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Abstract. We study an empirical interpretation of the Pitman efficiency for
testing uniformity in the two-parametric family of the beta distributions. For
contamination models the efficiency aproximates empirical ratios of sample
sizes very well.
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1. Introduction. Usually, the Pitman efficiency is determined for parametric pro-
blems with a real parameter (eg. Lehmann and Romano (2008)) or for parametric sub-
problems with a real parameter of some nonparametric problems. Such approaches do not
allow to compare theoretical findings with their empirical counterparts for multidimen-
sional sets of alternatives.

The aim of the present note is to study an empirical interpretation of the Pitman
efficiency for a particular example of the two-dimensional family of the beta distributions.
We start by recalling a definition of the Pitman efficiency we shall use in the sequel.

Let Γ ⊂ Rk, k > 1, be a nonempty set, P = {Pγ : γ ∈ Γ} a family of distributions
on a measurable space (X ,A) and X1, ..., Xn a sample from a distribution P ∈ P . Fix
γ0 ∈ Γ. We test the null hypothesis H0 : P = Pγ0 against H1 : P 6= Pγ0 . Suppose we
want to compare two upper-tailed tests given by statistics Tn, Vn. For 0 < α < β < 1
and an alternative P let NT (α, β, P ) denote the minimal sample size such that for all
n > NT (α, β, P ) the power of the test T for the alternative P at the significance level α
and for the sample size n is not smaller than β. Similarly we define NV (α, β, P ) for the
test V . The relative efficiency of T with respect to V is defined to be

RETV (α, β, P ) =
NV (α, β, P )
NT (α, β, P )

.

Let γ(s) ∈ Γ, s ∈ [0, 1], be a continuous curve in Γ such that γ(0) = γ0. Assume
that there exists a σ-finite measure λ on (X ,A) such that Pγ(s) � λ for s ∈ [0, 1] and

H(Pγ(s), Pγ0)
s→0+−→ 0, where H(P,Q) denotes the Hellinger distance between P and Q.

The family of distributions {Pγ(s)} = {Pγ(s) : s ∈ [0, 1]} we shall call a path.

Definition. Given 0 < α < β < 1 and a path {Pγ(s)}. If there exists a limit

lim
s→0+

RETV (α, β, Pγ(s)) = ePTV (α, β, {Pγ(s)}) ∈ [0,∞],

then we call it the Pitman efficiency of the test T with respect to the test V for the path
{Pγ(s)}.

Below we provide a version of the Pitman theorem in the form ready to apply in Section
2. We shall need the following assumption on an asymptotic behaviour of a statistic Wn

for a path {Pγ(s)}:
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there exist scaling functions µ(s) > 0, σ(s) > 0, s ∈ [0, 1], and a continuous distribu-
tion function G(x) such that

lim
n→∞

P n
γ0

(
Wn −

√
nµ(0)

σ(0)
6 x

)
= G(x) (1)

for all x ∈ R and for any sequence sn → 0, sn > 0, we have

lim
n→∞

P n
γ(sn)

(
Wn −

√
nµ(sn)

σ(sn)
6 x

)
= G(x) (2)

for all x ∈ R.

Condition (2) is a little bit weaker than the uniform convergence in s (cf. the condition
(P1) in Serfling (1980) or the condition D in Noether (1955)). Rothe (1981) proposed three
conditions instead of (2). One of them is a continuity of the power function with respect
to s at s = 0 for every fixed n. The proof of the theorem, given below, is a modification
of well known ones (cf. Lehmann and Romano (2008), Nikitin (1995)). Therefore we omit
it. Usually (1) and (2) are fulfilled with G(x) = Φ(x) the standard normal distribution
function. But in Theorem below and in its proof this fact is unimportant.

Theorem. Suppose Tn, Vn satisfy (1) and (2) for a path {Pγ(s)} with the same distri-
bution function G(x) increasing on the set {x : 0 < G(x) < 1}, functions σT (s), σV (s) are
continuous at s = 0, while µT (s), µV (s) have nonnegative derivatives at the point s = 0.
Denote cPT = (µ′T (0)/σT (0))2 and cPV = (µ′V (0)/σV (0))2. If max{cPT , cPV } > 0 then there
exists the Pitman efficiency of T with respect to V for the path {Pγ(s)}, does not depend
on α and β and equals

ePTV ({Pγ(s)}) = ePTV (α, β, {Pγ(s)}) =
(
µ′T (0)/σT (0)
µ′V (0)/σV (0)

)2
=
cPT
cPV
, (3)

where c/0 is understood as ∞.

2. Example and empirical interpretation. In this section we study an empirical
interpretation of the Pitman efficiency for testing uniformity in the family of the beta
distributions. Set

P = {Pγ : Pγ = P(p,q,ε) = (1− ε)P1 1 + εPpq, ε ∈ [0, 1], p > q > 0, τ(p, q) > 0},
where Ppq denotes the beta distribution on [0, 1] with parameters p, q and τ(p, q) = 2p2−
2pq− q2+ 2p− q. Let γ0 = (1, 1, 0). Then Pγ0 = P(1,1,0) = P1 1 is the uniform distribution.
We test the simple null hypothesis H0 : P = P1 1. Consider two (upper-tailed) tests given
by the statistics Vn =

√
n(X − 1/2) and Tn = (

∑n
i=1(X

2
i − 1/3))/

√
n.

Recall that

EpqX1 =
p

p+ q
, m2 = EpqX

2
1 =

p(p+ 1)
(p+ q)(p+ q + 1)

, (4)

m4 = EpqX
4
1 =

p(p+ 1)(p+ 2)(p+ 3)
(p+ q)(p+ q + 1)(p+ q + 2)(p+ q + 3)

. (5)

Hence, for a distribution Ppq with τ(p, q) < 0 we have EpqX21 = 1/3 + τ(p, q)/3(p+ q)(p+
q + 1) < 1/3 and for paths lying in the region τ(p, q) < 0 the statistic Tn does not satisfy
(2), as µT (s) < 0. Therefore we have considered the restriction τ(p, q) > 0 for the set of
parameters.

Fix Ppq = P(p,q,1) ∈ P , (p, q) 6= (1, 1), and let Pγ(s) = (1 − s)P1 1 + sPpq, s ∈ [0, 1].
So, we have γ(s) = (p, q, s) and the path {Pγ(s)} links by a linear segment (in the space
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of distributions) P1 1 to Ppq. {Pγ(s)} forms a contamination family determined by a single
alternative. Here we shall call it a linear path. Lyapunov’s theorem and (4) imply that Vn
satisfies (1) and (2) with G(x) = Φ(x), µV (s) = (1−s)/2+sEpqX1−1/2 = s(p−q)/2(p+q)
and σ2V (s) = (1 − s)/3 + sm2 − (µV (s) + 1/2)2. The assumptions of the above theorem
are satisfied for this test and µ′V (0) = (p− q)/2(p+ q), σV (0) = 1/

√
12 and consequently

cPV = 3(p − q)2/(p + q)2. Similarly from (4), (5) and Lyapunov’s theorem it follows that
Tn satisfies (1) and (2) with G(x) = Φ(x), µT (s) = sτ(p, q)/3(p + q)(p + q + 1), σ2T (s) =
(1−s)/5+sm4−(µT (s)+1/3)2. Hence the assumptions of Theorem are also satisfied for Tn
and µ′T (0) = τ(p, q)/3(p+q)(p+q+1), σ2T (0) = 4/45 and cPT = 5τ 2(p, q)/4(p+q)2(p+q+1)2.
By (3) it follows that for p > q with τ(p, q) > 0 the Pitman efficiency of T with respect
to V for linear paths exists and equals

EPTV = EPTV (Ppq) =
5(2p2 − 2pq − q2 + 2p− q)2

12(p− q)2(p+ q + 1)2
=

5τ 2(p, q)
12(p− q)2(p+ q + 1)2

. (6)

For p = q < 1 the efficiency is equal to ∞ while for p, q with τ(p, q) = 0 is equal to 0.
Observe that for p, q lying on the line given by the equation p − 2q + 1 = 0, p > 1, we
have EPTV (Ppq) = 5/12 while for p, q on the line 2p − q − 1 = 0, 1/2 < p < 1, we have
EPTV (Ppq) = 5/3. For a path contained in one of these lines the efficiency ePTV takes the
same value 5/12 or 5/3, respectively.

Compare the theoretical formula (6) for linear paths with the empirical behaviour of
both tests for several alternatives and the significance level 0.05. Results are shown in
Table 1. For each case the parameter s was chosen to get the power of the test V close to
1/2 for a moderate sample size.

Table 1. Empirical powers of the tests V and T (in %) and em-
pirical efficiencies for selected alternatives. α = 0.05, 100 000 MC.

alternative test empirical
p q s n V T efficiency EPTV

5 4 1 80 56 0
30000 100 0 < 0.003 0

4 3.15 0.9 100 63 03
4000 100 63 0.025 0.026

6 4 0.5 100 54 15
460 99 54 0.217 0.220

3 1 0.2 105 55 56
100 54 55 1.05 1.067

0.6667 0.5 0.5 200 54 77
100 36 54 2 2.074

0.55 0.5 0.9 640 58 100
100 22 58 6.4 6.505

0.5 0.5 0.9 30000 09 100
100 09 41 > 300 ∞

For the first alternative the power of T is equal to 0.002 for both sample sizes and is
denoted as 0 in Table 1. It may be seen a very good proximity of empirical and theoretical
efficiencies for all values of s.

Now, take a path {Pγ1(s)} determined by the curve γ1(s) = γ1(s; p, q) = (1−s+ps, 1−
s − qs + 2qs2, 1), where p > q > 0 are fixed with τ(p, q) > 0 and q < 3 +

√
8. Here

both parameters of the beta distribution are sent to 1 along a parabola without mixing
with Pγ0 = P1 1. The condition for q guarantees that the curve is conatined in the set of
parameters (i.e. 1− s− qs+ 2qs2 > 0 for s ∈ [0, 1]).
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Since densities of the beta distributions are continuous with respect to (p, q) it follows
by Lebesgue Bounded Convergence Theorem that the Hellinger distance H(Pγ1(s), P1 1)
tends to 0 when s → 0 (parameters of the beta distibution are bounded away from 0
unifromly in s). From Lyapunov’s theorem and (4) we get

µV (s) =
1− s+ ps

2− 2s+ ps− qs+ 2qs2
− 1

2
=

(p+ q)s− 2qs2

2(2− 2s+ ps− qs+ 2qs2)
, s ∈ [0, 1].

Thus µ′V (0) = (p+ q)/4. As previously σ2V (0) = 1/12. So cPV = 3(p+ q)2/4. Analogously,

µT (s) =
(1− s+ ps)(2− s+ ps)

(2− 2s+ ps− qs+ 2qs2)(3− 2s+ ps− qs+ 2qs2)
− 1

3

=
(4p+ 5q + 1)s

3(2− 2s+ ps− qs+ 2qs2)(3− 2s+ ps− qs+ 2qs2)
+O(s2), s→ 0+.

and hence µ′T (0) = (4p+ 5q + 1)/18. Since σ2T (0) = 4/45 then cPT = 5(4p+ 5q + 1)2/144.
Finally by (3) we obtain

ePTV ({Pγ1(s)}) =
5(4p+ 5q + 1)2

108(p+ q)2
.

For example, take p = 6, q = 4. Then ePTV ({Pγ1(s;6,4)}) = 15/16 = 0.9375. Choose
several points on the considered path taking s = 1, 0.5, 0.2, 0.1, 0.05, 0.02. In Table
2 we show empirical powers and empirical efficiencies for selected distributions on the
path {Pγ1(s;6,4)} and values of EPTV for linear paths corresponding to each Pp1(s)q1(s) with
p = 6, q = 4 calculated from (6), where p1(s) = 1 − s + ps, q1(s) = 1 − s − qs + 2qs2.
Since both tests are very sensitive for considered alternatives we mix them with P1 1 in
the form (1− ε)P1 1 + εPp1(s) q1(s) with ε such that sample sizes were not too small.

Table 2. Empirical powers and empirical efficiencies of T with respect
to V for selected distributions on the path {Pγ1(s;6,4)}. α = 0.05, 100 000 MC.

alternative test empirical
s p1(s) q1(s) ε n V T efficiency EPTV

0.5 3.5 0.5 0.1 200 57 67
148 47 57 1.35 1.375

0.2 2 0.32 0.1 180 52 62
133 43 52 1.35 1.420

0.1 1.5 0.58 0.2 150 59 65
128 54 59 1.17 1.217

0.05 1.25 0.77 0.2 200 54 55
189 52 54 1.06 1.083

0.02 1.10 0.9032 0.2 200 52 50
207 53 52 0.97 0.996

It follows from Table 2 that empirical efficiencies are very close to EPTV (similarly as it was
seen in Table 1) but for distributions, on the considered path, relatively far from P1 1 the
Pitman efficiency ePTV ({Pγ1(s)}) = 0.9375 does not reflect empirical behaviuor of the tests.
Only for alternatives very close to P1 1, ePTV ({Pγ1(s)}) has a good empirical interpretation.
But in this case both efficiencies are close each other and still empirical efficiencies are
closer to EPTV than to ePTV .

Elementary calculations give

EPTV (Pp1(s) q1(s)) =
5
12

(
4p+ 5q + 1 + o(s)

3(p+ q) + o(s)

)2
.
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Hence lim
s→0+

EPTV (Pp1(s) q1(s)) = ePTV ({Pγ1(s)}) which is nicely seen in the last column of Ta-

ble 2.

Since for {Pγ1(s)} we have had to mix distributions lying on the path with P1 1 we
consider two other paths determined by the curves γ2(s) = (1 + 2s + s2, 1 + s + s2, 1)
and γ3(s) = (1 − s/2 + s2/2, 1 − 2s/3, 1). They join P1 1 with P4 3 and P1 1 with P1 1/3,
respectively. Similarly as above, using (4) and (5) after simple calculations we get for γ2(s):
µ′V (0) = 1/4, µ′T (0) = 1/6 and cPV = 3/4, cPT = 5/16, ePTV ({Pγ2(s)}) = 5/12 ≈ 0.4167
and for γ3(s): µ′V (0) = 1/24, µ′T (0) = 2/27 and cPV = 1/48, cPT = 5/81, ePTV ({Pγ3(s)}) =
80/27 ≈ 2.963.

On both paths choose 5 distributions taking s = 1, 0.5, 0.2, 0.1, 0.05. In Table 3 we
present empirical powers and empirical efficiencies for selected didtributions on the path
{Pγ2(s)}. In this case mixing with P1 1 is unncessary to keep empirical powers close to 1/2
for moderate sample sizes. This fact is marked in the table in the column denoted by ε.

Table 3. Empirical powers and empirical efficiencies of T with respect
to V for selected distributions on the path {Pγ2(s)}. α = 0.05, 100 000 MC.

alternative test empirical
s p2(s) q2(s) ε n V T efficiency EPTV

1 4 3 1 50 57 05
497 100 57 0.101 0.104

0.5 2.25 1.75 1 70 59 18
290 100 59 0.241 0.250

0.2 1.44 1.24 1 200 58 27
582 95 58 0.344 0.354

0.1 1.21 1.11 1 600 58 29
1600 92 58 0.375 0.387

0.05 1.1025 1.0525 1 2000 56 30
5015 89 56 0.399 0.402

In the next table we present the results for the path {Pγ3(s)}. For two last cases we
have taken 10000 MC runs while for the rest cases 100 000 MC runs.

Table 4. Empirical powers and empirical efficiencies of T with
respect to V for selected distributions on the path {Pγ3(s)}. α = 0.05.

alternative test empirical
s p3(s) q3(s) ε n V T efficiency EPTV

1 1 0.3333 0.2 100 53 64
73 44 54 1.37 1.437

0.5 0.875 0.6667 1 70 62 74
49 50 62 1.43 1.496

0.2 0.92 0.8667 1 1000 50 72
535 33 50 1.87 1.936

0.1 0.955 0.9333 1 7000 51 79
3120 30 51 2.24 2.295

0.05 0.97625 0.9667 1 35000 48 81
13650 26 48 2.56 2.58

Results shown in Tables 3 and 4 confirm observations made for {Pγ1(s)}. It is seen that
Pitman efficiency depends on the actual path and its values can considerable differ (in
our examples: 0.9375, 0.4167, 2.963). Its empirical interpretation is correct only for alter-
natives lying on a given path and corresponding to very small s. Contrary to it, efficiency
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EPTV has good empirical interpretation at any point of a path.

Consider a path {Pγ4(s)} determined by the curve γ4(s) = (1 + s, 1 + 0.5s− 1.18s2, 1).
Both curves γ3(s) and γ4(s) are tangent at s = 0 to the line p − 2q + 1 = 0. Similar
calculations, as previously, give ePTV ({Pγ4(s)}) = 5/12. The paths {Pγ1(s)} for p = 6, q = 4
and {Pγ4(s)} intersect at P2 0.32. So, one can assign to this distribution numbers 5/12 or
15/16 as efficiencies (theoretical). However, they have nothing to do with the empirical
efficiency equal to 1.35 (cf. Table 2). In Table 5 we present empirical efficiencies for selected
distributions on {Pγ4(s)}. Also in this case empirical efficiencies are better approximated
by EPTV than by ePTV ≈ 0.4167.

The path {Pγ4(s)} intersects {Pγ5(s)} with γ5(s) = (1 + s, 1, 1) at P84/59 1. We have
ePTV ({Pγ5(s)}) = 20/27 and ePTV ({Pγ4(s)}) = 5/12 and both numbers could be assigned
to P84/59 1 as its efficiency. But, the empirical efficiency is equal to 0.800 and is better
approximated by EPTV (P84/59 1) ≈ 0.835.

Table 5. Empirical powers and empirical efficiencies of T with respect
to V for selected distributions on the path {Pγ4(s)}. α = 0.05, 100 000 MC.

alternative test empirical
s p4(s) q4(s) ε n V T efficiency EPTV

0.5 1.5 0.955 0.5 100 61 56
116 67 61 0.862 0.900

0.2 1.2 1.0528 1 250 56 40
405 74 56 0.617 0.637

0.1 1.1 1.0382 1 1300 56 36
2480 81 56 0.524 0.536

The true (unknown) distribution P 6= P1 1 of the samle at hand (underH1) lies on many
paths. So, one cannot assign it a single number interpreted as its efficiency meant as a ratio
of sample sizes guaranteing the same power of both tests. Even for alternatives close to P1 1
(in the sense of Hellinger distance) the Pitman efficiency can significantly differ from the
empirical efficiency as it depends on a shape of a considered path and a value of the para-
meter s corresponding to a selected alternative. This is the case when a path runs close to
P1 1 for large values of s. For example, for γ6(s) = (1−s+11s2/10, 1−2s+2s2, 1) we obtain
ePTV ({Pγ6(s)}) = 5/3, but for s = 1 we have Pγ6(1) = P1.1 1 with H(P1.1 1, P1 1) = 0.048 and
its empirical efficiency 0.735 is close to EPTV (P1.1 1) ≈ 0.765 and has nothing to do with 5/3.

Finally, consider a path determined by γ7(s) = (2+s, 1+s, s). For any sn → 0 we have
the sequence of alternatives of the form (1−sn)P1 1+snP2+sn 1+sn . So, we have a contamina-
tion sequence determined by a sequence of different alternatives. The sequence of the densi-
ties of P2+sn 1+sn is uniformly bounded and uniformly bounded away from 0 and converges
to the density of P2 1. The Pitman efficiency for this path equals to ePTV ({Pγ7(s)}) = 15/16
and coincides with EPTV (P2 1) for the limiting distribution P2 1. However, again empirical
efficiencies are for each n close to EPTV (P2+sn 1+sn) but not to ePTV ({Pγ7(s)}) which can be
seen in Table 6. It is easy to see that EPTV (P2+sn 1+sn)→ 15/16 = ePTV ({Pγ7(s)}) as n→∞
and from Table 6 we see that empirical efficiencies also approach to 15/16 when s→ 0.

Conclussion. The notion of Pitman efficiency for arbitrary paths meets some difficul-
ties with an empirical interpretation. For linear paths it approximates empirical relative
efficiency very well.

6



Table 6. Empirical powers and empirical efficiencies of T with respect
to V for selected distributions on the path {Pγ7(s)}. α = 0.05, 100 000 MC.

alternative test empirical
s p7(s) q7(s) ε n V T efficiency EPTV

1 3 2 1 30 64 29
76 98 64 0.39 0.417

0.5 2.5 1.5 0.5 80 63 45
127 81 63 0.63 0.651

0.2 2.2 1.2 0.2 300 55 47
380 63 55 0.79 0.817

0.1 2.1 1.1 0.1 1000 54 48
1205 60 54 0.83 0.876

0.05 2.05 1.05 0.05 4000 55 50
4440 59 55 0.90 0.907
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