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Anomalous diffusion: Testing ergodicity breaking in experimental data
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Recent advances in single-molecule experiments show that various complex systems display nonergodic
behavior. In this paper, we show how to test ergodicity and ergodicity breaking in experimental data. Exploiting
the so-called dynamical functional, we introduce a simple test which allows us to verify ergodic properties of a
real-life process. The test can be applied to a large family of stationary infinitely divisible processes. We check the
performance of the test for various simulated processes and apply it to experimental data describing the motion
of mRNA molecules inside live Escherichia coli cells. We show that the data satisfy necessary conditions for
mixing and ergodicity. The detailed analysis is presented in the supplementary material.
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I. INTRODUCTION

Several techniques including fluorescence correlation spec-
troscopy, single-particle tracking, and fluorescence recovery
after photobleaching have been used to uncover anomalous
diffusion in crowded fluids, for example, in the cytoplasm
of living cells [1,2]. Ergodicity and the related Boltzmann
ergodic hypothesis are the fundamental concepts in statistical
physics [3]. Their importance stems from the fact that for
ergodic systems the phase average of an observable quan-
tity can be compared with its infinite-time average. This
implies that observing one long trajectory of an ergodic
process is equivalent to observing a large number of its
independent realizations. This property is crucial in the
context of conducting physical experiments. The substantial
progress in single-particle tracking experiments [1,4–9] was
accompanied by theoretical studies on the ergodic properties of
systems displaying anomalous behavior [10–24]. Experimen-
tal measurements confirmed ergodicity breaking in blinking
quantum dots systems [5,6] as well as in the lipid granules
in living fission yeast cells [9]. Theoretical studies on weak
ergodicity breaking for continuous-time random walks were
introduced in [13]. These concepts were extended to the case
of fractional Fokker-Planck equations describing subdiffusive
dynamics in the presence of an external potential [15,19].
Ergodicity of anomalous dynamics following the generalized
Langevin equations was studied in [12,17]; see also [10,11,14].
The relationship between ergodicity and irreversibility was
investigated in [16]. A detailed analysis of the ensemble
and time average mean-square displacement of fractional
Brownian motion and its extensions can be found in [18,20,24].
The generalized Khinchin theorem for Lévy flights [21]
and ergodic properties of infinitely divisible (ID) processes
recently were fully characterized in [22] in terms of correlation
cascades [25].

In this paper, we solve the challenging problem of how
to verify ergodic properties (ergodicity and mixing) from
empirical data. Exploring the concept of dynamical functional,
we introduce a test which allows us to test ergodicity and
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ergodicity breaking in experimental data. We also show how
to verify mixing—an important property of chaotic systems
which is stronger than ergodicity. We illustrate the strength of
the introduced test by applying it to simulated data (Ornstein-
Uhlenbeck process, harmonizable process) and to the real-life
data describing the motion of mRNA molecules inside live
Escherichia coli cells [1].

II. ERGODICITY, MIXING, AND
DYNAMICAL FUNCTIONAL

First of all, we emphasize that all the results and methods
presented below apply to the general class of stationary ID
processes. The physical interpretation of stationarity is that
the system is in its thermal equilibrium [26]. The class of ID
processes considered here plays a central role in the theory of
stochastic processes and their applications [27,28]. Prominent
examples of ID distributions are Gaussian, α-stable, Pareto,
exponential, γ , Linnik, Mittag-Leffler, and tempered α-stable
distributions.

Let us consider a stationary ID stochastic process Y (n),
n ∈ N. Y (n) can be represented as a probability measure P
on the space (�,B). Here, � is the phase space of all the
functions f : N → R and B is the σ algebra of events [28].
The probability space (�,B,P ) together with the usual shift
transformation S : � → �, S[f (n)] = f (n + 1), is a standard
dynamical system that fully describes the evolution in time of
the process Y (n).

The dynamical system (�,B,P ,S) is ergodic [or equiva-
lently, the process Y (n) is ergodic] if for every invariant set
A ∈ B we have that P (A) = 0 or P (A) = 1 [26]. Recall that
the set A is invariant if P (A) = P [S−1(A)]. More intuitively,
ergodicity means that the phase space � cannot be divided
into two nontrivial sets such that a point starting in one set will
never get to the second set. It should be emphasized that for
every stationary and ergodic process the Boltzmann ergodic
hypothesis is satisfied—the temporal and ensemble averages
coincide [29,30],

lim
n→∞

1

n

n−1∑
k=0

g[Y (k)] = 〈g[Y (0)]〉, (1)

051138-11539-3755/2011/84(5)/051138(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.051138


MARCIN MAGDZIARZ AND ALEKSANDER WERON PHYSICAL REVIEW E 84, 051138 (2011)

provided that 〈g[Y (0)]〉 is well defined. Here, g(·) is a
deterministic function, and by 〈·〉 we denote the ensemble
average.

Another fundamental property investigated in this paper
is mixing. We say that the dynamical system (�,B,P ,S) is
mixing [or equivalently, the process Y (n) is mixing] if

lim
n→∞P [A ∩ Sn(B)] = P (A)P (B) (2)

for all A,B ∈ B. Here, by Sn we denote n-fold superposition of
S. Thus, mixing can be viewed as the asymptotic independence
of the sets A and B under the transformation S. It is well known
that mixing is a stronger property than ergodicity [26]. Thus, to
show ergodicity, it is enough to prove mixing, which is easier
in many cases [22].

A solution to the problem of ergodicity and mixing of
Gaussian stationary processes was found by Maruyama,
Grenander, Fomin, and Itô [31–34]. The first three authors
proved that the stationary Gaussian process Y (t) is ergodic
if and only if its spectral measure has no atoms. Itô proved
that Y (t) is mixing if and only if its autocorrelation function
vanishes at infinity. For the α-stable case, see [35].

In recent papers [21,22,36], ergodic properties of ID
processes were described using the concept of correlation
cascades. However, in the context of empirical data analysis,
a mathematical tool called dynamical functional gives very
satisfactory results [28,37].

The dynamical functional D(n) corresponding to the
process Y (n) is defined as

D(n) = 〈exp{i[Y (n) − Y (0)]}〉 . (3)

Thus, D(n) is actually a Fourier transform of Y (n) −
Y (0) evaluated for the Fourier-space variable k = 1. The
following result illustrates the strength of the dynamical
functional [37,38]. The stationary ID process Y (n) is mixing
if and only if

lim
n→∞ D(n) = |〈exp{iY (0)}〉|2. (4)

The above condition should be viewed as the asymptotic
independence of Y (n) and Y (0) as n → ∞. Moreover, if
Y (n) is Gaussian, then the dynamical functional is equal to
D(n) = exp{σ 2[r(n) − 1]}, where r(n) is the autocorrelation
function of Y and σ 2 is the variance of Y (0). Thus, in the
Gaussian case, condition (4) is equivalent to the fact that
r(n) → 0 as n → ∞ (cf. [34]).

The above condition (4) can be written in the equivalent
form

lim
n→∞ E(n) = 0, (5)

where

E(n) = D(n) − |〈exp{iY (0)}〉|2. (6)

Consequently, using formula (4) and the result of Koopman
and von Neumann [39], we get that the stationary ID process
Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

D(k) = |〈exp{iY (0)}〉|2. (7)

Equivalently, Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

E(k) = 0. (8)

For more details on the origins of conditions (4) and (7), see
[37], Lemma 3. As we show in the next section, the above
results can be successfully applied to verify ergodicity and
mixing in experimental data.

III. TESTING ERGODICITY AND MIXING

Suppose now that we have at our disposal experimental
measurements of some random process Y (n). Our goal is to
check whether the process is ergodic and mixing. If the ID
process is stationary, then the results of previous section allow
us to verify its ergodic properties very efficiently. In the case
when the number of experimental realizations of Y (n) is large
enough to calculate ensemble averages, the procedure is the
following:

One calculates the ensemble averages on the right side
of (3) and on the right side of (4). If the convergence in (5)
holds for large n, then the process is mixing, otherwise Y (n)
displays mixing breaking.

We have applied the above test to the simulated trajectories
of two different processes. The first one, the classical Ornstein-
Uhlenbeck process, is given by the Langevin equation

dY (t) = −0.05Y (t)dt + dB(t), (9)

where B(t) is the standard Brownian motion. The results are
presented in Fig. 1. They confirm that the Ornstein-Uhlenbeck
process is mixing.

We have also tested the nonmixing and nonergodic Gaus-
sian process of the form

Y (n) =
√

T cos(0.5n + θ ), (10)

where T is an exponentially distributed random variable with
parameter 0.5 and θ is uniformly distributed on [0,2π ]. The
result of the test is shown in Fig. 2 (left panel). It confirms that
the process is not mixing.

Analogous procedure can be applied to verify ergodicity of
experimentally observed process:

If the convergence in (8) holds for large n, then
the process is ergodic; otherwise Y (n) displays ergodicity
breaking.
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FIG. 1. (Color online) Verification of the mixing property for
the Ornstein-Uhlenbeck process. The real and imaginary parts of
the function E(n) decay to zero. Thus, condition (5) is satisfied
and the process is mixing. The ensemble averages were calculated on
the basis of 1000 simulated trajectories.
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FIG. 2. (Color online) Left panel: testing of mixing property for
the Gaussian process defined in (10). Clearly, condition (5) is not
satisfied, and thus the process is not mixing. Right panel: real part of
the function 1

n

∑n−1
k=0 E(k) corresponding to the process (10). Since

condition (8) is violated, the process displays ergodicity breaking. The
ensemble averages were calculated on the basis of 1000 simulated
trajectories.

In Fig. 2 (right panel), we see the result of the test for the
Gaussian process (10). Clearly, the process displays ergodicity
breaking. Figure 3 depicts the results of the test for the
Ornstein-Uhlenbeck process. Since condition (8) is satisfied,
the process is ergodic.

We have also applied the test to the stationary stable
harmonizable process [28] of the form

Y (t) = A1/2[G1 cos(t) + G2 sin(t)]. (11)

Here, A > 0 is the one-sided α-stable random variable, and G1

and G2 are standard normal random variables. Moreover, A,
G1, and G2 are independent. Y (t) is known to be nonergodic
[35]. Results in Fig. 4 confirm this fact. Clearly, the real part
of 1

n

∑n−1
k=0 E(k) does not converge to zero.

Since the dynamical functional is a Fourier transform of
Y (n) − Y (0), it takes values in the interval [−1,1]. Therefore,
this interval determines the order of magnitude of the y axes
in the figures.

IV. ONE-TRAJECTORY CASE

It gets much more complicated when there are not enough
trajectories to calculate ensemble averages. Suppose that we
have only one realization of the process Y (n), n = 0,1, . . . ,N ,
where N is an appropriately large integer. If we assume
that Y (n) is mixing, then Boltzmann ergodic hypothesis is
satisfied—the temporal and ensemble averages coincide. Thus,
the dynamical functional D(n) in (3) can be approximated by

D̂(n) = 1

N − n + 1

N−n∑
k=0

exp{i[Y (n + k) − Y (k)]},
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FIG. 3. (Color online) Verification of ergodicity for the Ornstein-
Uhlenbeck process. Clearly, condition (8) is satisfied. This confirms
that the process is ergodic. The ensemble averages were calculated
on the basis of 1000 simulated trajectories.
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FIG. 4. (Color online) Verification of ergodicity breaking for
harmonizable process (11). Since condition (8) is not satisfied, the
process displays ergodicity breaking. The ensemble averages were
calculated on the basis of 1000 simulated trajectories.

whereas the ensemble average on the right side of (4) can be
approximated by

â =
∣∣∣∣∣

1

N + 1

N∑
k=0

exp{iY (k)}
∣∣∣∣∣
2

.

Then, the modified condition (5) takes the form

Ê(n) ≈ 0 (12)

for large n. Here

Ê(n) = D̂(n) − â.

Condition (12) is necessary for mixing. Therefore, violation
of (12) implies that Y (n) does not have the mixing property. It
should be emphasized that (12) is by no means sufficient for
mixing. This means that we can only prove lack of mixing if
we have one trajectory of a random process. To show that the
process is mixing, ensemble averages need to be calculated.

In Fig. 5 we observe the behavior of the function Ê(n) for
one trajectory of the harmonizable process (11). This process
is known to be nonergodic and nonmixing [35].

Analogous considerations can be conducted for ergodicity.
Having one realization of a process, we can check the following
condition:

1

n

n−1∑
k=0

Ê(k) ≈ 0 (13)

for large n. The above condition is necessary for ergodicity.
This means that its violation implies ergodicity breaking.
Similarly as for mixing, more than one trajectory are needed
to check the sufficient condition for ergodicity (8).
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FIG. 5. (Color online) Real and imaginary parts of the function
Ê(n) corresponding to one simulated trajectory of the stable harmo-
nizable process. Since condition (12) is not satisfied, the process is
not mixing. Length of the simulated trajectory N = 212 + 1.
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FIG. 6. (Color online) The real and imaginary parts of the
function

∑n−1
k=0 Ê(k)/n corresponding to the longest trajectory of

Golding-Cox data (x coordinate). The necessary condition for
ergodicity (13) is clearly satisfied.

V. EXPERIMENTAL DATA

Next, we applied our test to Golding-Cox data [1], describ-
ing the motion of mRNA molecules inside live E. coli cells. In
the whole data set, there were not enough trajectories to calcu-
late ensemble averages. Consequently, we were able to check
only the necessary condition for mixing (12) and ergodicity
(13), which requires only one appropriately long trajectory. In
Fig. 6 we see the result of the test for the longest Golding-Cox
trajectory. The necessary condition (13) is clearly satisfied.
However, to make sure that the process is ergodic, one needs
to verify the sufficient condition (8). This requires more than
one trajectory for analysis. We have also analyzed all the
other Golding-Cox trajectories that were longer than 29 =
512 points. All these sample paths satisfied necessary
conditions for mixing (12) and ergodicity (13). The detailed
analysis is presented in the supplementary material [40].

VI. CONCLUDING REMARKS

In this paper, we have discussed necessary and sufficient
conditions for mixing (5) and ergodicity (8) in the language
of the dynamical functional (3). The main finding is a simple
test, which can be applied to verify mixing and ergodicity
in experimental data. The test can be applied to the whole
family of ID stationary processes. The reasonable length of
each analyzed trajectory should not be shorter than 500 points;
see [40].

We have also analyzed the case when there is only one
experimentally recorded realization of the process at disposal.
In this case, the necessary conditions for mixing (12) and
ergodicity (13) can be verified. This means that violation of
(12) or (13) implies mixing breaking or ergodicity breaking,
respectively. To make a definite statement about mixing and
ergodicity, more than one trajectory are needed in order to
calculate ensemble averages.

The number of trajectories needed to calculate ensemble
averages depends strongly on the underlying distribution. For
the Gaussian case it is enough to have about 100 trajectories,
but it is not enough for a heavy-tailed α-stable law. Every
distribution needs to be analyzed separately. Therefore, we
encourage experimentalists to make measurements with more
trajectories and with higher resolution. Then, the proposed
here methodology will allow to rigorously verify ergodicity
and mixing; see Figs. 1–3.

The introduced test can be applied to anomalous diffusion
processes measured experimentally; see Ref. [40]. We hope
that these results, in conjunction with our earlier studies
[21,22], can be used to identify the source of anomalous
diffusion [41,42].
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