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Abstract. We study an empirical interpretation of the Pitman efficiency for
testing uniformity in the two-parametric family of the beta distributions. For
contamination models the efficiency aproximates empirical ratios of sample
sizes very well.
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1. Introduction. Usually, the Pitman efficiency is determined for parametric pro-
blems with a real parameter (eg. Lehmann and Romano (2008)) or for parametric sub-
problems with a real parameter of some nonparametric problems. Such approaches do not
allow to compare theoretical findings with their empirical counterparts for multidimen-
sional sets of alternatives.

The aim of the present note is to study an empirical interpretation of the Pitman
efficiency for a particular example of the two-dimensional family of the beta distributions.
We start by recalling a definition of the Pitman efficiency we shall use in the sequel.

Let I' € R*, k > 1, be a nonempty set, P = {P, : v € I'} a family of distributions
on a measurable space (X, A) and X7, ..., X,, a sample from a distribution P € P. Fix
7 € I'. We test the null hypothesis Hy : P = P,, against Hy : P # P,,. Suppose we
want to compare two upper-tailed tests given by statistics T,,, V,,. For 0 < a < < 1
and an alternative P let Np(«, 3, P) denote the minimal sample size such that for all
n = Nr(a, 3, P) the power of the test T for the alternative P at the significance level «
and for the sample size n is not smaller than . Similarly we define Ny («, 3, P) for the
test V. The relative efficiency of 17" with respect to V' is defined to be
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Let v(s) € I', s € [0,1], be a continuous curve in I' such that v(0) = ~,. Assume
that there exists a o-finite measure A on (X,.A) such that P, < A for s € [0,1] and

s—07F

H(Pys, Py,) — 0, where H(P, Q) denotes the Hellinger distance between P and Q.
The family of distributions { Py} = {Pys) : s € [0,1]} we shall call a path.
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Definition. Given 0 < v < 3 < 1 and a path { P, }. If there exists a limit
Sli%lJr Rérv(a, B, P7(5)> = 65V<O‘7 B, {P’Y(S)}) € [0, oc],

then we call it the Pitman efficiency of the test T with respect to the test V' for the path
{r 7(8)}-

Below we provide a version of the Pitman theorem in the form ready to apply in Section
2. We shall need the following assumption on an asymptotic behaviour of a statistic W,
for a path {P;)}:



there exist scaling functions p(s) > 0, o(s) > 0, s € [0,1], and a continuous distribu-
tion function G(x) such that

o (W= ()
Jim P (do) <z)=Gz) (1)
for all x € R and for any sequence s,, — 0, s, > 0, we have

lim P" (W" = Vnilsn) x) = G(x) 2)

n—oo v(sn) O'(Sn>

for all x € R.

Condition (2) is a little bit weaker than the uniform convergence in s (cf. the condition
(P1) in Serfling (1980) or the condition D in Noether (1955)). Rothe (1981) proposed three
conditions instead of (2). One of them is a continuity of the power function with respect
to s at s = 0 for every fixed n. The proof of the theorem, given below, is a modification
of well known ones (cf. Lehmann and Romano (2008), Nikitin (1995)). Therefore we omit
it. Usually (1) and (2) are fulfilled with G(x) = ®(x) the standard normal distribution
function. But in Theorem below and in its proof this fact is unimportant.

Theorem. Suppose T),, V,, satisfy (1) and (2) for a path {P,)} with the same distri-
bution function G(z) increasing on the set {z : 0 < G(z) < 1}, functions or(s), oy (s) are
continuous at s = 0, while ur(s), py(s) have nonnegative derivatives at the point s = 0.
Denote cf = (f(0)/o7(0))? and ¢ = (14},(0) /oy (0))% If max{cZ,cl} > 0 then there
exists the Pitman efficiency of 7" with respect to V' for the path { P, }, does not depend
on « and 3 and equals

erv({Py}) = erv(a, B, {Pys}) = (’%(W"V(O)

where ¢/0 is understood as co.

2. Example and empirical interpretation. In this section we study an empirical
interpretation of the Pitman efficiency for testing uniformity in the family of the beta
distributions. Set

P={Py:Py=Ppgey=(1—¢€)P11+ePy, €€ [0,1], p=q>0, 7(p,q) >0},
where P,, denotes the beta distribution on [0, 1] with parameters p, ¢ and 7(p, q) = 2p* —
2pq — ¢* 4+ 2p — q. Let 79 = (1,1,0). Then P,; = Pj,1,0) = P11 is the uniform distribution.
We test the simple null hypothesis Hy : P = Py;. Consider two (upper-tailed) tests given
by the statistics V,, = /n(X —1/2) and T,, = (X1 (X? — 1/3))/+/n.

Recall that
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Hence, for a distribution P,, with 7(p,q) < 0 we have E,, X7 =1/3+7(p,q)/3(p+q)(p+
g+ 1) < 1/3 and for paths lying in the region 7(p, ¢q) < 0 the statistic T;, does not satisfy
(2), as pr(s) < 0. Therefore we have considered the restriction 7(p,q) > 0 for the set of
parameters.

Fix P,y = Ppg1) € P, (p,q) # (1,1), and let Py = (1 — s)Pi1 + 5Py, s € [0,1].
So, we have v(s) = (p,q,s) and the path {P,(} links by a linear segment (in the space



of distributions) Py to Ppq. { Py} forms a contamination family determined by a single
alternative. Here we shall call it a linear path. Lyapunov’s theorem and (4) imply that V;,
satisfies (1) and (2) with G(z) = ®(z), pv(s) = (1—5)/2+sEp,X1—1/2 = s(p—q)/2(p+q)
and o?.(s) = (1 — s)/3 4+ sma — (v (s) + 1/2)%. The assumptions of the above theorem
are satisfied for this test and p},(0) = (p — q)/2(p + q), ov(0) = 1/4/12 and consequently
= 3(p—q)*/(p+ q)? Similarly from (4), (5) and Lyapunov’s theorem it follows that
T, satisfies (1) and (2) with G(z) = ®(x), ur(s) = s7(p,q)/3(p+ q)(p+ ¢+ 1), 02(s) =
(1—s5)/5+smy—(ur(s)+1/3)2. Hence the assumptions of Theorem are also satisfied for T,
and p7(0) = 7(p, q)/3(p+q) (p+q+1), 07(0) = 4/45 and cf. = 57%(p, q) /4(p+9)*(p+¢+1)*.
By (3) it follows that for p > ¢ with 7(p,¢) > 0 the Pitman efficiency of T" with respect
to V for linear paths exists and equals

5(2292 2pq (]2 2p Q)2 57'2(19, q)
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For p = g < 1 the efficiency is equal to oo while for p, ¢ with 7(p,q) = 0 is equal to 0.
Observe that for p, ¢ lying on the line given by the equation p —2¢+1 =0, p > 1, we
have EF,(P,,) = 5/12 while for p,q on the line 2p —q¢—1 =0, 1/2 < p < 1, we have
&L, (P,,) = 5/3. For a path contained in one of these lines the efficiency el takes the
same value 5/12 or 5/3, respectively.

Compare the theoretical formula (6) for linear paths with the empirical behaviour of
both tests for several alternatives and the significance level 0.05. Results are shown in
Table 1. For each case the parameter s was chosen to get the power of the test V' close to
1/2 for a moderate sample size.

Table 1. Empirical powers of the tests V and T (in %) and em-
pirical efficiencies for selected alternatives. a = 0.05, 100000 MC.

alternative test empirical

P q s n \%4 T | efficiency S%JV

5 4 1 80 | 56 0

30000 | 100 0] <0.003 0

4 3.15] 0.9 100 | 63 03
4000 | 100 63 0.025 0.026

6 4 0.5 100 | 54 15
460 | 99 54 0.217 0.220

3 1 0.2 105 | 55 56

100 | 54 55 1.05 1.067
0.6667 0.5 | 0.5 200 | 54 77
100 | 36 54 2 2.074
0.55 0.5 |09 640 | 58 100
100 | 22 58 6.4 6.505
0.5 0.5 | 0.9 30000 | 09 100
100 | 09 41 > 300 00

For the first alternative the power of T' is equal to 0.002 for both sample sizes and is
denoted as 0 in Table 1. It may be seen a very good proximity of empirical and theoretical
efficiencies for all values of s.

Now, take a path {P,, )} determined by the curve v1(s) = vi(s;p,q) = (1 —s5+ps, 1 —
s — qs + 2¢s?,1), where p > ¢ > 0 are fixed with 7(p,q) > 0 and ¢ < 3 + /8. Here
both parameters of the beta distribution are sent to 1 along a parabola without mixing
with P, = P;1. The condition for ¢ guarantees that the curve is conatined in the set of
parameters (i.e. 1 —s — s + 2¢gs* > 0 for s € [0,1]).
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Since densities of the beta distributions are continuous with respect to (p, ¢) it follows
by Lebesgue Bounded Convergence Theorem that the Hellinger distance H (P, (s), Pi1)
tends to 0 when s — 0 (parameters of the beta distibution are bounded away from 0
unifromly in s). From Lyapunov’s theorem and (4) we get
1—s+ps 1 (p + q)s — 2qs*

= —_— - = 5 60,1
2—-2s+ps—qs+2qs> 2 2(2—2s+ps—qs+2qs?) s €0,1]

Thus p},(0) = (p+ q)/4. As previously o2 (0) = 1/12. So ¢; = 3(p + ¢q)?/4. Analogously,
(1 —s+4+ps)(2—s+ps) 1

Hr(8) = 5 o5 T ps — g5 + 20D)(3— 25 + ps — g T 20) 3

v (s)

(4p+5g+1)s 9
= O 0.
3(2—25—|—ps—q3+2q52)(3—23—|—ps—q3+2q52)+ (%), s =
and hence 1/-(0) = (4p + 5q + 1)/18. Since 04(0) = 4/45 then ¢k = 5(4p + 5q + 1)?/144.
Finally by (3) we obtain

5(4p + bg + 1)?
108(p + ¢)?

For example, take p = 6,¢ = 4. Then ef, ({P,,(s6,4}) = 15/16 = 0.9375. Choose
several points on the considered path taking s = 1, 0.5, 0.2, 0.1, 0.05, 0.02. In Table
2 we show empirical powers and empirical efficiencies for selected distributions on the
path {P,, (564} and values of £, for linear paths corresponding to each Py, (s)q(s) With
p = 6, ¢ = 4 calculated from (6), where pi(s) =1 —s+ps, qi(s) =1 — s — qs + 2¢s>.
Since both tests are very sensitive for considered alternatives we mix them with P in
the form (1 — &) P11 + €P,, (s)q,(s) With € such that sample sizes were not too small.

ery({Pro}) =

Table 2. Empirical powers and empirical efficiencies of T' with respect
to V for selected distributions on the path {P, (s64)}. @ = 0.05, 100000 MC.

alternative test empirical
s pi(s) aqs) £ n | V. T | efficiency | &F,
0.5 35 0.5 0.1 | 200 | 57 67
148 | 47 57 1.35 1.375
0.2 2 0.32 0.1 | 180 | 52 62
133 | 43 52 1.35 1.420
0.1 1.5 0.58 0.2 | 150 | 589 65
128 | 54 59 1.17 1.217
0.05 125 0.77 0.2 | 200 |54 55
189 | 52 54 1.06 1.083
0.02 1.10 0.9032 | 0.2 | 200 | 52 50
207 | 53 52 0.97 0.996

It follows from Table 2 that empirical efficiencies are very close to £X, (similarly as it was
seen in Table 1) but for distributions, on the considered path, relatively far from P;; the
Pitman efficiency efy, ({ Py, (s)}) = 0.9375 does not reflect empirical behaviuor of the tests.
Only for alternatives very close to Py, eZy ({ Py, (s)}) has a good empirical interpretation.
But in this case both efficiencies are close each other and still empirical efficiencies are
closer to EF, than to el

Elementary calculations give

2
5 (4p+5q+1+o0(s)
Erv(Posya(s) = — (

12\ 3(p+q)+o(s)



Hence 1ir51+ Erv(Pou(s)ar(s)) = €4 ({ Pyy(s)}) which is nicely seen in the last column of Ta-
ble 2.

Since for {P,,(s)} we have had to mix distributions lying on the path with P, we
consider two other paths determined by the curves y5(s) = (1 + 2s + s*,1 + s + s%,1)
and y3(s) = (1 —s/2 + s%/2,1 — 2s/3,1). They join Py with Py3 and Piy with Py,
respectively. Similarly as above, using (4) and (5) after simple calculations we get for v,(s):
wy(0) = 1/4, php(0) = 1/6 and cff = 3/4, ¢k = 5/16, £, ({Py(s}) = 5/12 ~ 0.4167
and for y3(s): pi,(0) = 1/24, p/p(0) = 2/27 and ¢ = 1/48, cf =5/81, e, ({Pyy(s)}) =
80/27 ~ 2.963.

On both paths choose 5 distributions taking s = 1, 0.5, 0.2, 0.1, 0.05. In Table 3 we
present empirical powers and empirical efficiencies for selected didtributions on the path
{P,,(5}- In this case mixing with P, is unncessary to keep empirical powers close to 1/2
for moderate sample sizes. This fact is marked in the table in the column denoted by e.

Table 3. Empirical powers and empirical efficiencies of T" with respect
to V for selected distributions on the path {P,,)}. a = 0.05, 100000 MC.

alternative test empirical
s p2(s)  qa(s) 5 n VT | efficiency | &L,
1 4 3 1 50 | 57 05

497 | 100 57 0.101 0.104
0.5 225 1.75 1 70| 59 18
290 | 100 59 0.241 0.250
0.2 1.44 1.24 1 200 | 58 27
o582 | 95 58 0.344 0.354
0.1 1.21 1.11 1 600 | 58 29
1600 | 92 58 0.375 0.387
0.05 1.1025 1.0525 | 1 | 2000 | 56 30
5015 | 89 56 0.399 0.402

In the next table we present the results for the path {P,, ) }. For two last cases we
have taken 10000 MC runs while for the rest cases 100000 MC runs.

Table 4. Empirical powers and empirical efficiencies of T with
respect to V' for selected distributions on the path { P, }. o = 0.05.

alternative test empirical
s p3(s) q3(s) | e n |V T | efficiency | &F,
1 1 0.3333 | 0.2 100 | 53 64
73| 44 54 1.37 1.437
0.5 0875 0.6667 | 1 70|62 74

49 | 50 62 1.43 1.496
0.2 092 0.8667 | 1 1000 | 50 72
935 | 33 50 1.87 1.936
0.1  0.955 09333 | 1 7000 | 51 79
3120 | 30 51 2.24 2.295
0.05 0.97625 0.9667 | 1 35000 | 48 81
13650 | 26 48 2.56 2.58

Results shown in Tables 3 and 4 confirm observations made for {P,, (5 }. It is seen that
Pitman efficiency depends on the actual path and its values can considerable differ (in
our examples: 0.9375, 0.4167, 2.963). Its empirical interpretation is correct only for alter-
natives lying on a given path and corresponding to very small s. Contrary to it, efficiency



EE, has good empirical interpretation at any point of a path.

Consider a path {P,, s} determined by the curve v4(s) = (1 +s,1+ 0.5s — 1.18s,1).
Both curves 73(s) and 74(s) are tangent at s = 0 to the line p — 2¢ + 1 = 0. Similar
calculations, as previously, give ey, ({P,,(s)}) = 5/12. The paths {P,, s} for p =6, ¢ = 4
and {P,,(s)} intersect at Py(32. So, one can assign to this distribution numbers 5/12 or
15/16 as efficiencies (theoretical). However, they have nothing to do with the empirical
efficiency equal to 1.35 (cf. Table 2). In Table 5 we present empirical efficiencies for selected
distributions on {P,,(s)}. Also in this case empirical efficiencies are better approximated
by X, than by ek, ~ 0.4167.

The path {P,, ()} intersects { Py s} with 75(s) = (14 s,1,1) at Pss/591. We have
ey ({Poss}) = 20/27 and efy, ({Py.(5)}) = 5/12 and both numbers could be assigned
to Pgyso1 as its efficiency. But, the empirical efficiency is equal to 0.800 and is better
approximated by SQEV(P84/59 1) =~ 0.835.

Table 5. Empirical powers and empirical efficiencies of T" with respect
to V for selected distributions on the path {P,,}. @ = 0.05, 100000 MC.

alternative test empirical
s pa(s)  qa(s) | € n |V T |efficiency | &F,
0.5 1.5 0.955 | 0.5 | 100 | 61 56
116 | 67 61 0.862 0.900
02 1.2 1.0528 | 1 250 | 56 40
405 | 74 56 0.617 0.637
0.1 1.1 1.0382 | 1 1300 | 56 36
2480 | 81 56 0.524 0.536

The true (unknown) distribution P # P; of the samle at hand (under H;) lies on many
paths. So, one cannot assign it a single number interpreted as its efficiency meant as a ratio
of sample sizes guaranteing the same power of both tests. Even for alternatives close to P; 1
(in the sense of Hellinger distance) the Pitman efficiency can significantly differ from the
empirical efficiency as it depends on a shape of a considered path and a value of the para-
meter s corresponding to a selected alternative. This is the case when a path runs close to
Py for large values of s. For example, for v5(s) = (1—s+115%/10,1—2s+2s? 1) we obtain
efv({Pys(s)}) = 5/3, but for s =1 we have P, )y = P11 with H(Py11, Pi1) = 0.048 and
its empirical efficiency 0.735 is close to EX,(Pp.11) ~ 0.765 and has nothing to do with 5/3.

Finally, consider a path determined by ~v7(s) = (2+s,1+s, s). For any s,, — 0 we have
the sequence of alternatives of the form (1—s,) Py 1+5, Pats, 1+, 50, we have a contamina-
tion sequence determined by a sequence of different alternatives. The sequence of the densi-
ties of Py, 114, is uniformly bounded and uniformly bounded away from 0 and converges
to the density of P»;. The Pitman efficiency for this path equals to ef, ({ Py.(5)}) = 15/16
and coincides with Efv(Pg 1) for the limiting distribution P,;. However, again empirical
efficiencies are for each n close to E5/(Pays, 145,) but not to ehy, ({Py,(s)}) which can be
seen in Table 6. It is easy to see that Efy (Pats, 145,) — 15/16 = ey, ({Py(5)}) as n — oo
and from Table 6 we see that empirical efficiencies also approach to 15/16 when s — 0.

Conclussion. The notion of Pitman efficiency for arbitrary paths meets some difficul-
ties with an empirical interpretation. For linear paths it approximates empirical relative
efficiency very well.



Table 6. Empirical powers and empirical efficiencies of T" with respect
to V for selected distributions on the path {P,, ) }. a = 0.05, 100000 MC.

alternative test empirical
s pr(s) qi(s) | € n |V T | efficiency | &L,
1 3 2 1 30 | 64 29

76 | 98 64 0.39 0.417
0.5 25 1.5 0.5 80 | 63 45
127 | 81 63 0.63 0.651
0.2 22 1.2 0.2 300 | 55 47
380 | 63 55 0.79 0.817
0.1 21 1.1 0.1 | 1000 | 54 48
1205 | 60 54 0.83 0.876
0.06 2.05 1.05 | 0.05 | 4000 | 55 50
4440 | 39 55 0.90 0.907
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