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1. INTRODUCTION

The Poisson distribution is often used in modelling discrete distributions. So, testing
goodness of fit of the Poisson family is an important problem in statistical inference. Begining
from Fisher’s index of dispertion it has a large number of solutions and takes a constant
interest in the literature. For a nice overview of existing tests we refer to Gürtler and Henze
[3] and Rayner and Best [1]. Some further constructions have been proposed more recently
by e.g. Thas and Rayner [11], Meintanis and Nikitin [8], Frey [2] and Ledwina and Wy lupek
[7].

In the present note we propose data driven efficient score tests for testing Poissonity
which are a direct application of the general construction of data driven goodness of fit
tests for composite hypotheses studied in Inglot et al. [5]. Our construction is valid for
any family of discrete distributions concentrated on nonnegative integers. We focus on the
most important case of testing for Poissonity in order to show that this construction leads
to omnibus tests being able to compete with the best existing ones. Paying a little bit of
sensitivity for simple alternatives they cover much wider class of alternatives with stable and
high power. An additional advantage is that exact critical values for moderate sample sizes
practically do not depend on the nuisance parameter and therefore can be determined in
advance.

2. CONSTRUCTION OF THE TEST STATISTIC

Let X1, ..., Xn be a sample from a discrete distribution P on the real line taking values
in the set {0, 1, 2, ...}. Denote by Pλ the Poisson distribution with parameter λ > 0 i.e.

Pλ({j}) = πj(λ) = e−λ λj
j!

for j = 0, 1, 2, ... The problem is to test the composite hypothesis

H0 : P ∈ {Pλ : λ > 0}.

Let U1, ..., Un be independent random variables uniformly distributed over the unit interval
[0, 1] independent of Xi’s. Consider the randomized sample Y1, ..., Yn, where Yi = Xi + Ui.
Then Yi’s have absolutely continuous distribution P on the half line [0,∞) with a stepwise
density constant on intervals [j, j + 1), j ≥ 0. Now, consider a family P of densities on
[0,∞) defined by

P = {f(y, λ) : f(y, λ) =
∞∑
j=0

πj(λ)1[j,j+1)(y), λ > 0}, (1)

where 1A(y) denotes the indicator of a set A. Since Xi’s take integer values, we can replace
H0 by the equivalent hypothesis

H ′0 : P ∈ P . (2)

The cumulative distribution function of f(y, λ) from P takes the form

F (y, λ) =
j−1∑
r=0

πr(λ) + (y − j)πj(λ) for y ∈ [j, j + 1), j ≥ 1,

and F (y, λ) = y π0(λ) for y ∈ [0, 1). Hence, to test H ′0 we can simply apply results of Inglot
et al. [5].

To this end, let ψ1(t), ψ2(t), ... be an orthonormal system of bounded functions on [0, 1]

with
∫ 1
0 ψj(t)dt = 0 and such that

∂ log f(F−1(t, λ), λ)

∂λ
is linearly independent of ψ1(t), ψ2(t), ...
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Let d(n) be a nondecreasing sequence of natural numbers. Consider the nested sequence
Gk, 1 ≤ k ≤ d(n), of exponential families given by densities

gk(y, ϑ, λ) = ck(ϑ) exp


k∑
j=1

ϑjψj(F (y, λ))

 f(y, λ), y ∈ [0,∞), (3)

where ϑ = (ϑ1, ...ϑk)
T ∈ Rk is a vector of parameters, vT stands for the transposition of the

vector v and ck(ϑ) is the normalizing constant.
Fix k, 1 ≤ k ≤ d(n). We reduce H ′0 to H ′′0 : ϑ = 0 in Gk in the presence of the nuisance

parameter λ. By standard calculations we get the score vector for H ′′0 in Gk of the form

` = (`Tϑ , `λ)
T with `ϑ(y) = ψ(F (y, λ)), `λ(y) =

∂ log f(y, λ)

∂λ
, where ψ(t) = (ψ1(t), ..., ψk(t))

T

is a vector of k first functions of the orthonormal system. Consequently, the effective score
vector for H ′′0 can be written as

`∗(y) = ψ(F (y, λ))− IϑλI−1λλ `λ(y), (4)

where

Iλλ =
∫ ∞
0

`2λ(y)f(y, λ)dy =
∞∑
r=0

(
r

λ
− 1

)2

πr(λ) =
1

λ2
VarX =

1

λ

and

Iϑλ =
∫ ∞
0

ψ(F (y, λ))`λ(y)f(y, λ)dy =
∞∑
r=0

∫ r+1

r
ψ(F (y, λ))

(
r

λ
− 1

)
f(y, λ)dy

=
1

λ

∞∑
r=1

r
∫ r+1

r
ψ(F (y, λ))f(y, λ)dy =

1

λ
J.

Here the vector J = J(λ) can be expressed as

J =
∞∑
r=1

r
∫ F (r+1,λ)

F (r,λ)
ψ(t)dt =

∞∑
r=1

r[Ψ(F (r + 1, λ))−Ψ(F (r, λ))]

= −
∞∑
r=0

Ψ(π0(λ) + ...+ πr(λ)),

where Ψ(t) = (Ψ1(t), ...,Ψk(t))
T is the vector of functions Ψj(t) =

∫ t
0 ψj(u)du, t ∈ [0, 1]. The

covariance matrix of the effective score vector has the usual form

I∗ = I − IϑλI−1λλ ITϑλ = I − 1

λ
JJT ,

where I denotes the identity matrix. Its inverse can be written as (cf. formula (3.2) in Inglot
et al., [?])

(I∗)−1 = I + Iϑλ(Iλλ − ITϑλIϑλ)−1ITϑλ = I +
1

λ− JTJ
JJT .

In consequence, the effective score statistic for testing H ′′0 in Gk takes the form

Nk =

(
1√
n

n∑
i=1

`∗(Yi)

)T
(I∗)−1

(
1√
n

n∑
i=1

`∗(Yi)

)
.

Since the natural estimator of the parameter λ is the sample mean λ̂ = X which is the
maximum likelihood estimator in the family P the estimated effective score vector has a
simpler form ̂̀∗(y) = ψ(F (y, λ̂)) (cf. (3.5) in Inglot et al., [5]).
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Finally, the test statistic for H ′′0 in Gk takes the form

N̂k =

(
1√
n

n∑
i=1

ψ(F (Yi, λ̂))

)T ̂(I∗)−1
(

1√
n

n∑
i=1

ψ(F (Yi, λ̂))

)
, (5)

where ̂(I∗)−1 = I +
1

λ̂− ĴT Ĵ
Ĵ ĴT (6)

and Ĵ = −∑∞r=0 Ψ(π0(λ̂) + ...+ πr(λ̂)).
Easy calculations show that regularity conditions (R1)–(R4) in Inglot et al. [5] for P are

satisfied. So, when ψj’s are two times differentiable and

sup
t∈[0,1]

|ψj(t)| ≤ cjm, sup
t∈[0,1]

(|ψ′j(t)|+ |ψ′′j (t)|) ≤ cjm+2, j ≥ 1, (7)

for some positive c and nonnegative m then from Theorem 3.1 ibid. it follows that under
H ′′0 , N̂k converges in distribution to the chi-square distribution with k degrees of freedom.

It is well known that the choice of k among 1, ..., d(n) is crucial to the performance of a
test based on the score statistic N̂k. Therefore, we propose a data driven choice of k using
a Schwarz type selection rule (cf. e.g. Inglot et al., [5], Schwarz, [10])

S = min{1 ≤ k ≤ d(n) : N̂k − k log n = max
1≤j≤d(n)

(N̂j − j log n)}. (8)

Taking into account promising results in Inglot and Janic [4] we consider also another, less
conservative, selection rule denoted by L. Choose two natural numbers (not depending on
n): a small one 1 ≤ D < d(n) and a big one K, K > D, and set K(n) = min(K, d(n)).
Moreover, let δn be a small positive number. Define the thresholds cjn, j = 1, ..., D, to be
the solutions of the following equations

1− Φ(cjn) =
1

2

δnD−1
(
K(n)
j

)−11/j

,

where Φ denotes the standard normal distribution function. Next, consider the standardized

random vector L = ( ̂(I∗)−1)1/2( 1√
n

∑n
i=1 ψ(F (Yi, λ̂))) with K(n) components, where ̂(I∗)−1

is given by (6) with k = K(n) while

( ̂(I∗)−1)1/2 = I +
1

λ− JTJ +
√
λ(λ− JTJ)

JJT .

Order the squares of its components from the smallest to the largest, obtaining L2
(1), ...,L2

(K(n)),
and consider the event

En = {L2
(K(n)) ≥ c21n} ∪ ... ∪ {L2

(K(n)−D+1) ≥ c2Dn}.

Then define the data dependent penalty

ρ(j, n) = j(log n · 1Ec
n

+ 2 · 1En),

where 1En denotes the indicator of the event En and Ec
n denotes the complement of En, and

the corresponding selection rule L

L = min{1 ≤ k ≤ d(n) : N̂k − ρ(k, n) = max
1≤j≤d(n)

(N̂j − ρ(j, n))}. (9)
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By the definition, for n ≥ e2 it holds ρ(j, n) ≤ j log n a.s. Consequently, L ≥ S a.s. and
N̂L ≥ N̂S a.s.

Note that parameters D,K and δn were used only to define penalty ρ(j, n) for L. In
particular, introducing an upper bound K means that a choice of penalty for L is based on
a limited number of empirical Fourier coefficients with respect to the system (ψj).

Taking into account all the above considerations, N̂S and N̂L = N̂L(D,K, δn), where
N̂k is given by (5), can be applied as test statistics of upper-tailed tests for testing H ′0 (or
equivalently H0).

The asymptotic behaviour of N̂S and N̂L is established in the following theorem.

Theorem 2.1. Suppose ψ1(t), ψ2(t), ... is an orthonormal system satisfying (7) and the
maximal dimension d(n) of Gk in (3) satisfies the condition d(n) =
o((n/ log n)1/(2m+4)). Then

N̂S
D→ χ2

1 under H0, (10)

where χ2
k denotes a random variable with the chi-square distribution with k degrees of freedom.

If, in addition, δn → 0 then L−S → 0 in probability with respect to any null distribution
and consequently

N̂L
D→ χ2

1 under H0. (11)

Since the assumption on d(n) in Theorem 2.1 implies (D1) – (D3) in Inglot et al. [5], the
assertion (10) follows from Theorem 4.1 ibid. The assertion L− S → 0 in probability under
H0 is an easy and straightforward consequence of the central limit theorem for the random
vector L due to boundedness of K(n). We omit details.

From Theorems 2.6, 4.2 and 4.3 ibid. we immediately obtain a consistency result for the
tests based on N̂S and N̂L.

Theorem 2.2. Let d(n)→∞ and the conditions of Theorem 2.1 be satisfied. Then for
any alternative discrete distribution P concentrated on nonnegative integers with probability
mass function pr, r ≥ 0, and the expected value λ > 0, such that for some j ≥ 1

∞∑
r=0

pr

∫ r+1

r
ψj(F (y, λ))dy 6= 0 (12)

we have N̂S
P→∞ and N̂L

P→∞. Consequently the tests based on N̂S and N̂L are consistent
against any P satisfying (12).

Remark. When ψ1, ψ2, ... form a complete orthonormal system of bounded functions
then the assumption (12) is a weak one and is satisfied for a large class of alternatives. For
example, if pr ≤ Cπr(λ) for all r ≥ 0 and some positive constant C, where λ =

∑∞
r=1 rpr,

then (12) holds. In particular, (12) is satisfied for any distribution with finite support or
with pr = πr(λ) except finitely many r.

In the rest of this section we discuss two key choices needed for an implementation tests
based on ÑS and ÑL in Section 3.

Firstly we discuss a choice of an orthonormal system (ψj). The most popular is the
Legendre system on [0, 1], we shall denote by (bj). It satisfies (7) with m = 1/2. For our
particular family P of discontinuous densities this is rather not an optimal choice. In spite
of this we do apply it in our implementation. However, for Pλ with small λ high variation of
bj’s near 0 has nothing to do with large values of the first few probabilities of Pλ and results
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in a less sensitive test. To overcome simply this problem we define another orthonormal
system (hj) with hj(t) = b2j((1 + t)/2). The functions hj are smooth on the left end of [0, 1]
with high variation only on the right end of the unit interval. So, we shall use the system
(hj) for small λ, say for λ ≤ λ0, and (bj), otherwise. Since b1 and h1 are strongly correlated
with `λ(F

−1(t, λ), λ) we remove them from the system. Data driven tests usually attain
the highest power for alternatives for which the second empirical Fourier coefficient (under
actually applied orthonormal system) is the largest one. For most typical alternatives to
the Poisson family the largest Fourier coefficient corresponds to b2 or h2. So, we order the
both systems as follows b3, b2, b4, b5, ... and h3, h2, h4, h5, .... Since λ is unknown we shall use
the estimator λ̂ to decide which orthonormal system will be applied in the test statistic. In
effect, we define the orthonormal system (ψj) as follows:

ψ1(t) = h3(t) if λ̂ ≤ λ0 or ψ1(t) = b3(t), otherwise,
ψ2(t) = h2(t) if λ̂ ≤ λ0 or ψ2(t) = b2(t), otherwise, (13)
ψj(t) = hj+1(t) if λ̂ ≤ λ0 or ψj(t) = bj+1(t), otherwise, j = 3, 4, ...

The test statistics N̂S and N̂L for such switched over orthonormal system we shall denote
by MS and ML, respectively. The tests based on these statistics are examples of data driven
score tests with an orthonormal system depending on the data. Since the system (hj) satisfies
(7), Theorem 2.1 applies to (hj) and to MS and ML, as well. Also, after some small obvious
reformulation, the statement of Theorem 2.2 remains valid for both MS and ML.

Secondly, let us discuss briefly a choice of the maximal dimension d(n). The assumption
of Theorem 2.1 as well as properties of our particular family P of the Poisson distributions
suggest to take slowly increasing sequence d(n) = bcnrc with r < 1/5. When ML is applied
the relation c ≥ D seems to be reasonable. Moreover, for moderate sample sizes d(n) < K
(if K is not too small). Therefore a choice of K has practically no influence on the selection
rule L for moderate sample sizes. But, it allows for simplifying assumptions in Theorems
2.1 and 2.2.

The above specifications can be thought only as reasonable recommendations. For exam-
ple, at a cost of some loss in power for alternatives with small expectations λ, one can
consider simply tests based on N̂S or N̂L for the Legendre system (bj) without switching the
orthonormal system.

3. SIMULATION STUDY

The aim of this section is to study how our new tests based on MS and ML, described
in Section 2, perform empirically in comparison with some known tests for Poissonity which
proved to be powerful, particularly with the test T̃ = T̃n of Klar [6].

We restrict attention to a typical sample size n = 50 and standard significance level
α = 0.05. We take the orthonormal system (ψj) defined in (13) and the maximal dimension
of the exponential model d(n) = 5 for n = 50 which roughly corresponds to a formula
d(n) = b3n1/7c. For the selection rule L we took D = 3, K = 20 and δn = 0.05. An analysis
of values πr(λ) for small r and different λ suggests to choose λ0 nearby 2. We took λ0 = 1.8.

The behaviour of all compared tests for other sample sizes is similar to that for n = 50
so we do not report it here.

3.1. Critical values of MS and ML. Nowadays it is strong evidence that, for data
driven tests, the convergence of MS and ML to the limiting null chi-square distribution with
one degree of freedom is slow. So, we have determined the critical values empirically. The
results are shown in Table 1. They practically do not depend on the nuisance parameter λ.
This is not surprising since our tests are asymptotically distribution free. The results from
Table 1 fully justify that average simulated critical values 5.910 for MS and 7.092 for ML

may be used as fixed critical values for the sample size n = 50.
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Table 1. Empirical critical values of MS and ML for

several values of λ, n = 50, α = 0.05, 30 000 MC.
λ 0.2 0.5 1 2 5 10 30 average
MS 5.874 5.877 5.892 5.964 5.818 5.907 6.036 5.910
ML 7.095 6.994 6.997 7.258 6.878 7.259 7.165 7.092

Under the same d(n), D,K, δn, λ0 and α an average critical values for the sample size
n = 25 equal 6.842 for MS and 7.592 for ML and similarly 5.416 and 6.789 for n = 100,
4.967 and 6.550 for n = 200, 4.288 and 6.342 for n = 500, respectively.

3.2. Power comparisons. For easier comparisons to the results available in the lite-
rature, we start our study with the list of 20 alternatives considered in the recent paper by
Ledwina and Wy lupek [7]. In most cases we apply notation from that paper or from Gürtler
and Henze [3]. For completeness, we present description of all alternatives in the Appendix.
We choose three tests for comparison which proved to be powerful, two tests proposed by
Klar [6] T̃ (in his notation) and I (in the notation of Gürtler and Henze, [3]) and the test V ∗

of Nakamura and Pérez-Abreu [9]. Detailed description of these tests is also provided in the
Appendix. For MS and ML we take critical values determined in Section 3.1. The results
are shown in Table 2.

Table 2. Powers (in %) of MS ,ML, T̃ , I and V ∗ for

20 alternatives, n = 50, α = 0.05, 10 000 MC.

alternative MS ML T̃ I V ∗ λ
U(0; 1) 79 76 98 99 94 0.5
U(0; 2) 57 57 64 68 73 1
b(10, 0.5) 75 68 81 88 60 5
b(20, 0.35) 33 27 37 46 19 7
nb(2, 2/3) 28 28 42 45 48 1
Pδ(0.9, 3) 38 38 33 45 48 2.7
Pδ(0.7, 1.5) 45 42 59 59 52 1.05
GP (3,−0.24) 30 24 38 46 19 2.42
GPδ(4.59,−0.33, 0.025) 41 35 49 53 33 3.36
GH(0.5, 0.25) 42 41 57 58 53 1
PSS(1, 0.75) 56 55 77 78 74 0.75
TG(0.45) 83 85 86 47 73 2.22
average 50.6 48.0 60.1 61.0 53.8

U(0; 4) 44 51 60 16 73 2
U(5; 15) 35 47 39 7 53 10
PP (0.1, 1.1, 6.9) 55 60 56 54 55 6.3
PP (0.1, 1.1, 6.1) 46 50 45 44 43 5.6
GPδ(4.59,−0.33, 0.127) 63 64 55 21 56 3
PBM(0.55, 10, 0.97) 95 96 97 94 93 9.7
BB(5, 1.6, 0.67) 94 95 99 96 99 3.5
BB(5, 1, 0.67) 83 88 93 48 96 3
average 64.4 68.9 68.0 47.5 71.0

total average 56.1 56.4 63.3 55.6 60.7

In the upper part of Table 2 we collect ‘smooth’ alternatives i.e. those for which only
one or two first Fourier coefficients (with respect to (ψj) given in (13)) are significant and in
the lower part alternatives with wider spectrum. To some extent ‘smoothness’ is related to

7



a number and positions of changes of sign for differences pr − πr(λ), where λ =
∑
r≥1 rpr is

the expectation of an alternative. Since ML has been designed to be more sensitive for ‘less
smooth’ alternatives, it can be seen that in the upper part of Table 2 MS is better than ML

while in the lower part an opposite relation occurs. Powers of T̃ , I and V ∗ have been taken
from Ledwina and Wy lupek [?].

The test I is unstable. For some cases it attains extremely high power (cf. b(10, 0.5)) but
for some others poor power (e.g. U(5; 15) or TG(0.45)). The test T̃ performs more stable
than V ∗ and outperforms it in average. Data driven tests MS and particularly ML are very
stable and both perform equally well. For alternatives presented in Table 2, T̃ outperforms
MS and ML ca. 7% in average.

The alternatives considered in Table 2 are well known families of discrete distributions
and not necessarily represent typical departures from the Poisson family. More realistically
one may expect small changes of several probabilities πj of Pλ. To see how our new tests
are able to detect such contaminated Poisson distributions we introduce three additional
families of alternatives.

The first one is a modification of P0.5 and preserves its expectation 0.5. We replace four
first propabilities π0(0.5), π1(0.5), π2(0.5) and π3(0.5) by π0(0.5)− u+ a+ 2b, π1(0.5) + v −
2a − 3b, a and b, respectively, with u = π2(0.5) + 2π3(0.5) and v = 2u − π3(0.5), and keep
the remaining probabilities unchanged. Parameters a, b are nonnegative with 2a + 3b not
exceeding π1(0.5) + v. We shall denote this alternative by A0.5

4 (a, b).

Table 3. Powers of MS ,ML and T̃ for 7 selected alternatives.

n = 50, α = 0.05, 10 000 MC for MS and ML and 5000 MC for T̃ .

alternative MS ML T̃
A0.5

4 (0.05, 0.05) 22 24 33
A0.5

4 (0, 0.07) 33 45 39
A4(5, 1, 0.08) 49 62 28
A4(7, 7, 0.10) 27 45 27
A8(3, 0, 0.04,−0.09, 0.05) 33 46 38
A8(5, 3, 0.10,−0.05, 0.036) 54 71 49
A8(9, 9, 0.097,−0.02, 0.019) 18 30 23
average 33.7 47.1 33.9

The second one modifies Pλ with any λ and preserves its expectation λ. We replace
four probabilities πj(λ), πj+1(λ), πj+2(λ), and πj+3(λ) by πj(λ) + c, πj+1(λ) − c, πj+2(λ) −
c, πj+3(λ) + c, respectively, and keep the remaining probabilities unchanged. The parameter
j is a nonnegative integer while c can take positive or negative values in such a way that all
obtained four numbers are nonnegative. We shall denote this alternative by A4(λ, j, c).

The third alternative modifies Pλ with any λ and also preserves its expectation λ. We
replace eight probabilities πj(λ), ..., πj+7(λ) by πj(λ)+a+ b+ c, πj+1(λ)−a− b− c, πj+2(λ)−
a, πj+3(λ) + a, πj+4(λ) − b, πj+5(λ) + b, πj+6(λ) − c, πj+7(λ) + c, respectively, and keep the
remaining probabilities unchanged. The parameter j is a nonnegative integer while a, b, c
are such that all resulting numbers are nonnegative. We shall denote this alternative by
A8(λ, j, a, b, c).

In Table 3 we show by typical examples of new alternatives empirical powers of MS and
ML compared with T̃ , the leader in Table 2. It can be observed that for more difficult
alternatives the new test ML performs essentialy better than T̃ .

To illustrate power curves of compared tests under increasing sample size we have selected
three alternatives, one from each group considered above. For all sample sizes we took the
same parameters d(n), D,K, δn, α, λ0 as for n = 50. The results are shown in Table 4.
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Table 4. Powers of MS ,ML and T̃ for 3 selected alternatives and different

sample sizes. α = 0.05, 10 000 MC for MS and ML and 2000 MC for T̃ .
alternative test n = 25 n = 50 n = 100 n = 200
Pδ(0.7, 1.5) MS 23 45 76 98
first group ML 22 42 74 97

in Table 2 T̃ 34 59 90 100
PP (0.1, 1.1, 6.1) MS 31 46 69 92
second group ML 32 50 76 96

in Table 2 T̃ 30 46 72 95
A4(5, 1, 0.08) MS 29 49 81 99
new alternative ML 33 62 94 100

from Table 3 T̃ 17 28 54 89

Concluding, one can say that the new tests perform comparable sensitivity to T̃ as well
as I and V ∗ while ML preserves stable and high sensitivity for much wider class of various
types of alternatives. So, if ‘less smooth’ departure from Poissonity is expected then the test
ML may be recommended.

4. APPENDIX

Description of alternatives. Probability mass functions of distributions different from Pλ
will be denoted by pj for integer j ≥ 0.

U(m; l), m < l, the uniform distribution on the set {m,m+ 1, ..., l}.
b(m, p) the binomial distribution with parameters m ∈ N and p ∈ (0, 1).
nb(m, p) the negative binomial distribution with parameters m ∈ N and p ∈ (0, 1).
Pδ(ε, λ) the mixture εPλ + (1− ε)δ0 of the Poisson distribution and the Dirac delta in

0.
PP (ε, λ1, λ2) the mixture εPλ1 + (1− ε)Pλ2 of two Poisson distributions.
GP (λ, ϑ) the generalized Poisson distribution with parameters λ > 0, −λ < ϑ < 0, ϑ >

−1 and probability mass function given by

pj =
λ(λ+ ϑj)j−1e−λ−ϑj

j!
, j = 0, 1, ..., b−λ/ϑc.

GPδ(λ, ϑ, ε) the mixture (1 − ε)GP (λ, ϑ) + εδ0 of the generalized Poisson distribution
and the Dirac delta in 0.

PBM(ε,m, p) the mixture εPmp + (1 − ε)b(m, p) of the Poisson distribution and the
binomial distribution with the same mean.

GH(λ1, λ2) the generalized Hermite distribution i.e. the distribution of Y1 + 2Y2, where
Y1, Y2 are independent random variables with the Poisson distributions Pλ1 , Pλ2 .

TG(p) the geometric distribution with parameter p i.e. with probability mass function
pj = p(1− p)j−1, j = 1, 2, ...

BB(m, p, q) the beta-binomial distribution with parameters m ∈ N, p, q > 0 i.e. with
probability mass function given by

pj =
∫ 1

0

(
m
j

)
xj(1− x)m−jBpq(x)dx, j = 0, 1, ...,m,

where Bpq(x) is the density of the beta distribution with parameters p, q.
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PSS(λ1, λ2) the Poisson-stoped-sum distribution i.e. the distribution of
∑N
i=1 Yi, where

N has Pλ1 distribution while Yi are i.i.d. with the Poisson Pλ2 distribution and N is inde-
pendent of Yi’s.

Tests for comparison. All tests described below reject the null hypothesis for large values
of the corresponding statistics.
• T̃ defined by the statistic T̃ =

√
n
[∑m

j=0(|Fn(j)− F (j,X)|+ F (j,X))
]
+
√
n(X−m−

1), where m = max1≤i≤nXi, Fn is the empirical distribution function and F (k, λ) is the
distribution function of Pλ (notation as in Klar, [6]).

• I defined by the statistic I =
√
n max

1≤k≤m

∣∣∣∑k
j=0(Fn(j)− F (j,X))

∣∣∣, where m,Fn and

F (k, λ) are as above (cf. Klar, [6], notation after Gürtler and Henze, [3]).

• V ∗ defined by the statistic V = n−3X
−1.45∑2m−2

j=0 a2j , where aj =
∑j+2
l=0 l(2l − j −

3)NlNj+2−l while Nj is the number of observations equal to j (cf. Nakamura and Perez-
Abreu, [9]).
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