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1. Introduction

The intermediate approach to tests’ comparison was initiated by Oosterhoff (1969)
and developed by Kallenberg (1983), Inglot and Ledwina (1996, 2006), Inglot et al.
(1998), Inglot (1999, 2010, 2020), Inglot et al. (2019), among others. Similarly as for
the Bahadur efficiency, the intermediate efficiency is calculated as a limit of the ratio
between two slopes. The intermediate slope is determined by an index of moderate
deviations under the null hypothesis and a scalling factor resulting from a kind of weak
law of large numbers under the sequence of alternatives. By an index of moderate
deviations (MD) for a generic statistic Tn we mean the limit

− lim
n→∞

1

nx2
n

logPr(Tn >
√
nxn) = c, (1)

provided it exists and is positive, where Pr represents a null distribution while xn are
positive, xn → 0 and nx2

n →∞ as n→∞. The relation (1) we shall call MD theorem
for Tn.

The Neyman-Pearson test seems to be the most natural procedure to which other
tests could be compared. MD theorem for the Neyman-Pearson statistic in the full
range i.e. for all xn → 0 such that nx2

n →∞ as n→∞ is one of sufficient conditions
to make it possible (cf. Inglot et al. , 2019, Ćmiel et al. , 2019).

In the present paper we study this last question in the classical case of testing for
uniformity.
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Let X1, X2, ..., Xn be a sample from a distribution P on the interval [0, 1]. Consider
testing

H0 : P = P0,

where P0 is the uniform distribution over [0, 1]. Let Pn be a sequence of local alter-
natives, convergent to P0, given by densities pn(t) = 1 + ϑna(t), where ϑn → 0 while
a ∈ L2(0, 1) is fixed and satisfies∫ 1

0

a(t)dt = 0,

∫ 1

0

a2(t)dt = 1. (2)

The normalized Neyman-Pearson statistic for testing H0 against the alternative with
density pn has the form

Vn =
1√
nσ0n

n∑
i=1

(log(1 + ϑna(Xi))− e0n), (3)

where e0n =
∫ 1

0
log(1 +ϑna(t))dt and σ2

0n =
∫ 1

0
log2(1 +ϑna(t))dt− e2

0n are normalizing
sequences.

In the paper by Inglot and Ledwina (1996) it was proved that for Vn with a
bounded (1) holds in the full range of sequences xn (Theorem 1, below). In many
typical goodness of fit testing problems like e.g. testing in the Gaussian shift or the
Gaussian scale families the transformation onto (0, 1) leads to unbounded or even not
square integrable functions a (see e.g. Ćmiel et al. , 2019, section 8). Our main result
(Theorem 2 and Corollary) gives sufficient conditions on xn under which (1) holds for
Vn. We also show (Theorem 3) that (1) does not hold for Vn in the full range of xn at
least for some unbounded functions which can belong to Lq(0, 1) with arbitrary q > 2.
All proofs are sent to Section 3.

Throughout the rest of the paper we assume that H0 is true i.e. that Xi are uni-
formly distributed over [0, 1]. Also by P n

0 we denote n-fold product of P0 and by E0

and Var0 an expectation and a variance calculated under P0 or P n
0 .

2. Moderate dviations for Vn

We start with asymptotic formulae for normalizing sequences e0n, σ0n in (3) which
will be exploited in the sequel.

Proposition 1. If a ∈ L2(0, 1) then

e0n = −ϑ
2
n

2
(1 + o(1)) (4)

and
σ0n = ϑn(1 + o(1)). (5)

Now, assume that a in (3) is bounded. Theorem 1, below, recalls the MD theorem
for Vn for bounded a obtained in Inglot and Ledwina (1996). In that paper it was
proved using MD result for triangular arrays of independent random variables from the
unpublished paper by Book (1976). In Section 3 we reprove this theorem by reducing
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to the classical MD theorem for i.i.d bounded random variables.

Theorem 1. Suppose |a| 6 M for some M > 1. Then for every positive xn such
that xn → 0 and nx2

n →∞ we have

− lim
n→∞

1

nx2
n

logP n
0 (Vn >

√
nxn) =

1

2
. (6)

Next, suppose that a ∈ L2(0, 1) in (3) is unbounded. Under this assumption we
are able to get (6) for xn satisfying some additional restriction. The proof goes along
the same line of argument as that for the classical MD theorem for i.i.d. random vari-
ables based on a version of Mogulskii’s inequality (Mogulskii , 1996) proposed in Inglot
(2000). Therefore in the Appendix we provide the proof of this classical theorem (The-
orem 4) to show that indeed large parts of the proof of Theorem 2 are simply rewriting
those of Theorem 4.

Theorem 2. Suppose a ∈ L2(0, 1) is unbounded and ϑn → 0 is such that nϑ2
n →∞.

(i) For any δ > 0 and every positive xn such that xn 6 (1− δ)σ0n and nx2
n →∞ we

have

− lim sup
n→∞

1

nx2
n

logP n
0 (Vn >

√
nxn) >

1

2
;

(ii) for any δ > 0 and every positive xn such that xn 6 1
3
(1− δ)σ0n and nx2

n →∞ we
have

− lim inf
n→∞

1

nx2
n

logP n
0 (Vn >

√
nxn) 6

1

2
.

Theorem 2 and (5) immediately imply the following corollary.

Corollary. Suppose a ∈ L2(0, 1) is unbounded and ϑn → 0 is such that nϑ2
n →∞.

Then for every positive xn such that lim supn→∞(xn/ϑn) < 1/3 and nx2
n → ∞ the

relation (6) holds.

Denote random variables Yni = (log(1 + ϑna(Xi)) − e0n)/σ0n, i = 1, ..., n. Then
E0Yni = 0, Var0Yni = 1 and ϕn(λ) = E0 exp{λYni} = e−λe0n/σ0nE(1 + ϑna(Xi))

λ/σ0n <
∞ for λ 6 2σ0n.

Remark. If a /∈ Lq(0, 1) for some q > 2 then ϕn(λ) = ∞ for λ > qσ0n. Therefore
for a ∈ L2(0, 1) not belonging to Lq(0, 1) for all q > 2 the moment generating function
ϕn(λ) does not exists when λ/ϑn is sufficiently large. This suggests that Theorem 2 and
Corollary cannot be essentially strenghtened and the condition lim supn→∞ xn/ϑn <∞
seems to be necessary for (6). The next theorem partially confirms such a conjecture.

Consider unbounded square integrable functions satisfying (2) of the form

ar(t) =

√
1− 2r

r

(
1− r
tr
− 1

)
, r ∈

(
0,

1

2

)
,

corresponding sequences of local alternatives and the Neyman-Pearson statistics (3).
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Theorem 3. Suppose Vn is the Neyman-Pearson statistic (3) applied to the function
ar for some r ∈ (0, 1/2) and ϑn → 0 with nϑ2

n →∞. If positive xn fulfill the following
condition

for some q < r it holds
xn
ϑqn
→∞ and x(r−q)/q

n log ϑn → 0

then

lim
n→∞

1

nx2
n

logP n
0 (Vn >

√
nxn) = 0. (7)

Theorem 3 shows that in every space Lq(0, 1), q > 2, there are functions satisfying
(2) such that (6) does not hold for all xn → 0 such that nx2

n → ∞. This means that
Theorem 1 can not be extended to the class of all square integrable functions a.

Theorem 2 applied to the function ar and Theorem 3 do not cover a wide range of
sequences xn for which validity of (6) for this particular ar remains undecided.

3. Proofs

Proof of Proposition 1. Let ε ∈ (0, 1) be arbitrary. Then the inequality

y − 3− ε
6(1− ε)

y2 6 log(1 + y) 6 y − 3− 2ε

6
y2 (8)

holds on [−ε, ε]. From Markov’s inequality we have P0(a2(X1) > ε2/ϑ2
n) 6 ϑ2

n/ε
2.

Hence and from the Cauchy-Schwarz inequality we obtain for n sufficiently large (i.e.
such that ϑn < ε)∫

ϑna>ε

a(t)dt 6

√∫
ϑna>ε

a2(t)dt
√
P0({ϑna(X1) > ε}) 6 ϑn

ε
o(1). (9)

So, from (2), (8) and (9) we get

e0n =

∫ 1

0

log(1 + ϑna(t))dt >
∫
ϑna6ε

log(1 + ϑna(t))dt

>
∫
ϑna6ε

ϑna(t)dt− 3− ε
6(1− ε)

ϑ2
n

∫
ϑna6ε

a2(t)dt

> −ϑn
∫
ϑna>ε

a(t)dt− 3− ε
6(1− ε)

ϑ2
n > −ϑ

2
n

ε
o(1)− 3− ε

6(1− ε)
ϑ2
n.

Similarly, from (2) and (8) we get

e0n =

∫
ϑna6ε

log(1 + ϑna(t))dt+

∫
ϑna>ε

log(1 + ϑna(t))dt

6 −ϑn
∫
ϑna>ε

a(t)dt− 3− 2ε

6
ϑ2
n

∫
ϑna6ε

a2(t)dt+

∫
ϑna>ε

log(1 + ϑna(t))dt

6 −ϑn
∫
ϑna>ε

a(t)dt− 3− 2ε

6
ϑ2
n(1 + o(1)) + ϑn

∫
ϑna>ε

a(t)dt = −3− 2ε

6
ϑ2
n(1 + o(1)).

4



Hence for arbitrary ε ∈ (0, 1) we have

− 3− ε
6(1− ε)

6 lim inf
n

e0n

ϑ2
n

6 lim sup
n

e0n

ϑ2
n

≤ −3− 2ε

6
.

Since ε is arbitrary (4) follows.
In the same way we show (5) (cf. Proposition 3 in Inglot 2020). 2

Proof of Theorem 1. On (−1,∞) define a function h(y) = 2y−log(1+y)
y2

with h(0) = 1.

The function h(y) is of class C∞, positive and decreasing on (−1,∞) and analytic on

(−1, 1). Since log(1 + y) = y − y2

2
h(y) then from (2) we get

e0n = E0 log(1 + ϑna(X1)) = −ϑ
2
n

2
E0a

2(X1)h(ϑna(X1)) = −ϑ
2
n

2
µn,

where µn = 1 + o(1) from (4) (or from Lebesgue’s Dominated Convergence Theorem).
This implies

P n
0 (Vn >

√
nxn)

= P n
0

([
1√
n

n∑
i=1

a(Xi)−
ϑn

2
√
n

n∑
i=1

(
a2(Xi)h(ϑna(Xi))− µn

)]
>
√
nxn

σ0n

ϑn

)
.

Since a > −1 a.s. then for n sufficiently large random variables a2(Xi)h(ϑna(Xi))
are bounded by 3M2/2. Moreover, for τ 2

n = Var0a
2(Xi)h(ϑna(Xi)) we have τ 2

n →∫ 1

0
a4(t)dt− 1 from (2) and Lebesgue’s Dominated Convergence Theorem. Denote

Dn =

{∣∣∣∣∣ 1√
n

n∑
i=1

(
a2(Xi)h(ϑna(Xi))− µn

)∣∣∣∣∣ < 2τn
√
nxn

σ0n

ϑn

}
.

Then from the classical Bernstein inequality we get

P n
0 (Dc

n) 6 2 exp

{
−2nx2

n

σ2
0n

ϑ2
n

1

1 + 2M2xnσ0n/ϑnτn

}
= 2 exp{−2nx2

n(1 + o(1))},

where Ac denotes the complement of a set A. Hence and denoting Fn = {Vn >
√
nxn}

we obtain

P n
0 (Vn >

√
nxn) > P n

0 (Fn∩Dn) > P n
0

({
1√
n

n∑
i=1

a(Xi) > (1 + τnϑn)
√
nxn

σ0n

ϑn

}
∩Dn

)

> P n
0

(
1√
n

n∑
i=1

a(Xi) > (1 + τnϑn)
√
nxn

σ0n

ϑn

)
− P n

0 (Dc
n)

As σ0n/ϑn = 1 + o(1) by (5) then from the classical MD theorem (Theorem 4 in
the Appendix) applied to the sequence a(Xi) of bounded random variables the last
expression can be estimated from below by

exp

{
−nx

2
n

2
(1 + o(1))

}
− 2 exp{−2nx2

n(1 + o(1))}. (10)

Similarly
P n

0 (Vn >
√
nxn) 6 P n

0 (Fn ∩Dn) + P n
0 (Dc

n)
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6 P n
0

({
1√
n

n∑
i=1

a(Xi) > (1− τnϑn)
√
nxn

σ0n

ϑn

}
∩Dn

)
+ P n

0 (Dc
n)

6 P n
0

(
1√
n

n∑
i=1

a(Xi) > (1− τnϑn)
√
nxn

σ0n

ϑn

)
+ P n

0 (Dc
n)

6 exp

{
−nx

2
n

2
(1 + o(1))

}
+ 2 exp{−2nx2

n(1 + o(1))}. (11)

From (10) and (11) the relation (6) immediately follows. 2

Proof of Theorem 2. The function logk(y)/y2, y > 1, k > 3, is bounded from above
by (k/2)ke−k while

vk(y) =
logk(1 + y)

y2
=

logk(1 + y)

(1 + y)2

(1 + y)2

y2
, y > 0, k > 3,

is increasing on the interval (0, 1). Therefore vk(y) is bounded from above by 4(k/2)ke−k.
Hence and from (4) for n sufficiently large

E0|Yni|k =

∫
a61/

√
ϑn

| log(1 + ϑna(t))− e0n|k

σk0n
dt+

∫
a>1/

√
ϑn

(
log(1 + ϑna(t))− e0n

σ0n

)k
dt

6

(
log(1 +

√
ϑn)− e0n

σ0n

)k−2

+ 4kke−k
ϑ2
n

σk0n

∫
a>1/

√
ϑn

a2(t)dt

and from Stirling’s formula for k > 3 and n sufficiently large

E0|Yni|k

k!
6

1

6

(√
ϑn − e0n

σ0n

)k−2

+
4√
2πk

ϑ2
n

σk0n

∫
a>1/

√
ϑn

a2(t)dt 6
ϑ2
n

σk0n
ωn, (12)

where ωn = σ2
0n(
√
ϑn − e0n)/6ϑ2

n +
∫
a>1/

√
ϑn
a2dt = o(1).

The function ϕn(λ) is analytic on the interval [0, 2σ0n] and ϕn(λ) = 1 + λ2

2
ψn(λ),

where ψn(λ) = 1 + 2
∑∞

k=3
EY kni
k!
λk−2. By (12) we have for n sufficiently large

|ψn(λ)− 1| 6 2
∞∑
k=3

ϑ2
n

σk0n
ωnλ

k−2 (13)

and

|ψ′n(λ)| 6 2
∞∑
k=3

ϑ2
n

σk0n
ωn(k − 2)λk−3. (14)

Proof of (i) (upper estimate). By Markov’s inequality we have for λ ∈ (0, 2σ0n)

P n
0 (Vn >

√
nxn) = P n

0

(
1√
n

n∑
i=1

Yni >
√
nxn

)

= P n
0

(
n∏
i=1

eλYni > enλxn

)
6 e−nλxnϕnn(λ).
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Putting λ = xn the right hand side takes the form e−nx
2
nϕnn(xn). Since xn 6 (1− δ)σ0n

then (13) implies for n sufficiently large

ϕn(xn) 6 1 +
x2
n

2
+ x2

n

ϑ2
n

σ2
0n

ωn

∞∑
k=3

(1− δ)k−2 6 1 +
x2
n

2

(
1 +

2ϑ2
nωn

δσ2
0n

)
and in consequence

1

nx2
n

logP n
0 (Vn >

√
nxn) 6 −1

2
+

1

δ

ϑ2
nωn
σ2

0n

, (15)

which completes the proof of (i).
Proof of (ii) (lower estimate). Denote by Pn the distribution of Yni and let Qnλ �

Pn be such that dQnλ
dPn

(y) = eλy/ϕn(λ). Then

mn(λ) =

∫
ydQnλ =

1

ϕn(λ)

∫
yeλydPn(y) =

ϕ′n(λ)

ϕn(λ)

and the entropy distance (Kullback -Leibler) of Qnλ from Pn is equal to

D(Qnλ||Pn) =

∫
1

ϕn(λ)
eλy(λy − logϕn(λ))dPn(y) = λ

ϕ′n(λ)

ϕn(λ)
− logϕn(λ).

For n > 1 and ε ∈ (0, δ) let λn > 0 be such that mn(λn) = (1 + ε)xn. Observe that λn
is correctly defined and

λn < 5σ0n/6. (16)

Indeed, the inequality (1 + y)5/6 > 1 + 5y/6 − y2/9, which holds on [−1/2,∞), and
(2) give ϕn(5σ0n/6) = e−5e0n/6(1 − ϑ2

n/9). This, convexity of ϕn(λ), the assumption
xn 6 (1− δ)σ0n/3, (4) and (5) imply for n sufficiently large

mn

(
5

6
σ0n

)
=
ϕ′n(5

6
σ0n)

ϕn(5
6
σ0n)

>
ϕn(5σ0n/6)− ϕn(0)

(5σ0n/6)ϕn(5σ0n/6)
>

1

5σ0n/6
− e5e0n/6

(5σ0n/6)(1− ϑ2
n/9)

>
σ0n

3
> (1− δ2)

σ0n

3
> (1 + δ)xn > (1 + ε)xn = mn(λn),

which implies (16) (the function mn(λ) is increasing since logϕn(λ) is strictly convex).
Inserting λ = λn to (13) and (14) and using (16) we get for n sufficiently large

|ψn(λn)− 1| 6 10
ϑ2
n

σ2
0n

ωn and |λnψ′n(λn)| 6 60
ϑ2
n

σ2
0n

ωn.

Hence for n sufficiently large (i.e. such that |ψn(λn) − 1| < ε/8, |λnψ′n(λn)| < ε/4,
λ2
nψn(λn) < ε/4) we obtain

(1 + ε)xn = mn(λn) =
ϕ′n(λn)

ϕn(λn)
=
λnψn(λn) + λ2

nψ
′
n(λn)/2

1 + λ2
nψn(λn)/2

6 λn(1 + ε/4) 6 λn(1 + ε)

and similarly

(1 + ε)xn > λn
1− ε/4
1 + ε/8
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which gives

xn ≤ λn ≤ xn
(1 + ε)(1 + ε/8)

1− ε/4
≤ (1 + 2ε)xn. (17)

For λn defined above we have

D(Qnλn ||Pn) = (1 + ε)λnxn − logϕn(λn).

Now, we apply the following version of Mogulskii’s inequality (Mogulskii 1996, cf.
Corollary 1 in Inglot 2000).

Theorem A. Let Q� P and ξ1, ..., ξn be i.i.d. random variables with distribution
P and η1, ..., ηn i.i.d. random variables with distribution Q. Then for every Borel set
A, any M ∈ R and any n > 1 it holds

Pr

(
ξ1 + ...+ ξn

n
∈ A

)
(1− e−M) + e−M > exp{−nD(Q||P )−Mpn}, (18)

where pn = Pr(η1 + ...+ ηn ∈ nAc).

In Theorem A we set P = Pn, Q = Qnλn , A = [xn,∞), M = 2nx2
n. Observe that

the variance of Qnλn is equal to ρ2
n = ϕ′′n(λn)/ϕn(λn)−m2

n(λn)→ 1 since, similarly as

above, from (16) we obtain |ϕ′′n(λn)− 1| ≤ 70 ϑ2n
σ2
0n
ωn. Hence for n sufficiently large, by

the assumption nx2
n →∞ and from Cantelli’s inequality we obtain

pn = Pr(η1 + ...+ηn < nxn) = Pr

(
n∑
i=1

(ηi −mn(λn)) < −εnxn

)
6

nρ2
n

nρ2
n + ε2n2x2

n

→ 0

and in consequence from (17) and (18) for n sufficiently large

P n
0 (Yn1 + ...+ Ynn > nxn)(1− e−2nx2n)

> exp{−(1 + ε)nλnxn + n log(1 + λ2
nψn(λn)/2)− 2nx2

npn} − e−2nx2n

> exp

{
−1 + 3ε

2
nλnxn − 2nx2

npn

}
−e−2nx2n > exp

{
(−1

2
− 7

2
ε)nx2

n − 2nx2
npn

}
−e−2nx2n .

Logarithming both sides and dividing by nx2
n we get

1

nx2
n

logP n
0 (Vn >

√
nxn) > −1

2
− 7

2
ε+ o(1)

which, due to arbitrariness of ε, ends the proof of (ii) as well as that of Theorem 2. 2

Proof of Theorem 3. Let Γn be the distribution on (0, 1) with the density

gn(t) = 1 +
x

(r+q)/q
n

ϑn
1(ϑn,2ϑn)(t)− x(r+q)/2q

n 1
(1−x(r+q)/2qn ,1)

(t),

where 1A(t) denotes the indicator of a set A. An elementary calculation gives

D(Γn||P0) = x
(r+q)/q
n log(x

(r+q)/q
n /ϑn)(1 + o(1)).
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Similarly as previously denote Yni = (log(1 + ϑnar(Xi)) − e0n)/σ0n, i = 1, ..., n,
their distributions by Pnr when Xi are uniformly distributed over (0, 1), or by Qnr

when Xi have the distribution Γn. Since Yni are bijective (decreasing) functions of Xi

then D(Qnr||Pnr) = D(Γn||P0) = x
(r+q)/q
n log(x

(r+q)/q
n /ϑn)(1 + o(1)).

As ar(t) < 0 for t > (1− r)1/r then for n sufficiently large we have

EΓnYn1 >
x

(r+q)/q
n

σ0nϑn

∫ 2ϑn

ϑn

log(1 + ϑnar(t))dt−
x

(r+q)/2q
n

σ0n

∫ 1

1−x(r+q)/2qn

log(1 + ϑnar(t))dt

>
x

(r+q)/q
n

σ0n

log(1 + ϑnar(2ϑn)) >

√
1− 2r

2

x
(r+q)/q
n

ϑrn
=

√
1− 2r

2
xn

(
xn
ϑqn

)r/q
= κn (20)

and

EΓnY
2
n1 6

1

σ2
0n

(
σ2

0n +
x

(r+q)/q
n

ϑn

∫ 2ϑn

ϑn

(log(1 + ϑnar(t))dt− e0n)2

)

6 1 +
x

(r+q)/q
n

σ2
0n

(log(1 + ϑnar(ϑn))− e0n)2 6
1

r2

x
(r+q)/q
n

ϑ2r
n

(1 + o(1)).

In Mogulskii’s inequality set P = Pnr, Q = Qnr, M = nx2
n, A = [xn,∞). From

the assumption on xn and (20) it follows xn − κn < 0 for n sufficiently large. So, by
Cantelli’s inequality for n sufficiently large

pn = Pr(η1 + ...+ ηn < nxn) 6 Pr

(
n∑
i=1

(ηi − EΓnYni) < n(xn − κn)

)

6
nEΓnY

2
n1

nEΓnY
2
n1 + n2(κn − xn)2

6
x

(r+q)/q
n (1 + o(1))

x
(r+q)/q
n (1 + o(1)) + r2nϑ2r

n (κn − xn)2

6
8(1 + o(1))

8(1 + o(1)) + r2(1− 2r)nx
(r+q)/q
n

.

Since the assumption on xn implies nx
(r+q)/q
n →∞ this implies pn → 0.

By Mogulskii’s inequality and the above we get

P n
0 (Vn >

√
nxn)(1−e−nx2n) > exp{−nx(r+q)/q

n log(x(r+q)/q
n /ϑn)(1+o(1))−nx2

npn}−e−nx
2
n .

Observe that nx
(r+q)/q
n log(x

(r+q)/q
n /ϑn)/nx2

n = x
(r−q)/q
n log(x

(r+q)/q
n /ϑn) → 0 by the as-

sumption on xn. Therefore the second term on the right hand side of the last estimate is
of higher order than the first. Logarithming both sides and dividing by nx2

n gives (7). 2

Appendix. Classical moderate deviation theorem

In this section we reprove the classical MD theorem for i.i.d. random variables
using Mogulskii’s inequality. We do this to evidence strong similarity of the proofs of
Theorems 2 and 4.

Let ξ1, ξ2, ... be a sequence of i.i.d. real random variables with distribution P ,
Eξ1 = 0, Var ξ1 = 1 and ϕ(λ) = Eeλξ1 finite for λ ∈ [0,Λ], Λ > 0.
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Theorem 4. If xn → 0 is such that nx2
n →∞ then we have

− lim
n→∞

1

nx2
n

logPr

(
1√
n

n∑
i=1

ξi >
√
nxn

)
=

1

2
.

Proof.
Upper estimate. The function ϕ(λ) is analytic on [0,Λ] and can be written in a

form

ϕ(λ) = 1 +
λ2

2
ψ(λ),

where ψ(λ) is analytic, ψ(λ) > 0 and ψ(0) = 1. By independence and Markov’s
inequality we get for arbitrary λ ∈ [0,Λ]

Pr

(
1√
n

n∑
i=1

ξi >
√
nxn

)
= Pr

(
n∏
i=1

eλξi > enλxn

)
6 e−nλxnϕn(λ).

Setting λ = xn, logarithming and dividing by nx2
n we obtain from the form of ϕ(λ)

1

nx2
n

logPr

(
1√
n

n∑
i=1

ξi >
√
nxn

)
6 −1 +

log(1 + x2n
2
ψ(xn))

x2
n

which immediately implies

lim sup
n→∞

1

nx2
n

logPr

(
1√
n

n∑
i=1

ξi >
√
nxn

)
6 −1

2
.

Lower estimate. For any λ ∈ [0,Λ] consider the distribution Qλ � P defined by
dQλ
dP

(y) = eλy/ϕ(λ). Then

m(λ) =

∫
ydQλ =

1

ϕ(λ)

∫
yeλydP (y) =

ϕ′(λ)

ϕ(λ)

and the Kullback-Leibler distance of Qλ from P can be expressed by

D(Qλ||P ) =

∫
1

ϕ(λ)
eλy(λy − logϕ(λ))dP (y) = λ

ϕ′(λ)

ϕ(λ)
− logϕ(λ).

For n > 1 and ε ∈ (0, 1/3) let λn > 0 be such that m(λn) = (1 + ε)xn. Since logϕ(λ) is
strictly convex then the function m(λ) = ϕ′(λ)/ϕ(λ) is increasing and m(0) = 0. Hence
λn → 0. For n sufficiently large i.e. such that |ψ(λn)− 1| < ε/8, |λnψ′(λn)| < ε/4 and
λ2
nψ(λn) < ε/4 we have

(1 + ε)xn = m(λn) =
ϕ′(λn)

ϕ(λn)
=
λnψ(λn) + λ2

nψ
′(λn)/2

1 + λ2
nψ(λn)/2

6 λn(1 + ε/4) ≤ λn(1 + ε)

and similarly

(1 + ε)xn > λn
1− ε/4
1 + ε/8

which implies

xn 6 λn 6 xn
(1 + ε)(1 + ε/8)

1− ε/4
6 (1 + 2ε)xn. (21)
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For λn defined above we have

D(Qλn||P ) = (1 + ε)λnxn − logϕ(λn).

In Mogulskii’s inequality (Theorem A) set Q = Qλn , A = [xn,∞), M = 2nx2
n. Since

ϕ′′(0) = 1 then the variance of Qλn is equal to ρ2
n = ϕ′′(λn)/ϕ(λn)−m2(λn)→ 1. Hence

for n sufficiently large, by the assumption nx2
n →∞ and from Cantelli’s inequality we

obtain

pn = Pr(η1 + ...+ηn < nxn) = Pr

(
n∑
i=1

(ηi −m(λn)) < −εnxn

)
6

nρ2
n

nρ2
n + ε2n2x2

n

→ 0.

From (21) we have λ2
n ≥ λnxn and for n sufficiently large log(1 + λnxnψ(λn)/2) ≥

(1− ε)λnxn/2. Hence, again (21) and Mogulskii’s inequality imply

Pr(ξ1 + ...+ ξn > nxn)(1− e−2nx2n)

> exp{−(1 + ε)nλnxn + n log(1 + λ2
nψ(λn)/2)− 2nx2

npn} − e−2nx2n

> exp

{
−1 + 3ε

2
nλnxn − 2nx2

npn

}
−e−2nx2n > exp

{
(−1

2
− 7

2
ε)nx2

n − 2nx2
npn

}
−e−2nx2n .

Logarithming and dividing by nx2
n both sides we obtain

1

nx2
n

logPr(ξ1 + ...+ ξn > nxn) > −1

2
− 7

2
ε+ o(1)

which, due to arbitrariness of ε ∈ (0, 1/3), gives

lim inf
n→∞

1

nx2
n

logPr

(
1√
n

n∑
i=1

ξi >
√
nxn

)
> −1

2

and finishes the proof. 2
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