for some of the trajectories are
higher than 0. However, we have to remember that the accu-
racy of the estimates is the lowest for the 3D confocal
measurements, because we have only 100 time points.
Histograms of the values of d parameter obtained for X
trajectories are plotted in Fig. 3 B. We note that the analysis
of the Y coordinate yields similar results.

Having calculated the memory parameter, we can derive
the self-similarity index H, using the relation d ¼ H � 1=2
because the increments follow the Gaussian distribution,
see Table 1. The obtained mean value of H is given in
Table 2. Additionally, we provide the STD, as well as the
95% confidence intervals.
Ensemble average MSD

We also investigated the ensemble average MSD. The
values of MSD/t obtained for X trajectories are plotted in
Fig. 4. Additionally, we plot the fitted power-law function.
The anomalous exponent a ranges from 0.47 for the CCD
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data up to 0.81 for the 3D confocal measurements,
indicating a subdiffusive behavior. Similar results can be
obtained for the Y coordinate, with the power-law exponent
from 0.49 for the CCD data up to 0.9 for the 3D confocal
measurements. Thus, we can see that the average parameters
in the long time domain are higher than obtained from the
time average MSD, but are still anomalous.
p-Variation

To validate the results on the self-similarity index H, let us
now recall the idea of p-variation (38,63,65). Let ZðtÞ be
a stochastic process analyzed on the time interval ½0; T�.
The p-variation of ZðtÞ is then defined as the limit of sum
of increments of ZðtÞ taken to the pth power over all parti-
tions of the interval ½0; T�, when the mesh of the partitions
goes to zero. When p ¼ 1, it reduces to the total variation,
whereas p ¼ 2 leads to the notion of quadratic variation.

In practice, having a sample of length N þ 1:
fZi; i ¼ 0;.;Ng, one calculates sample p-variation taking
differences between every mth element of the data:

VðpÞ
m ¼

XN=m�1

k¼ 0

��Zðkþ1Þm � Zkm

��p: (7)

We plotted in Figs. S6–S8 sample p-variation with respect to
m for p ¼ 1=H, where H ¼ 0:1; 0:2; ::; 0:9 for the three
sample trajectories depicted in Fig. 1. We can see that the
behavior of the p-variation in Fig. S6 and Fig. S7 is similar
to that of FBM and not of FLSM and CTRW. Namely, the
functions show an increasing trend for p>1=0:2 (equiva-
lently, for small H), become flat around the value
p ¼ 1=0:2, and for p<1=0:2 they result in decreasing func-
tions. This also indicates that the self-similarity index
H � 0:2. The situation in Fig. S8 is not so evident. The
decreasing trend for p<1=0:35 is visible; however, for small
p’s the behavior is quite chaotic. Hence, we cannot draw
definite conclusions for this trajectory except for the data
being not a CTRW and H ¼ 0:35. However, we have to
remember that the length of this sample is short, only 100
observations. A detailed description of the test based on
p-variation is given in the Supporting Material. Finally,
observe perfect agreement of the p-variation test with
H-self-similarity parameter estimates presented for all three
data sets in Table 2.
DISCUSSION

We have presented a universal, systematic, and intuitive
algorithm for the identification and validation of FBM.
The algorithm implements various tests in a novel, to our
knowledge, combination with each test proving a different
fundamental characteristic of the process. Gaussianity is
confirmed using statistical goodness-of-fit tests. The
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stationary nature of the incremental process is tested with
the use of quantile lines. Finally, self-similarity is deduced
from the MSD anomalous exponent, based on the Gaussian
nature of the data. In addition, it is shown how to verify
these characteristics with the use of other independent tests.

In this work, analysis was performed on the motion of
telomeres within six time orders. However, the data are split
into three partially overlapping time domains, with a signif-
icant difference in experimental character. This is most
obvious when comparing the short time measurements,
which include 1000 data points to the long time measure-
ments that include only 100 data points. It was shown that
the algorithm works well and leads to similar conclusions
for all three time domains despite their different structure.

A priori, it was not possible to analyze together the time
average results of the short time domain with the ensemble
average results of the long time domain. A good example for
this is the ergodicity breaking of CTRW, where one will see
a different behavior of time and ensemble average observ-
ables. This issue is dealt with by proving that our data are
stationary and ergodic. Thus, the Boltzmann ergodic
hypothesis holds and the two averaging schemes can be
analyzed jointly to receive more rigid conclusions about
the process.

Our main experimental findings are as follows. Telomere
motion increments are shown to be stationary, Gaussian,
nonMarkov, and negatively correlated. We remind that for
a Brownian motion the increments are stationary, Gaussian,
Markov, and independent, i.e., uncorrelated. This character-
ization enables us to identify the mathematical framework
of the process as the FBM. Such a characterization would
not have been possible without the use of the complete anal-
ysis algorithm. We emphasize that FBM is shown to be the
only possible statistical model for telomere motion in all
time spans studied.

Two relevant models that show fractional dynamics are
the monomer motion polymer systems (66) and diffusion
in viscoelastic media like the nucleus (34,67,68). Telomeres
are the end monomers of the chromatin chain. We have
found that the only statistical model that describes telomere
motion is FBM. We identify the biophysical mechanism
behind the motion as a thermally driven motion under the
constraints of the connected polymer chain (the chromo-
some) and the nuclear viscoelastic medium. This is in agree-
ment with other recent reports (34,69). This means that no
other mechanism such as trapping or obstruction is neces-
sary to explain the characteristics of telomere motion.
More than this, from a dynamics point of view, such mech-
anisms probably do not play a central role in the system.
Identification of the viscoelastic modulus and the parame-
ters of the polymer melt are left for future work as is the
comparison to other studies on nuclear diffusion (70).

Another polymeric system analyzed lately is that of
protein fluctuations (40,71), shown to emerge from the
fractal structure of proteins. Although chromatin and
proteins are very different in nature (for example, proteins
have a stable folding compared to dynamic folding of chro-
matin), it is interesting to hypothesize that there are under-
lying structural and dynamical similarities between these
two systems.

Our results also shed light on past scientific results. In
several past studies (49–51), the anomalous subdiffusive
motion of telomeres was not considered. This may be the
origin of the decrease in the diffusion coefficient observed
in (50) and perhaps of other experimental observations.
Furthermore, it was proposed in these studies that differ-
ences in the motion between telomeres acted as a control
for the telomerase and ALT process. However, ergodic
motion, proved with the DF test, implies that the phase
space of telomere dynamics cannot be divided into separate
subspaces. Hence, the total population of telomeres in
U2OS cells (that use the ALT) is not divided into separate
dynamic subpopulations and this cannot be part of the
ALT mechanism. The previously mentioned studies were
performed in different time spans and acquisition rates
and even different cell lines than the data presented here.
It seems that our algorithm can help in validating whether
telomere dynamics are heterogeneous or rather homoge-
neous and in what cellular conditions.

Recent developments show that there are several path-
ways along which subdiffusion may emerge (21,39,72,73).
The three most promising fractional models are: FLE (39),
FBM, which is discussed here (32,40), and FARIMA time
series (31,57,74). The complete understanding of relations
between these types of stochastic motion is up to date some-
what fragmentary. Nevertheless, it is known that the FAR-
IMA model is a discrete time analog of FLE that takes
into account the memory parameter d (75) and that FLE
motion can be distinguished from FBM because the
displacement correlation has a positive value at short times
(39). Finally, at the timescales measured in this telomere
experiment, FLE converges to FBM (76).

The stochastic analysis of biological motion data is
a rapidly growing field. Thus, we believe that understanding
the full biophysical implications of these models will be at
the center of future work. We hope that the identification
and validation algorithm proposed here provides a useful
tool for solving a challenging problem of rigorous verifica-
tion of the type of subdiffusion dynamics in many biophys-
ical SPT experiments.
SUPPORTING MATERIAL

Additional research and complementary figures are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(12)01102-2.
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