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Streszczenie

Operatory maksymalne są obiektami o dużym znaczeniu w matematyce na czele z analizą har-
moniczną. Mówiąc zwięźle, ich główną rolą jest szacowanie z góry wartości innych rozważanych
operatorów. Standardowy sposób ich użycia powinien zatem bazować na ich ograniczoności
pomiędzy pewnymi dwiema przestrzeniami funkcji. W rzeczy samej istnieją dziesiątki prac,
w których używane są różne typy ograniczoności operatorów maksymalnych.

Spośród całej rodziny wspomnianych obiektów kładziemy szczególny nacisk na klasyczne
operatory maksymalne Hardy’ego–Littlewooda, które można wprowadzić w kontekście dowolnej
przestrzeni metryczno-miarowej X w dwóch wersjach, scentrowanej Mc oraz niescentrowanej
M. Podstawową własnością tych operatorów jest ich ograniczoność na przestrzeni L∞(X) ze
stałą 1. Aby móc wskazać inne interesujące własności, powinniśmy wiedzieć więcej o strukturze
przestrzeni X.

Na wstępie poświęćmy kilka słów sytuacji, w której X to przestrzeń Rd, d ∈ N, wyposażona
w miarę Lebesgue’a i metrykę euklidesową. Jednym z najważniejszych wyników otrzymanych
w tym konkretnym przypadku jest, że oba operatory, Mc oraz M, są słabego typu (1, 1), co
oznacza, że są one ograniczone z L1(X) do L1,∞(X). Ten fakt ma kilka istotnych konsekwencji
włącznie z twierdzeniem Lebesgue’a o różniczkowaniu, słynnym rezultatem z analizy rzeczywistej.
Poza tym, mając na uwadze, że nasze operatory są podliniowe, możemy zastosować twierdzenie
interpolacyjne Marcinkiewicza w celu wykazania ich ograniczoności na przestrzeni Lp(X) dla
każdego p ∈ (1,∞).

Dalsze badania w tym obszarze są skupione między innymi na wyznaczaniu optymalnych
stałych w nierównościach zawierających funkcje maksymalne, z nierównością słabego typu (1, 1)
na pierwszym miejscu [2, 39, 40]. Są również artykuły poświęcone własnościom Mc oraz M
w kontekście pewnych przestrzeni, w których mierzona jest regularność funkcji [8, 19, 24, 32, 50].
Wreszcie, ważny kierunek badań wyznaczają prace, przyjmujące za cel analizowanie, co dzieje się
z poszczególnymi własnościami operatorów maksymalnych, gdy przestrzeń metryczno-miarowa
przyjmuje różnorakie formy.

Standardowymi narzędziami, których używa się do pokazania oszacowań słabego typu (1, 1),
są lematy pokryciowe. Na pierwszy rzut oka wydaje się, że możliwość ich użycia zależy głównie od
własności metrycznych danej przestrzeni. Aby to zilustrować, wspomnijmy, że dla Rd z metryką
euklidesową odpowiedni lemat pokryciowy zapewnia, żeMc jest słabego typu (1, 1) w przypadku
dowolnej „sensownej” miary (można tu na przykład pomyśleć o dowolnej mierze Radona). Jed-
nakże, jeśli tylko podstawimyM w miejsceMc, to sytuacja zmieni się diametralnie. Mianowicie,
możliwe jest znalezienie miary na Rd, d ∈ N\{1}, dla której stowarzyszony niescentrowany opera-
torM nie jest słabego typu (1, 1). W istocie, Sjögren [46] pokazał, że ma to miejsce w przypadku
dµ(x, y) = exp(−(x2 + y2)/2) dx dy, czyli miary związanej ze standardowym dwuwymiarowym
rozkładem Gaussa (warto zapoznać się również z przykładem Aldaza [3]).

Ostatnia uwaga sugeruje, że warunek narzucony na X, który zapewniłby, że większość klasy-
cznej teorii działa, powinien uwzględniać oba aspekty: metrykę i miarę. Rzeczywiście, w kon-
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tekście różnych przestrzeni metryczno-miarowych tak zwany warunek dublowania jest w lite-
raturze bardzo intensywnie eksploatowany. Pokrótce, zakłada on, że miara dowolnej kuli B
jest w sposób jednostajny porównywalna z miarą 2B, kuli o tym samym środku i dwukrotnie
większym promieniu. Oprócz wielu innych rezultatów otrzymujemy, że dla dowolnej przestrzeni
dublującej X stowarzyszone operatoryMc orazM są porównywalne i oba spełniają oszacowanie
słabego typu (1, 1). W literaturze rozwijane było również kilka koncepcji, mających na celu
zastąpienie warunku dublowania pewnymi słabszymi warunkami (jak na przykład w [21]) bądź
całkowite z niego zrezygnowanie.

Nazarov, Treil i Volberg mieli znaczący wkład w rozwijanie analizy harmonicznej na dowol-
nych przestrzeniach metryczno-miarowych. W ich przełomowej pracy [42] zawarte są niezwykle
cenne obserwacje, które wskazują, jak mierzyć się z ważnymi w tej dziedzinie problemami w sytu-
acji, w której posiłkowanie się warunkiem dublowania nie jest możliwe. Dla nas szczególnie
interesujące jest, że przy tej okazji został wprowadzony zmodyfikowany scentrowany operator
maksymalnyMc

3. Uściślając, modyfikacja polega na tym, że w średnich miara B jest zastąpiona
przez miarę 3B. Kluczowy jest tutaj fakt, że Mc

3 z jednej strony może często zastępować Mc

w zastosowaniach, a z drugiej ma znacznie lepsze własności w ogólnym kontekście.
W późniejszych artykułach [43, 48, 51] badana była nierówność słabego typu (1, 1) dla rodzin

zmodyfikowanych operatorów maksymalnych, {Mc
κ : κ ∈ [1,∞)} oraz {Mκ : κ ∈ [1,∞)}.

W rezultacie okazało się, że w przypadku dowolnej przestrzeni X, takiej że miara każdej kuli jest
skończona, stowarzyszone operatory Mc

κ oraz Mκ są słabego typu (1, 1) odpowiednio dla κ ∈
[2,∞) oraz κ ∈ [3,∞). Ponadto, otrzymane zakresy są ostre, jako że zostało również pokazane,
że istnieją przestrzenie metryczno-miarowe, takie że Mc

κ (odpowiednio, Mκ) nie jest słabego
typu (1, 1) dla każdego κ ∈ [1, 2) (odpowiednio, dla każdego κ ∈ [1, 3)). Odpowiednie przykłady
można znaleźć w pracach [43, 49] (warto zapoznać się również z artykułem [44], w którym zostały
zawarte pewne detale uzasadniające poprawność konstrukcji opisanej w [43]).

Nieco inną gałąź w badaniu operatorów maksymalnych wytyczył wcześniej wspomniany
artykuł Aldaza [3]. Mianowicie, zainicjował on program szukania przestrzeni, które są specyficzne
z punktu widzenia własności stowarzyszonych operatorów maksymalnych. H.-Q. Li napisał serię
prac [33, 34, 35], w których w tym właśnie celu wprowadzone i badane były tak zwane przestrzenie
kolczaste. Przykładowo, w [34] pokazane zostało, że przy dowolnym ustalonym p0 ∈ (1,∞) ist-
nieje przestrzeń X, dla której stowarzyszony operatorMc jest mocnego typu (p, p) wtedy i tylko
wtedy, gdy p ∈ (p0,∞]. Mimo że H.-Q. Li badał głównie nierówności mocnego typu (p, p), nie są
to jedyne interesujące w tym kontekście. Między innymi, jako że znajduje to uzasadnienie w teorii
interpolacji, nierówności słabego lub restrykcyjnie słabego typu (p, p) (to znaczy, ograniczoność
z Lp(X) do Lp,∞(X) lub z Lp,1(X) do Lp,∞(X), odpowiednio) dla operatorów maksymalnych
mogłyby również być przedmiotem dyskusji.

Przypomnijmy, że wcześniej wymienione przestrzenie Lp(X), Lp,∞(X) oraz Lp,1(X) można
ulokować na skali przestrzeni Lorentza Lp,q(X). Zatem naturalny kierunek, w którym można
by rozszerzyć teorię, wyznaczają pytania o ograniczoność operatorów maksymalnych pomiędzy
różnymi przestrzeniami Lorentza. W przypadku Rd i klasycznych przestrzeni Lorentza pewne
wyniki, pozwalające opisać działanie operatorów w sposób ilościowy, można znaleźć w pracach [4,
45]. Mimo to, uwzględniając obecny stan wiedzy autora, najprawdopodobniej nie ma jak dotąd
w literaturze przykładów, które ukazywałyby różne szczególne rodzaje zachowań operatorów
maksymalnych w obrębie tego zagadnienia.

Celem niniejszej rozprawy jest badanie własności operatorów maksymalnych stowarzyszonych
z przestrzeniami bez warunku dublowania, między innymi z uwzględnieniem niektórych z aspek-
tów wspomnianych powyżej. W szczególności zauważamy brak wielu istotnych własności dobrze
znanych z przypadku dublującego, a także demonstrujemy różne fenomeny, które mają szansę
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zaistnieć jedynie w pewnych bardzo szczególnych niedublujących warunkach. Aby to zrobić,
wprowadzamy odpowiednie klasy przestrzeni, które pozwolą wygenerować wiele interesujących
przykładów.

Pierwszy rozdział pracy stanowi wstęp. Zawartość kolejnych rozdziałów przedstawiamy
pokrótce poniżej.

W rozdziale drugim badamy nierówności mocnego, słabego oraz restrykcyjnie słabego typu
(p, p) dla operatorów maksymalnych scentrowanego i niescentrowanego jednocześnie. Naszym
celem jest odniesienie się do pytania

Dla jakich zakresów p operatoryMc orazM zachowują wyżej wspomniane typy nierówności?

poprzez podanie pełnej charakteryzacji możliwych sytuacji. Innymi słowy, rozważamy sześć
zbiorów wartości parametru, odpowiadających konkretnemu typowi nierówności dla konkret-
nego operatora, a następnie opisujemy wszystkie możliwe ich konfiguracje. Każda dopuszczalna
sytuacja jest zilustrowana odpowiednim przykładem przestrzeni. W ten sposób uzupełniamy
i wzmacniamy tutaj rezultaty otrzymane przez H.-Q. Li w [33, 34, 35].

Rozdział trzeci jest poświęcony badaniu nierówności mocnego oraz słabego typu (p, p) dla
zmodyfikowanych operatorówMc

κ orazMκ. Tym razem, przy zadanym κ ∈ [1,∞), mamy cztery
zbiory wartości parametru p oraz, podobnie jak poprzednio, analizowane są wszystkie występu-
jące między nimi relacje. Jak można się spodziewać, analiza rozbija się na następujące trzy
przypadki: κ ∈ [1, 2), κ ∈ [2, 3) oraz κ ∈ [3,∞). W każdym z nich prezentujemy pełne spektrum
dopuszczalnych konfiguracji. Następnie podejmujemy się analizy bardziej złożonego problemu,
dotyczącego opisu sytuacji, w których parametr κ jest zmienny. Nie podajemy tu wprawdzie
twierdzenia, charakteryzującego wszystkie możliwe relacje między czterema rodzinami zbiorów,
ale dajemy odpowiedź na pokrewne, nieco prostsze pytanie. Przedstawiamy przykłady ilustru-
jące wiele różnych sytuacji, wskazujemy pewne nieoczywiste fenomeny, a w końcu wyjaśniamy,
gdzie leży trudność, stojąca na drodze do rozwiązania problemu w ogólniejszej formie.

Rozdział czwarty jest punktem kulminacyjnym rozprawy. W tym miejscu badane są włas-
ności operatorów maksymalnych w kontekście ich działania na przestrzeniach Lorentza Lp,q(X).
Wprowadzamy odpowiednią klasę przestrzeni metryczno-miarowych w celu pokazania, że nad-
mienione własności mogą być bardzo specyficzne. To z kolei wymaga istotnego ulepszenia
metod wypracowanych w rozdziałach drugim i trzecim. W rezultacie dostajemy szeroką gamę
przykładów ilustrujących wiele bardzo nietypowych sytuacji, dotyczących zachowania operatorów
maksymalnych w opisanym kontekście. Analiza przebiega w trzech etapach, w których rozważane
są różne zagadnienia o rosnącym stopniu trudności. Dla przejrzystości skupiamy się wyłącznie
na operatorze scentrowanym.

Rozdział piąty jest pierwszym z dwóch rozdziałów uzupełniających, których celem jest wzbo-
gacenie uzyskanej wiedzy o pewne dodatkowe obserwacje. Zbadamy tutaj rodzinę przestrzeni
{BMOp(X) : p ∈ [1,∞)}, wprowadzoną w kontekście niedublujących przestrzeni metryczno-
miarowych. Scharakteryzujemy wszystkie dopuszczalne relacje pomiędzy tymi przestrzeniami
rozumianymi jako zbiory funkcji. Ponownie, odpowiednio dobrana klasa przestrzeni metryczno-
miarowych pozwoli na zilustrowanie wyszczególnionych możliwości. Pokusimy się również
o poczynienie kilku dalej idących uwag, które będą związane z nierównością Johna–Nirenberga.
Zaznaczmy w tym miejscu, że operatory Mc oraz M ani razu nie będą użyte w niniejszym
rozdziale. Mimo to nasze rozważania są na miejscu, jako że koncepcja przestrzeni BMO sama
w sobie jest bliska zagadnieniom, które w naturalny sposób pojawiają się przy operatorach maksy-
malnych.

W rozdziale szóstym badamy własności dychotomii dlaMc orazM, która została zauważona
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przez Bennetta, DeVore’a i Sharpleya [5] w kontekście przestrzeni euklidesowych, a następnie
badana w bardziej ogólnych kontekstach w pracach [1, 16]. Uściślając, zostało pokazane, że
dla dowolnej przestrzeni dublującej X oraz f ∈ L1

loc(X) zachodzi następująca implikacja: jeśli
Mcf(x) <∞ dla pewnego x ∈ X, to funkcjaMcf jest skończona prawie wszędzie. Okazuje się,
że jest to kolejny aspekt związany z operatorami maksymalnymi, który zmienia się diametralnie,
gdy przechodzimy do analizy przestrzeni niedublujących. W rzeczy samej podajemy przykłady
przestrzeni, dla których wspomniana dychotomia nie zachodzi dla jednego wybranego bądź obu
operatorów. Przez większość tego rozdziału ograniczamy naszą uwagę do przestrzeni Rd oraz
Zd wyposażonych w standardową metrykę euklidesową de lub metrykę supremum d∞ oraz różne
specyficzne miary niedublujące.

Wreszcie, w dodatku zamieszczonym po rozdziale szóstym prezentujemy elementarny dowód
twierdzenia interpolacyjnego, które pojawia się w rozdziale czwartym w kontekście przestrzeni
Lorentza Lp,q(X). Mimo że nie jest to nowy rezultat, każdy z dotychczas znanych jego dowodów,
uwzględniając obecny stan wiedzy autora, wymaga głębokiej znajomości teorii interpolacji.
Metoda opisana tutaj w zasadzie nie wykracza daleko poza zastosowanie techniki dobrze znanej
ze standardowego dowodu twierdzenia interpolacyjnego Marcinkiewicza.

Wszystkie nowe wyniki przedstawione w rozdziałach od drugiego do szóstego można znaleźć
w artykułach autora [25, 26, 27, 28, 29, 30, 31]. Opisane tu metody oraz konstrukcje w większości
są zaczerpnięte stamtąd i nie zawierają żadnych istotnych zmian. Mimo to jest kilka części,
w szczególności w rozdziałach drugim i trzecim, które prezentujemy inaczej, niż było to robione
uprzednio. Zdecydowaliśmy się na to, ponieważ z obecnego punktu widzenia nowe podejście
wygląda bardziej naturalnie, a przy tym pozwala uniknąć wielu technicznych uciążliwości.



Chapter 1

Introduction

Maximal operators are objects of great importance in mathematics, especially in harmonic anal-
ysis. In short, their main role is to estimate from above values of many other intensively studied
operators. This means that the standard way of using them should be somehow related to the
property that they are bounded from one function space to another. In fact, there are hundreds
of works that use various types of boundedness of maximal operators.

Among the whole family of the aforementioned objects, particular attention is focused on
the classical Hardy–Littlewood maximal operators which are introduced in the context of an
arbitrary metric measure space X and usually appear in the literature in two versions, centered
Mc and noncentered M. The first remark about these operators is that they are bounded on
L∞(X) with constant 1. To indicate any other properties, one should know more about the
structure of X.

At the beginning, let us say a few words about the classical situation in which X is simply Rd,
d ∈ N, equipped with Lebesgue measure and the Euclidean metric. One of the most important
results obtained in this particular case is that both operators,Mc andM, are of weak type (1, 1)
which means that they are bounded from L1(X) to L1,∞(X). This fact has several significant
consequences including the Lebesgue differentiation theorem, a famous result in real analysis.
Besides, keeping in mind that the operators are sublinear one can use the Marcinkiewicz inter-
polation theorem to prove their strong type (p, p) estimate (that is, the boundedness on Lp(X))
for each p ∈ (1,∞).

Further studies in this field are focused, among other things, on determining the best con-
stants in certain inequalities with the maximal function, including the weak type (1, 1) inequality
in the first place (see [2, 39, 40]). Also some articles have been devoted to the boundedness prop-
erties ofMc andM in the context of some function spaces in which the regularity of functions
is measured (see [8, 19, 24, 32, 50]). Finally, an important direction of research is to analyze
what happens with each particular property of maximal operators when the underlying metric
measure space changes.

The standard tools used to show the weak type (1, 1) estimate for maximal operators are
covering lemmas. At first glance, the possibility of using them depends mainly on the metric
properties of a given space. To illustrate this let us mention that in the case of Rd with the
Euclidean metric a suitable covering argument provides that Mc is of weak type (1, 1) in the
case of any “sensible” measure (one can choose here an arbitrary Radon measure, for example).
However, the situation changes significantly if onlyMc is replaced byM. Namely, it is possible
to find a measure on Rd, d ∈ N \ {1}, for which the associated noncentered operator M is not
of weak type (1, 1). In fact, Sjögren [46] showed that this is the case for the two-dimensional
Gaussian measure dµ(x, y) = exp(−(x2 + y2)/2) dx dy (see also an example given by Aldaz [3]).

1
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The last fact suggests that a potential condition on X ensuring that most of the classical
theory works should rather take into account both the associated metric and measure. In fact,
in the context of arbitrary metric measure spaces, the so-called doubling condition has been
extensively used. Roughly speaking, it says that the measure of a given ball B is comparable to
the measure of 2B, the ball concentric with B and of radius two times that of B. In addition to
many other results, it turned out that for any doubling space X the associated operatorsMc and
M are comparable and both satisfy the weak type (1, 1) estimate. There were also a few concepts
regarding the possibility of replacing the doubling condition with some weaker conditions (see
[21], for example) or even eliminating it at all.

Nazarov, Treil, and Volberg made a great contribution to developing harmonic analysis on
arbitrary metric measure spaces. Their famous work [42] contains valuable observations on how
to deal with various important problems in this field without having the doubling condition in
hand. It is particularly interesting for us that the modified centered maximal operatorMc

3 has
been introduced there. To be precise, the modification is that the measure of the ball 3B instead
of B occurs in the averages in the definition. The key observation here is thatMc

3 can often be
successfully used in place ofMc, while it has much better mapping properties in general.

In the following years, several articles treating the weak type (1, 1) inequality appeared in the
context of the families of modified maximal operators, {Mc

κ : κ ∈ [1,∞)} and {Mκ : κ ∈ [1,∞)}
(see [43, 48, 51]). As a result, it turned out that for any X such that the measure of each ball is
finite the associated operatorsMc

κ andMκ are of weak type (1, 1) for κ ∈ [2,∞) and κ ∈ [3,∞),
respectively. Moreover, these ranges are sharp as it has also been shown that there exist metric
measure spaces such that Mc

κ (respectively, Mκ) is not of weak type (1, 1) for each κ ∈ [1, 2)
(respectively, for each κ ∈ [1, 3)). The examples we mention are given in [43, 49] (see also [44],
where certain details justifying the correctness of the construction described in [43] are given).

A slightly different branch in the study of maximal operators was indicated by the previously
mentioned work [3]. Namely, this article initiated the program of searching spaces for which
the mapping properties of the associated maximal operators are very specific. H.-Q. Li wrote
a series of papers (see [33, 34, 35]) in which the so-called cusp spaces have been introduced
for this purpose. For example, in [34] it is shown that for each fixed p0 ∈ (1,∞) there exists
a space X for which the associated operatorMc is of strong type (p, p) if and only if p ∈ (p0,∞].
Although H.-Q. Li studied mostly strong type (p, p) inequalities, they are not the only ones
worth exploring here. For example, as it is justified by the possibility of interpolating, weak and
restricted weak type (p, p) inequalities (that is, the boundedness from Lp(X) to Lp,∞(X) or from
Lp,1(X) to Lp,∞(X), respectively) for maximal operators could also be taken under consideration.

Recall that the aforementioned spaces Lp(X), Lp,∞(X), and Lp,1(X) are located on the scale
of Lorentz spaces Lp,q(X). Thus, the natural way to extend the area of research described in the
last paragraph is to study boundedness of maximal operators acting on Lorentz spaces. In the
case of Rd and the classical Lorentz spaces some results that allow one to describe the mapping
properties of maximal operators in a more quantitative way has already been given (see [4, 45]).
However, to the author’s best knowledge, there are no specific examples in the literature showing
explicitly various peculiar behaviors of these operators in this context.

The aim of this dissertation is to investigate mapping properties of maximal operators asso-
ciated with nondoubling spaces including, among others, most of the aspects mentioned above.
In particular, we indicate the absence of many important properties which are well known in the
doubling case and demonstrate various phenomena that arise only in very specific nondoubling
settings. In order to do that we introduce some classes of spaces which provide the opportunity
to generate a lot of interesting examples.

The organization of the dissertation is as follows.
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In Chapter 2 we study the strong, weak and restricted weak type (p, p) inequalities for
maximal operators, centered and noncentered, simultaneously. Our aim is to address the question

For what ranges of p the operatorsMc andM satisfy the three studied types of inequalities?

by characterizing all cases that actually can happen. In other words, we consider six sets of
parameters, each of them corresponding to the particular operator and type of inequality, and
describe all possible configurations of them. Each admissible case is illustrated with a suitable
example of a nondoubling space. Thus, we complement and strengthen the results obtained by
H.-Q. Li in [33, 34, 35].

Chapter 3 is devoted to the study of strong and weak type (p, p) inequalities for modified
maximal operators Mc

κ and Mκ. Now, given κ ∈ [1,∞), we have four sets of parameters and,
just as before, the interrelations between them are investigated. As expected, the analysis breaks
into three cases: κ ∈ [1, 2), κ ∈ [2, 3), and κ ∈ [3,∞). In each case, we present the full spectrum
of possibilities. Next we deal with a much more complex issue regarding the situation of κ
varying. Although we do not characterize all possible configurations related to the whole family
of sets taken into account, we give an answer to a slightly easier question. We provide examples
illustrating many different situations, indicate some not obvious phenomena, and explain, more
or less, what is the main obstacle making the problem in its most general form not resolved here.

Chapter 4 is the culmination of the dissertation. Here some mapping properties of maximal
operators acting on Lorentz spaces Lp,q(X) are studied. We introduce an appropriate class of
metric measure spaces in order to show that these properties can be very peculiar. This, in turn,
requires a significant improvement of the tools developed in Chapters 2 and 3. As a result, we
get a wide range of examples illustrating many highly nontrivial situations regarding possible
behaviors of maximal operators in this context. The analysis proceeds in three stages, in which
certain increasingly difficult issues are considered. For clarity, we focus our attention only on the
centered operatorMc.

Chapter 5 is the first of two chapters that enrich the research described in previous para-
graphs with some complementary observations. Here we study the family of spaces {BMOp(X) :
p ∈ [1,∞)}, introduced in the context of nondoubling metric measure spaces X. We characterize
all possible relations between these spaces considered as sets of functions. Again, we introduce
an appropriate class of metric measure spaces which allows us to illustrate each of the admissi-
ble cases with a suitable example. Some further considerations related to the John–Nirenberg
inequality are also included. It is worth noting thatMc andM do not appear in this chapter.
However, the BMO concept itself is close to the issues concerning maximal operators.

In Chapter 6 we investigate a dichotomy property for Mc and M that was noticed by
Bennett, DeVore, and Sharpley [5] in the context of Euclidean spaces, and then was studied
more generally in [1, 16]. Precisely, it was shown that for any doubling space X and f ∈ L1

loc(X)
the following holds: ifMcf(x) < ∞ for some x ∈ X, thenMcf is finite almost everywhere. It
turns out that this is another aspect related to the maximal functions which changes significantly
if nondoubling spaces are considered instead. Indeed, we provide some examples where the
dichotomy described above does not occur for each of the two operators. For most of this
chapter we restrict our attention to the spaces Rd and Zd equipped with the standard Euclidean
metric de or the supremum metric d∞ and several specific nondoubling measures.

Finally, in Appendix we present an elementary proof of certain interpolation theorem that
appears in Chapter 4 in the context of Lorentz spaces Lp,q(X). Although this result is not new,
each of its proofs known so far, to the author’s best knowledge, requires a deep understanding
of the interpolation theory. The method described here does not go beyond the technique which
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is used in the standard proof of the Marcinkiewicz interpolation theorem.
All the results stated in the following chapters can be found in the author’s articles [25, 26,

27, 28, 29, 30, 31]. Most of the methods and constructions are taken from there without making
any significant changes. However, there are some parts, especially in Chapters 2 and 3, that we
present in a different way than it was originally made. This is because the new approach seems
much more natural and allows us to avoid tedious calculations in several places.

Basic notation

Throughout the thesis we consistently use the notation introduced here. First of all, by a metric
measure space X we mean a triple (X, ρ, µ), where X is a nonempty set, ρ is a metric on X,
and µ is a nonnegative Borel measure on X. Further, B(x, s) := {y ∈ X : ρ(x, y) < s} denotes
the open ball in X centered at x ∈ X and of radius s ∈ (0,∞). As long as it is clear from the
context which measure is considered, for measurable subsets E ⊂ X we prefer to write shortly
|E| instead of µ(E). In a few places, usually at the beginning of each chapter, some additional
assumptions on X are specified.

While writing estimates, we use the notation A1 . A2 (equivalently, A2 & A1) to indicate
that A1 ≤ CA2 with a positive constant C independent of significant quantities (in particular,
A1 = ∞ implies that A2 = ∞). We shall write A1 ' A2 if A1 . A2 and A2 . A1 hold
simultaneously.

For each n ∈ N we use the symbol [n] to denote the set of all positive integers which are not
larger than n (that is, [n] := {1, . . . , n}). Occasionally, we also write [0] for the empty set.

Finally, we present a short list of other symbols that appear frequently in the dissertation:

N − the set of positive integers (we use the convection N := {1, 2, . . . }),
Q − the set of rational numbers,

R − the set of real numbers,

C − the set of complex numbers,

| · | − the absolute value function,

b · c − the floor function,

d · e − the ceiling function,

1E − the indicator function of a measurable set E ⊂ X,
Lp(X) − the Lebesgue space with a parameter p ∈ [1,∞],

Lp,q(X) − the Lorentz space with parameters p, q ∈ [1,∞],

L1
loc(X) − the space of functions integrable on every ball B ⊂ X,

BMO(X) − the space of functions of bounded mean oscillation,

BMOp(X) − the space of functions of bounded mean p-oscillation with p ∈ [1,∞),

Mc − the centered Hardy–Litllewood maximal operator,

M − the noncentered Hardy–Litllewood maximal operator,

Mc
κ − the modified centered Hardy–Litllewood maximal operator,

Mκ − the modified noncentered Hardy–Litllewood maximal operator.



Chapter 2

Strong, weak, and restricted weak type

When dealing with some metric measure space it is usually an important issue to study mapping
properties of the associated maximal operators. We know thatMc andM are always trivially
bounded on L∞(X). In addition, if the measure is doubling, then they are both of weak type
(1, 1). The next very important fact is that the Marcinkiewicz interpolation theorem can be
applied to these objects. Consequently, if Mc (equivalently, M) is of weak or strong type
(p0, p0) for some p0 ∈ [1,∞), then it is bounded on Lp(X) for every p ∈ (p0,∞]. Thus, for
example, through the interpolation we can deduce that Mc and M are bounded on Lp(X) for
every p ∈ (1,∞] as long as the doubling condition is satisfied.

On the other hand, there are examples of spaces for which maximal operators are bounded on
Lp(X) for every p ∈ (1,∞] while they are not of weak type (1, 1). It is even possible to find a space
for which the associated operatorsMc andM are not of weak type (p, p) for every p ∈ [1,∞).
All these observations prompt us to study the general question of existence of the weak or strong
type (p, p) inequalities forMc andM and of interrelations between these properties.

The search for spaces with specific mapping properties of maximal operators was greatly
advanced by H.-Q. Li. In this context, in [33, 34, 35] he considered a class of the cusp spaces. In
[33] H.-Q. Li showed that for any fixed p0 ∈ (1,∞) there exists a space for which the associated
operatorMc is of strong type (p, p) if and only if p ∈ (p0,∞]. Then, in [34] examples of spaces
were furnished for whichM is of strong type (p, p) if and only if p ∈ (p0,∞]. Moreover, for every
τ ∈ (1, 2] there are examples of spaces for whichMc is of weak type (1, 1), andM is of strong
type (p, p) if and only if p ∈ (τ,∞]. Finally, in [35] H.-Q. Li showed that there are spaces with
exponential volume growth for whichMc is of weak type (1, 1), whileM is of strong type (p, p)

for every p ∈ (1,∞].
Let us note that all previous works focused only on the estimates of weak or strong type.

It is well known that the Marcinkiewicz interpolation theorem has a stronger version and to
use interpolation one only needs to know that the maximal operator is of restricted weak type
(p0, p0) for some p0 ∈ [1,∞) (see [47, Theorem 3.15, p. 197], for example). Therefore, a natural
way to go a step further is to take into account the three mentioned types of inequalities in order
to relate them to each other. This is what we do in this chapter.
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6 Chapter 2. Strong, weak, and restricted weak type

2.1 Preliminaries and results

By a metric measure space X we mean a triple (X, ρ, µ), where X is a nonempty set, ρ is a metric
and µ is a nonnegative Borel measure. Unless otherwise stated, we additionally assume that the
measure of each ball is finite and strictly positive. In this context we define the Hardy–Littlewood
maximal operators, centeredMc and noncenteredM, by

Mcf(x) :=Mc
Xf(x) := sup

s∈(0,∞)

1

|B(x, s)|

∫
B(x,s)

|f | dµ, x ∈ X,

and
Mf(x) :=MXf(x) := sup

B3x

1

|B|

∫
B
|f |dµ, x ∈ X,

respectively. Here B refers to any open ball in (X, ρ), while B(x, s) stands for the open ball
centered at x ∈ X with radius s ∈ (0,∞). We also require f to belong to the space L1

loc(X)

which means that
∫
B |f | dµ <∞ for every B ⊂ X. Finally, let us make it clear that in the case

of arbitrary X the balls B such that |B| = 0 or |B| = ∞ are omitted in the definitions of Mc

andM (in the extreme case we use the convention that the supremum of the empty set is 0).

We introduce the notation A1 . A2 (equivalently, A2 & A1) which means that A1 ≤ CA2

with a positive constant C independent of significant quantities (in particular, A1 = ∞ implies
that A2 =∞). We write A1 ' A2 if A1 . A2 and A2 . A1 hold simultaneously.

For each p ∈ [1,∞) the space Lp(X) consists of all measurable functions f : X → C such that

‖f‖p :=
(∫

X
|f |p dµ

)1/p

is finite. Similarly, we use the quantity

‖f‖p,∞ := sup
λ∈(0,∞)

{
λ · |Eλ(f)|1/p

}
to introduce the space Lp,∞(X) for p ∈ [1,∞). Here Eλ(f) := {x ∈ X : |f(x)| > λ} is the level
set of f . Finally, the space L∞(X) is defined analogously by using

‖f‖∞ := inf{C ∈ [0,∞) : |f | ≤ C almost everywhere}.

Accordingly, we say that an operator H is of strong type (p, p) for some p ∈ [1,∞], if it is
bounded on Lp(X), that is, the inequality ‖Hf‖p . ‖f‖p holds uniformly in f ∈ Lp(X). Similarly,
H is of weak type (p, p) for some p ∈ [1,∞] if it is bounded from Lp(X) to Lp,∞(X) which, in the
case p ∈ [1,∞), means that the inequality

λ · |Eλ(f)|1/p . ‖f‖p (2.1.1)

holds uniformly in f ∈ Lp(X) and λ ∈ (0,∞). For p = ∞ we use the convention L∞,∞(X) =

L∞(X) and thus being of weak type (∞,∞) is equivalent to being of strong type (∞,∞). Finally,
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H is of restricted weak type (p, p) for some p ∈ [1,∞) if it is bounded from Lp,1(X) to Lp,∞(X).
Since L1,1(X) = L1(X), being of restricted weak type (1, 1) is the same as being of weak type
(1, 1). In turn, if p ∈ (1,∞) and H is sublinear and nonnegative (this is always the case for
Mc andM), then being of restricted weak type (p, p) is equivalent to the statement that (2.1.1)
holds uniformly in f = 1E , |E| <∞, and λ ∈ (0,∞), where E ⊂ X is measurable and 1E is its
indicator function (see, for example, [6, Theorem 5.3, p. 231]). For p =∞ we use the convention
that being of restricted weak type (∞,∞) is equivalent to the boundedness on L∞(X) (it would
be very strange to consider operators acting on L∞,1(X), because the only element of L∞,1(X) is
the zero function). It is easy to check that being of strong type (p, p) implies being of weak type
(p, p) which in turn implies being of restricted weak type (p, p). We do not give the definition of
the space Lp,1(X) in this chapter since it is not needed at this moment.

For a fixed metric measure space X we denote by P c
s (X), P c

w(X), and P c
r (X) the sets consisting

of all parameters p ∈ [1,∞] for which Mc
X is of strong, weak, or restricted weak type (p, p),

respectively. Similarly, let Ps(X), Pw(X), and Pr(X) consist of all parameters p ∈ [1,∞] for which
MX is of strong, weak, or restricted weak type (p, p), respectively. Clearly, the six introduced
sets depend on the underlying space X. However, it is easy to see that there are some relations
that must be satisfied by them no matter what the structure of X is. Motivated by this, we drop
the dependence on X in the conditions listed below and write P c

s , P c
w, P c

r , Ps, Pw, and Pr instead
of P c

s (X), P c
w(X), P c

r (X), Ps(X), Pw(X), and Pr(X), respectively.

Observation 2.1.2. The following assertions hold for arbitrary metric measure space X:

(i) Each of the sets P c
s , P c

w, P c
r , Ps, Pw, and Pr is of the form {∞}, [p0,∞], or (p0,∞] for

some p0 ∈ [1,∞).

(ii) We have the following inclusions:

Ps ⊂ P cs , Pw ⊂ P cw, Pr ⊂ P cr , P cs ⊂ P cw ⊂ P cr ⊂ P cs , Ps ⊂ Pw ⊂ Pr ⊂ Ps,

where E denotes the closure of E in the usual topology of R ∪ {∞}.

(iii) We have the following implications:

P cr = [1,∞] =⇒ P cw = [1,∞], Pr = [1,∞] =⇒ Pw = [1,∞].

Indeed, the condition (i) follows from the Marcinkiewicz interpolation theorem, while the condi-
tion (ii) is a consequence of both the Marcinkiewicz interpolation theorem and the implications
between different types of inequalities mentioned above. Finally, the condition (iii) must be
satisfied in view of the identity L1,1(X) = L1(X).

Our goal is to show that (i)–(iii) are the only conditions that the six sets considered above
satisfy in general. Namely, we will prove the following theorem.

Theorem 2.1.3. Let P c
s , P c

w, P c
r , Ps, Pw, and Pr be arbitrary sets satisfying (i)–(iii). Then

there exists a (nondoubling) metric measure space Z for which the associated Hardy–Littlewood
maximal operators, centeredMc

Z and noncenteredMZ, satisfy the following properties:
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• Mc
Z is of strong type (p, p) if and only if p ∈ P c

s ,

• Mc
Z is of weak type (p, p) if and only if p ∈ P c

w,

• Mc
Z is of restricted weak type (p, p) if and only if p ∈ P c

r ,

• MZ is of strong type (p, p) if and only if p ∈ Ps,

• MZ is of weak type (p, p) if and only if p ∈ Pw,

• MZ is of restricted weak type (p, p) if and only if p ∈ Pr.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the space combin-
ing technique. This is the main tool used to provide the desired examples of spaces. Section 2.3 is
devoted to the study of some simple structures, the so-called first and second generation spaces.
Finally, the proof of Theorem 2.1.3 is located in Section 2.4. SinceMc

Xf ≡Mc
X|f |,Mf ≡M|f |,

and ‖f‖p = ‖|f |‖p hold, from now on we shall deal mostly with nonnegative functions.

2.2 Space combining technique

As a starting point of our considerations we explain a specific technique of combining different
metric measure spaces which will often be used later on. Let Λ 6= ∅ be a (finite or not) set of
positive integers and for each n ∈ Λ consider a metric measure space Yn = (Yn, ρn, µn) such that
µn(Yn) <∞ and

diam(Yn) := diamρn(Yn) := sup{ρn(x, y) : x, y ∈ Yn}

is finite. We introduce ρ′n and µ′n by rescaling (if necessary) ρn and µn, respectively, in such
a way that diamρ′n(Yn) ≤ 1 and µ′n(Yn) ≤ 2−n. Then, assuming that Yn1 ∩ Yn2 = ∅ for any
n1 6= n2, we construct Y = (Y, ρ, µ) as follows. Set Y :=

⋃
n∈Λ Yn. Define the metric ρ on Y by

ρ(x, y) :=

{
ρ′n(x, y) if {x, y} ⊂ Yn for some n ∈ Λ,

2 otherwise,
(2.2.1)

and the measure µ on Y by

µ(E) :=
∑
n∈Λ

µ′n(E ∩ Yn), E ⊂ Y.

Next, for a given space X and p ∈ [1,∞] let us denote by cc
s(p,X) the norm ofMc

X considered
as an operator on Lp(X). Thus, in other words, cc

s(p,X) is the smallest constant C such that

‖Mc
Xf‖p ≤ C‖f‖p, f ∈ Lp(X),

holds. IfMc
X is not of strong type (p, p), then we write cc

s(p,X) =∞. Similarly, let cc
w(p,X) and

cc
r(p,X) be the best constants C in the inequalities

‖Mc
Xf‖p,∞ ≤ C‖f‖p, f ∈ Lp(X),
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and
‖Mc

X1E‖p,∞ ≤ C‖1E‖p, E ⊂ X, |E| <∞,

respectively (with the aforementioned modifications for p ∈ {1,∞}). Finally, we define cs(p,X),
cw(p,X), and cr(p,X) as before replacingMc

X withMX.
In the following proposition we describe some relations between mapping properties of the

maximal operators associated with Y and Yn, n ∈ Λ, in terms of the quantities defined above.

Proposition 2.2.2. Fix Λ ⊂ N, Λ 6= ∅, and for each n ∈ Λ let Yn = (Yn, ρn, µn) be a given
metric measure space satisfying µn(Yn) <∞ and diam(Yn) <∞. Define Y as before. Then for
each p ∈ [1,∞] we have the following estimates:

cc
s(p,Y) ' sup

n∈Λ
cc

s(p,Yn), cc
w(p,Y) ' sup

n∈Λ
cc

w(p,Yn), cc
r(p,Y) ' sup

n∈Λ
cc

r(p,Yn),

cs(p,Y) ' sup
n∈Λ

cs(p,Yn), cw(p,Y) ' sup
n∈Λ

cw(p,Yn), cr(p,Y) ' sup
n∈Λ

cr(p,Yn).

Proof. First, notice that the process of rescaling metrics and measures used in the construction
of Y does not affect the studied mapping properties of the associated maximal operatorsMc

Yn

andMYn , n ∈ Λ. Thus, without any loss of generality, we may simply assume that the spaces
Yn are the rescaled ones, that is, diamρn(Yn) ≤ 1 and µn(Yn) ≤ 2−n.

Fix p ∈ [1,∞) (we omit the trivial case p = ∞). For clarity, we shall prove only the first
equivalence and the remaining ones may be verified similarly. Let n ∈ Λ and take f ∈ Lp(Yn).
We extend f to F ∈ Lp(Y) such that F (y) = 0 for y ∈ Y \Yn. Notice that ‖F‖p = ‖f‖p (here the
symbol ‖ · ‖p refers to function spaces over different measure spaces) andMc

YF (y) =Mc
Yn
f(y)

for any y ∈ Yn. Hence, ‖Mc
Yn
f‖p/‖f‖p ≤ ‖Mc

YF‖p/‖F‖p and we conclude that

cc
s(p,Y) ≥ sup

n∈Λ
cc

s(p,Yn).

Now we take f ∈ Lp(Y) and define fn ∈ Lp(Yn), n ∈ Λ, by restricting f to Yn. Then

Mc
Yf(y) = max{Mc

Ynfn(y), ‖f‖1/µ(Y )}

holds for each y ∈ Yn. Thus, applying Hölder’s inequality, we estimate ‖Mc
Yf‖

p
p by∑

n∈Λ

‖Mc
Ynfn‖

p
p + ‖f‖p1 · µ(Y )1−p ≤

∑
n∈Λ

cc
s(p,Yn)p‖fn‖pp + ‖f‖pp ≤

(
sup
n∈Λ

cc
s(p,Yn)p + 1

)
‖f‖pp.

Moreover, by taking g := 1Yn one can easily show that cc
s(p,Yn)p ≥ 1 for each n ∈ Λ. Hence,

cc
s(p,Y) ≤

(
sup
n∈Λ

cc
s(p,Yn)p + 1

)1/p ≤ 21/p sup
n∈Λ

cc
s(p,Yn) ≤ 2 sup

n∈Λ
cc

s(p,Yn)

and, consequently, we get that cc
s(p,Y) ' supn∈Λ cc

s(p,Yn).

Remark 2.2.3. If at least one space from the family {Yn : n ∈ Λ} is nondoubling or Λ is
infinite, then Y is nondoubling.
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2.3 Test spaces

In the following section we introduce and analyze auxiliary structures called first and second
generation spaces. We emphasize here that each of these spaces can be viewed as the space Y

from Section 2.2 constructed with the aid of some family of spaces {Yn : n ∈ N}. Moreover,
since Y satisfies |Y | < ∞ and diam(Y ) < ∞, any first or second generation space may also be
used as a component space in Proposition 2.2.2.

2.3.1 First generation spaces

We begin with a description of the first generation spaces which will be denoted by S. The
common property of these spaces is that the associated operators Mc

S and MS behave very
similarly to each other. Namely, for each such space the identities P c

s (S) = Ps(S), P c
w(S) =

Pw(S), and P c
r (S) = Pr(S) hold. There will be three subtypes of spaces specified in this section.

Now we present a construction which will be applied to the first two of them.
Let τ be a fixed positive integer. Set S := S(τ) := {x0, x1, . . . , xτ}, where all elements

are different (and located on the plane, say). We define the metric ρ determining the distance
between two different elements x and y by the formula

ρ(x, y) := ρτ (x, y) :=

{
1 if x0 ∈ {x, y},
2 otherwise.

Figure 2.1 shows a model of the space (S, ρ). The solid line between two points indicates that
the distance between them equals 1. Otherwise the distance equals 2.

x0

x1 x2 xτ−1 xτ...

Figure 2.1: The first generation space (S, ρ).

Note that we can explicitly describe any ball:

B(x0, s) =

{
{x0} for 0 < s ≤ 1,

S for 1 < s,

and, for i ∈ [τ ],

B(xi, s) =


{xi} for 0 < s ≤ 1,

{x0, xi} for 1 < s ≤ 2,

S for 2 < s.
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Next we define the measure µ on S by letting

µ({xi}) := µτ,F ({xi}) :=

{
1 if i = 0,

F (i) if i ∈ [τ ],

where F > 0 is a given function.
Given f ≥ 0 and E ⊂ S, E 6= ∅, we denote the average value of f on E by

AE(f) :=
1

|E|
∑
x∈E

f(x)|{x}|

(for arbitrary X and |E| ∈ (0,∞) we denote similarly AE(f) := 1
|E|
∫
E f dµ). It is instructive to

notice that the process of averaging does not increase the Lebesgue norm. For p =∞ this is ob-
vious, while for p = [1,∞) we use Hölder’s inequality to see that AE(f)p|E| ≤

∑
x∈E f(x)p|{x}|.

We are ready to describe the first two subtypes of the first generation spaces.

First subtype. Now we construct and investigate a subclass of the first generation spaces S

for which the identities P c
s (S) = Ps(S), P c

w(S) = Pw(S), and P c
r (S) = Pr(S) hold, and, in

addition, there are no differences between the incidences of strong, weak, or restricted weak type
inequalities, by what we mean that P c

s (S) = P c
w(S) = P c

r (S) and Ps(S) = Pw(S) = Pr(S). Of
course, combining all these identities, we obtain that for each such space all the six sets coincide.
In the first step, for any fixed p0 ∈ [1,∞] we construct a space denoted by S1,p0 for which

P c
s (S1,p0) = P c

w(S1,p0) = P c
r (S1,p0) = Ps(S1,p0) = Pw(S1,p0) = Pr(S1,p0) = [p0,∞]

(here by [∞,∞] we mean {∞}). Then, after slight modifications, for any fixed p0 ∈ [1,∞) we
get a space S′1,p0 for which

P c
s (S′1,p0) = P c

w(S′1,p0) = P c
r (S′1,p0) = Ps(S

′
1,p0) = Pw(S′1,p0) = Pr(S

′
1,p0) = (p0,∞].

Fix p0 ∈ [1,∞] and for any n ∈ N consider Sn = (Sn, ρn, µn), where Sn, ρn, and µn are
defined as before with the aid of τn = b(n + 1)p0/nc in the case p0 ∈ [1,∞), or τn = 2n in the
case p0 =∞, and Fn(i) = n for each i ∈ [τn]. We denote by S1,p0 the space Y obtained by using
Proposition 2.2.2 for Λ = N with Yn = Sn for each n ∈ N.

In the following lemma we describe the properties of the associated maximal operators. The
key point here is that we have: in the case p0 ∈ (1,∞],

lim
n→∞

nτn
(n+ 1)p

=∞, p ∈ [1, p0),

and, in the case p0 ∈ [1,∞),
nτn

(n+ 1)p0
≤ 1, n ∈ N.

Lemma 2.3.1. Fix p0 ∈ [1,∞] and let S1,p0 be the first generation space defined above. Then
the associated maximal operators, centeredMc

S1,p0
and noncenteredMS1,p0

, are not of restricted
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weak type (p, p) for p ∈ [1, p0), but are of strong type (p, p) for p ∈ [p0,∞].

Proof. It suffices to prove thatMc
S1,p0

fails to be of restricted weak type (p, p) for p ∈ [1, p0) and
MS1,p0

is of strong type (p0, p0). First we show thatMc
S1,p0

is not of restricted weak type (p, p)

for p ∈ [1, p0). Fix p0 ∈ (1,∞] (for p0 = 1 the condition to check is empty) and let p ∈ [1, p0).
We take n ∈ N and restrict our attention to Sn. Let g := 1{x0} ∈ Lp(Sn). Then ‖g‖pp = 1 and
Mc

Sn
g(xi) ≥ 1

n+1 for each i ∈ [τn]. Thus, |E1/(2(n+1))(Mc
Sn
g)| ≥ nτn which implies

cc
r(p,Sn)p ≥

‖Mc
Sn
g‖pp,∞

‖g‖pp
≥ nτn

(2(n+ 1))p
.

Consequently, we obtain

cc
r(p,S1,p0) & lim sup

n→∞
cc

r(p,Sn) ≥ lim
n→∞

(nτn)1/p

2(n+ 1)
=∞

which means thatMc
S1,p0

is not of restricted weak type (p, p).
In the next step we show thatMS1,p0

is of strong type (p0, p0). Fix p0 ∈ [1,∞) (for p0 =∞
the condition to check is trivial). Again, we take n ∈ N and restrict our attention to Sn. Let
f ∈ Lp0(Sn). As mentioned at the end of Subsection 2.1, in view of ‖f‖p0 = ‖|f |‖p0 and
MSnf ≡ MSn |f | we may assume that f ≥ 0 (this assumption will often be made later on
without any further explanation). Denote D := {{x0, xi} : i ∈ [τn]}. We use the estimate

‖MSnf‖p0p0 ≤
∑
B⊂Sn

∑
x∈B

AB(f)p0 |{x}| =
∑
B⊂Sn

AB(f)p0 |B|.

Note that each x ∈ Sn belongs to exactly two different balls which are not elements of D, namely
{x} and Sn. Combining this observation with Hölder’s inequality, we obtain∑

B/∈D

AB(f)p0 |B| ≤
∑
B/∈D

∑
x∈B

f(x)p0 |{x}| ≤ 2‖f‖p0p0 .

Therefore,

‖MSnf‖p0p0 ≤ 2‖f‖p0p0 +

τn∑
i=1

(f(x0) + nf(xi)

n+ 1

)p0
|{x0, xi}|. (2.3.2)

By Hölder’s inequality (f(x0)+nf(xi))
p0 ≤ 2p0−1

(
f(x0)p0 +(nf(xi))

p0
)
and combining this with

|{x0, xi}| ≤ 2|{xi}| = 2n|{x0}| we see that the sum in (2.3.2) is controlled by

2p0
( nτn

(n+ 1)p0
f(x0)p0 |{x0}|+

τn∑
i=1

( n

n+ 1

)p0
f(xi)

p0 |{xi}|
)
≤ 2p0‖f‖p0p0 .

Thus, we obtain cs(p0,Sn)p0 ≤ 2 + 2p0 and, as a result, cs(p0,S1,p0) . supn∈N cs(p0,Sn) < ∞
which means thatMS1,p0

is of strong type (p0, p0).

A modification of the arguments from the proof of Lemma 2.3.1 shows that for p0 ∈ [1,∞),
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replacing the former τn by τ ′n = b(log(n) + 1)(n+ 1)p0/nc leads to the space S′1,p0 for which

P c
s (S′1,p0) = P c

w(S′1,p0) = P c
r (S′1,p0) = Ps(S

′
1,p0) = Pw(S′1,p0) = Pr(S

′
1,p0) = (p0,∞].

Moreover, it may be noted that only the properties limn→∞
nτ ′n

(n+1)p0 =∞ and supn∈N
nτ ′n

(n+1)p <∞
for p ∈ (p0,∞) are essential.

Second subtype. In contrast to the former case, for the spaces S we now construct and study,
the identities P c

s (S) = Ps(S), P c
w(S) = Pw(S) and P c

r (S) = Pr(S) still hold, but there are
differences between the incidences of weak and strong type inequalities. Namely, for any fixed
p0 ∈ [1,∞) we construct a space denoted by S2,p0 for which P c

s (S2,p0) = Ps(S2,p0) = (p0,∞]

and P c
w(S2,p0) = Pw(S2,p0) = [p0,∞]. Notice that this implies P c

r (S2,p0) = Pr(S2,p0) = [p0,∞].
We begin with the case p0 = 1 which is discussed separately because it is relatively simple and
may be helpful to outline the core idea behind the more difficult case p0 ∈ (1,∞).

For any n ∈ N consider Sn = (Sn, ρn, µn), where Sn, ρn, and µn are defined as before with
the aid of τn = n and Fn(i) = 2i for each i ∈ [τn]. We denote by S2,1 the space Y obtained by
using Proposition 2.2.2 for Λ = N with Yn = Sn for each n ∈ N. In the following lemma we
describe the properties of the associated maximal operators.

Lemma 2.3.3. Let S2,1 be the first generation space defined above. Then the associated maximal
operators, centeredMc

S2,1
and noncenteredMS2,1, are not of strong type (1, 1), but are of weak

type (1, 1).

Proof. First, let us note that Mc
S2,1

fails to be of strong type (1, 1). Indeed, fix n ∈ N and let
g := 1{x0} ∈ L1(Sn). Then ‖g‖1 = 1 and for each i ∈ [n] we have Mc

Sn
g(xi) ≥ 1

1+2i
> 2−i−1.

Therefore,

cc
s(1,Sn) ≥

‖Mc
Sn
g‖1

‖g‖1
≥

n∑
i=1

2i

2i+1
=
n

2

and, as a consequence, cc
s(1,S2,1) & limn→∞

n
2 =∞.

In the next step we show thatMS2,1 is of weak type (1, 1). Fix n ∈ N and estimate cw(1,Sn)

from above. Let f ∈ L1(Sn), f ≥ 0, and consider λ ∈ (0,∞) such that Eλ := Eλ(MSnf) 6= ∅. If
λ ≤ ASn(f), then λ · |Eλ| ≤ ASn(f)|Sn| = ‖f‖1 follows. Assume that λ > ASn(f). If Eλ = {x0},
then f(x0) > λ and λ · |Eλ| ≤ ‖f‖1 again follows. Otherwise, if Eλ ( {x0}, then we denote

j := max
{
i ∈ [n] :MSnf(xi) > λ

}
.

We have f(xj) > λ or f(x0)+2jf(xj)
1+2j

> λ. In both cases the inequality f(x0) + 2jf(xj) > 2jλ

holds. Combining this with the fact that |Eλ| ≤ 2|{xj}| = 2j+1, we arrive at the estimate

λ · |Eλ|
‖f‖1

≤ 2j+1λ

f(x0) + 2jf(xj)
≤ 2.

Consequently, we have cw(1,Sn) ≤ 2 for any n ∈ N which implies that cw(1,S2,1) . 2 <∞.
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Now fix p0 ∈ (1,∞) and for any n ∈ N consider Sn = (Sn, ρn, µn), where Sn, ρn, and µn

are introduced as before with the aid of τn = τn,p0 and Fn(i) = Fn,p0(i) defined as follows. Let
cn, en ∈ N be auxiliary parameters satisfying cn = b(n+ 1)p0/nc and

en = max
{
k ∈ N : 2k−1 ≤ cn and 2k−1+p0 ≤ (1 + n)p0

}
.

Observe that limn→∞ en =∞. We also introduce (mn,j)
en
j=1, (sn,j)

en
j=1 satisfying

21−j
( 1

1 +mn,j

)p0
=
( 1

1 + n

)p0
,

and
sn,j = min

{
k ∈ N : kmn,j ≥ 22−jncn

}
.

Since 2en−1+p0 ≤ (1 + n)p0 and mn,j < 22−jncn, for each j ∈ [en] we have

1 ≤ mn,j ≤ n and 22−jncn ≤ sn,jmn,j ≤ 23−jncn.

Finally, we put τn =
∑en

j=1 sn,j and Fn(i) = mn,j(n,i) for each i ∈ [τn] with j(n, i) ∈ N satisfying

i ∈
[
sn,1 + · · ·+ sn,j(n,i)

]
\
[
sn,1 + · · ·+ sn,j(n,i)−1

]
.

We denote by S2,p0 the space Y obtained by using Proposition 2.2.2 for Λ = N with Yn = Sn

for each n ∈ N. In the following lemma we describe the properties ofMc
S2,p0

andMS2,p0
.

Lemma 2.3.4. Fix p0 ∈ (1,∞) and let S2,p0 be the metric measure space defined above. Then
the associated maximal operators, centered Mc

S2,p0
and noncentered MS2,p0

, are not of strong
type (p0, p0), but are of weak type (p0, p0).

Proof. First we note that Mc
S2,p0

is not of strong type (p0, p0). Indeed, fix n ∈ N and let
g := 1{x0} ∈ Lp0(Sn). Then ‖g‖p0p0 = 1 and for each i ∈ [τn] we have Mc

Sn
g(xi) ≥ 1

1+mn,j(n,i)

which implies

‖Mc
Sng‖

p0
p0 ≥

en∑
j=1

sn,j∑
k=1

( 1

1 +mn,j

)p0
mn,j =

en∑
j=1

sn,jmn,j

(1 +mn,j)p0
≥

en∑
j=1

22−jncn
(1 +mn,j)p0

=

en∑
j=1

2ncn
(1 + n)p0

.

Thus, we get that cc
s(p0,Sn)p0 ≥ en

2ncn
(1+n)p0 . Since limn→∞ en =∞ and limn→∞

ncn
(1+n)p0 = 1, we

obtain cc
s(p0,S2,p0) =∞.

In the next step we show that MS2,p0
is of weak type (p0, p0). Fix n ∈ N and estimate

cw(p0,Sn) from above. Let f ∈ Lp0(Sn), f ≥ 0, and take λ ∈ (0,∞). We write f = f1 + f2,
where f1 := f · 1Sn\{x0} and f2 := f · 1{x0}. By the sublinearity ofMSn we have

MSnf ≤MSnf1 +MSnf2

which gives
E2λ(MSnf) ⊂ Eλ(MSnf1) ∪ Eλ(MSnf2) =: Eλ,1 + Eλ,2.
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By using Hölder’s inequality we get

λp0 |Eλ,1| ≤ ‖MSnf1‖p0p0 ≤
∑
B⊂Sn

AB(f1)p0 |B| ≤
∑
B⊂Sn

∑
x∈B

f1(x)p0 |{x}| ≤ 3‖f1‖p0p0 ,

where in the last inequality we use the fact that each x ∈ Sn \ {x0} belongs to at most three
different balls B ⊂ Sn. Next, let f2(x0) = α ∈ (0,∞) and assume that Eλ,2 6= ∅. Thus, we have
α > λ. If Eλ,2 = {x0}, then λp0 |Eλ,2| < ‖f2‖p0p0 follows. Otherwise, denote

r := min
{
j ∈ [en] :

α

1 +mn,j
> λ

}
.

Then we have

λp0 |Eλ,2| ≤
2αp0

∑en
j=r sn,jmn,j

(1 +mn,r)p0
≤
αp0

∑en
j=r 24−jncn

(1 +mn,r)p0
≤ 25−rαp0ncn

(1 +mn,r)p0
≤ 16αp0ncn

(1 + n)p0
≤ 16‖f2‖p0p0 .

Consequently,
(2λ)p0 |E2λ(MSnf)| ≤ 2p0 · 19‖f‖p0p0 .

Since cw(p0,Sn) ≤ 2 · 191/p0 for any n ∈ N, we conclude that cw(p0,S2,p0) . 2 · 191/p0 <∞.

Now we present a construction which will be applied to the third subtype of the first gen-
eration spaces. Fix n0 ∈ N and let τ = τn0 = (τn0,i)

n0
i=1 be a given system of positive integers

satisfying τn0,i
2i−1 ∈ N. We shall introduce several objects which clearly depend on n0 ∈ N. It will

be helpful to include this parameter in notation. Set

Sn0
:= Sn0(τ) :=

{
xi,j , x

′
i,k : i ∈ [n0], j ∈ [2i−1], k ∈ [τn0,i]

}
,

where all elements xi,j , x′i,k are different. We use auxiliary symbols for certain subsets of Sn0 :

S′n0
:=
{
x′i,k : i ∈ [n0], k ∈ [τn0,i]

}
,

for i ∈ [n0],

Sn0,i :=
{
xi,j : j ∈ [2i−1]

}
, S′n0,i

:=
{
x′i,k : k ∈ [τn0,i]

}
,

and, for i, i′ ∈ [n0], i ≤ i′, and j ∈ [2i−1],

S′n0,i′,i,j
:=
{
x′i′,k : k ∈

(j − 1

2i−1
τn0,i′ ,

j

2i−1
τn0,i′

]}
.

Observe that the family {S′n0,i′,i,j
}2i−1

j=1 consists of disjoint set, each of them containing exactly
τn0,i′

2i−1 elements. Moreover, we have
⋃2i−1

j=1 S
′
n0,i′,i,j

= S′n0,i′
. Finally, if 1 ≤ i1 ≤ i2 ≤ i′ ≤ n0 and

jl ∈ [2il−1] for l ∈ {1, 2}, then either S′n0,i′,i2,j2
⊂ S′n0,i′,i1,j1

or S′n0,i′,i1,j1
∩ S′n0,i′,i2,j2

= ∅.
We define the metric ρn0

on Sn0 determining the distance between two different elements x
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and y by the formula

ρn0
(x, y) := ρn0,τ (x, y) :=

{
1 if {x, y} = {xi,j , x′i′,k} and x′i′,k ∈ S′n0,i′,i,j

,

2 otherwise.

Figure 2.2 shows a model of the space (Sn0 , ρn0
) with n0 = 2. As before, the solid line between

two points indicates that the distance between them equals 1. Otherwise the distance equals 2.

x1,1

x′1,1 x′1,τ2,1
...

x2,1

x′2,1 x′2,τ2,2/2
...

x2,2

x′2,τ2,2/2+1 x′2,τ2,2
...

Figure 2.2: The first generation space (Sn0 , ρn0
) with n0 = 2.

Note that we can explicitly describe any ball: for i ∈ [n0], j ∈ [2i−1],

B(xi,j , s) =


{xi,j} for 0 < s ≤ 1,

{xi,j} ∪
⋃n0
i′=i Sn0,i′,i,j for 1 < s ≤ 2,

Sn0 for 2 < s,

and for i′ ∈ [n0], k ∈ [τn0,i],

B(x′i′,k, s) =


{x′i′,k} for 0 < s ≤ 1,

{x′i′,k} ∪ {xi,j : x′i′,k ∈ Sn0,i′,i,j} for 1 < s ≤ 2,

Sn0 for 2 < s.

Finally, we define the measure µn0
on Sn0 by letting

µn0
({x}) := µn0,τ,F,m({x}) :=

{
F (i) if x = xi,j for some i ∈ [n0], j ∈ [2i−1],

mi if x = x′i,k for some i ∈ [n0], k ∈ [τn0,i],

where 0 < F ≤ 1 is a given function and m is a positive number satisfying m ≥ 2n0 .
We are ready to describe the third subtype of the first generation spaces.

Third subtype. Now for any fixed p0 ∈ (1,∞) we construct a space denoted by S3,p0 for
which P c

w(S3,p0) = Pw(S3,p0) = (p0,∞] and P c
r (S3,p0) = Pr(S3,p0) = [p0,∞]. Note that these

conditions imply P c
s (S3,p0) = Ps(S3,p0) = (p0,∞].
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Fix p0 ∈ (1,∞). For any n ∈ N we choose n0 = n and consider Sn = (Sn, ρn, µn), where
Sn, ρn, and µn are introduced as before with the aid of τn = (τn,i)

n
i=1, Fn, and mn defined as

follows. Let (ai)i∈N satisfy
∑n

i=1 ai = np0 for each n ∈ N. For i ∈ [n] set

Fn(i) = 2(i−n)/(p0−1), τn,i = baic22nbp0cn!/i, mn = 2(2nbp0c−n)/(p0−1)(n!)1/(p0−1).

Observe that τn,i
2i−1 ∈ N and τn,i i/m

p0−1
n = 2nbaic. Moreover, for any x ∈ S′n we have |{x}| ≥

mn ≥ 2n ≥ |Sn \ S′n|. We denote by S3,p0 the space Y obtained by using Proposition 2.2.2 for
Λ = N with Yn = Sn for each n ∈ N. The following lemma describes the properties ofMc

S3,p0

andMS3,p0
.

Lemma 2.3.5. Fix p0 ∈ (1,∞) and let S3,p0 be the metric measure space defined above. Then
the associated maximal operators, centeredMS3,p0

and noncenteredMc
S3,p0

, are not of weak type
(p0, p0), but are of restricted weak type (p0, p0).

Proof. First we show thatMc
S3,p0

is not of weak type (p0, p0). Indeed, fix n ∈ N and let

g :=
n∑
i=1

2(n−i)/(p0−1)1Sn,i ∈ Lp0(Sn).

Then ‖g‖p0p0 =
∑n

i=1 2i−1 2n−i = 2n−1n and

Mc
Sng(x′i′,k) ≥ AB(x′

i′,k,3/2)(g) ≥ i′

2|{x′i′,k}|
=

1

2mn

for any x′i′,k ∈ S′n which implies that |E1/(4mn)(Mc
Sn
g)| ≥ |S′n|. Therefore,

‖Mc
Sn
g‖p0p0,∞

‖g‖p0p0
≥
∑n

i=1 τn,i imn

n2n−1(4mn)p0
= 21−2p0

∑n
i=1 τn,i i

nmp0−1
n 2n

= 21−2p0

∑n
i=1baic
n

= 21−2p0np0−1.

Thus, we obtain cc
w(p0,Sn)p0 ≥ 21−2p0np0−1 and, consequently,

cc
w(p0,S3,p0) & lim

n→∞
n1−1/p0 =∞.

In the next step we show that MS3,p0
is of restricted weak type (p0, p0). Fix n ∈ N and

estimate cr(p0,Sn)p0 from above. Let U ⊂ Sn, U 6= ∅, and λ ∈ (0,∞). Our goal is to estimate

λp0 |Eλ|/|U |, (2.3.6)

where Eλ := Eλ(MSn1U ). Clearly, if λ ≥ 1, then Eλ = ∅, so we can assume that λ < 1. We
write 1U = 1U ′ +

∑
x∈U\U ′ 1{x}, where U

′ = U ∩ S′n. Note that for fixed i ∈ [n] any ball B
with radius s ≤ 2 contains at most one of the points xi,1, . . . , xi,2i−1 . Thus, for any x ∈ Sn, the
inequality

MSn1U (x) ≤ 2 max
{
MSn1U ′(x), C · max

y∈U\U ′

{
MSn1{y}(x)

}}
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is satisfied with C :=
∑∞

i=0 2−i(p0−1). Moreover, if λ ≤ ASn(1U ), then

λp0 |Eλ| ≤ λ|Eλ| ≤ ASn(1U )|Sn| = |U |.

Consequently, we are reduced to finding a suitable bound for (2.3.6) in the case ASn(1U ) < λ < 1

and U ⊂ S′n or U = {x} ⊂ Sn \ S′n.
First, assume that U ⊂ S′n, U 6= ∅. Then Eλ ∩ S′n 6= ∅ and we have |Eλ| ≤ 2|Eλ ∩ S′n|.

Consider two different balls, B1 and B2, and denote B′l = Bl ∩ S′n for l ∈ [2]. Then one of
the three possibilities occurs: B′1 ⊂ B′2, B′2 ⊂ B′1, or B′1 ∩ B′2 = ∅. Combining this with the
assumption U ⊂ S′n, we obtain λ ≤ AEλ∩S′n(1U ). Consequently,

λp0 |Eλ| ≤ λ|Eλ| ≤ 2AEλ∩S′n(1U )|Eλ ∩ S′n| = 2|U |.

Finally, assume that U = {xi,j} ⊂ Sn \ S′n and ASn(1U ) < λ < 1. If Eλ ∩ S′n = ∅, then
Eλ = U and λp0 |Eλ| ≤ |U | holds. On the other hand, if Eλ ∩ S′n 6= ∅, then |Eλ| ≤ 2|Eλ ∩ S′n|.
For x ∈ S′n,i′,i,j , i′ ≥ i, we see that

MSn1U (x) = AB(x,3/2)(1U ) ≤ 2(i−n)/(p0−1)/(mni
′),

while for x ∈ S′n \
⋃n
i′=i S

′
n,i′,i,j we haveMSn1U (x) = ASn(1U ) < λ. Since

2(i−n)p0/(p0−1)

(mn i′)p0

i′∑
l=i

|S′n,l,i,j | =
2(i−n)p0/(p0−1)

(mn i′)p0

i′∑
l=i

|S′n,l|
2i−1

=
2(i−n)p0/(p0−1)

(i′)p0

i′∑
l=i

τn,l l

mp0−1
n 2i−1

=
2(i−n)p0/(p0−1)

(i′)p0

i′∑
l=i

2n−i+1balc

≤ 2((i−n)/(p0−1))+1

∑i′

l=1 al
(i′)p0

= 2|U |,

we conclude that λp0 |Eλ| ≤ 4|U | holds.
Since for each n ∈ N we have a bound of the form cr(p0,Sn) . C(p0) with the implicit

constant independent of n, we conclude that cr(p0,S3,p0) <∞.

2.3.2 Second generation spaces

Now we construct and study metric measure spaces T called by us the second generation spaces.
The common attribute of these spaces is that the associated operators Mc

T and MT behave
significantly different, by what we mean that P c

s (T) = P c
w(T) = P c

r (T) = [1,∞] holds, while
Ps(T) (and possibly Pw(T) and Pr(T)) is a proper subset of [1,∞]. As before, we specify three
subtypes here. The following construction will be applied to the first two of them.

Let τ be a fixed positive integer. Set T := T (τ) := {y0, y1, . . . , yτ , y
′
1, . . . , y

′
τ}, where all
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elements are different. We define the metric ρ determining the distance between two different
elements x and y by the formula

ρ(x, y) := ρτ (x, y) :=

{
1 if y0 ∈ {x, y} ⊂ T \ T ′ or {x, y} = T i for some i ∈ [τ ],

2 otherwise,

where T ′ := {y′1, . . . , y′τ} and T i := {yi, y′i}. Figure 2.3 shows a model of the space (T, ρ).

y0

y1 y2 yτ
...

y′1 y′2 y′τ
...

Figure 2.3: The second generation space (T, ρ).

Note that we can explicitly describe any ball:

B(y0, s) =


{y0} for 0 < s ≤ 1,

T \ T ′ for 1 < s ≤ 2,

T for 2 < s,

and, for i ∈ [τ ],

B(yi, s) =


{yi} for 0 < s ≤ 1,

{y0} ∪ T i for 1 < s ≤ 2,

T for 2 < s,

and

B(y′i, s) =


{y′i} for 0 < s ≤ 1,

T i for 1 < s ≤ 2,

T for 2 < s.

We define the measure µ by letting

µ({y}) := µτ,F ({y}) :=


1 if y = y0,
1
τ if y = yi for some i ∈ [τ ],

F (i) if y = y′i for some i ∈ [τ ],

where F > 0 is a given function.
We are ready to describe the first two subtypes of the second generation spaces.
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First subtype. Now we construct a subclass of the second generation spaces T for which, apart
from the basic property P c

s (T) = P c
w(T) = P c

r (T) = [1,∞], we also have Ps(T) = Pw(T) = Pr(T).
In the first step, for any fixed p0 ∈ (1,∞] we construct a space denoted by T1,p0 for which
Ps(T1,p0) = Pw(T1,p0) = Pr(T1,p0) = [p0,∞]. Then, after slight modifications, for any fixed
p0 ∈ [1,∞) we get a space T′1,p0 for which Ps(T

′
1,p0

) = Pw(T′1,p0) = Pr(T
′
1,p0

) = (p0,∞].
Fix p0 ∈ (1,∞] and for any n ∈ N consider Tn = (Tn, ρn, µn), where Tn, ρn, and µn are

defined as before with the aid of τn = b(n + 1)p0/nc in the case p0 ∈ (1,∞), or τn = 2n in the
case p0 =∞, and Fn(i) = n for each i ∈ [τn]. We denote by T1,p0 the space Y obtained by using
Proposition 2.2.2 for Λ = N with Yn = Tn for each n ∈ N. In the following lemma we describe
the properties ofMc

T1,p0
andMT1,p0

.

Lemma 2.3.7. Fix p0 ∈ (1,∞] and let T1,p0 be the metric measure space defined above. Then
the associated centered maximal operator Mc

T1,p0
is of strong type (1, 1), while the noncentered

maximal operatorMT1,p0
is not of weak type (p, p) for p ∈ [1, p0), but is of strong type (p, p) for

p ∈ [p0,∞].

Proof. First we show thatMc
T1,p0

is of strong type (1, 1). We fix n ∈ N and restrict our attention
to Tn. Let f ∈ L1(Tn), f ≥ 0. Denote G := {{y0} ∪ T in : i ∈ [τn]} and, for each y ∈ Tn,
By := {B(y, 1

2), B(y, 3
2), B(y, 5

2)}. We have the estimate

‖Mc
Tnf‖1 ≤

∑
y∈Tn

∑
B∈By

AB(f)|{y}|.

Note that each y ∈ Tn belongs to at most four different balls which are not elements of G. Thus,∑
y∈Tn

∑
B∈By\G

AB(f)|{y}| ≤
∑
B/∈G

∑
y∈B

f(y)|{y}| ≤ 4‖f‖1

which implies

‖Mc
Tnf‖1 ≤ 4‖f‖1 +

τn∑
i=1

AB(yi
3
2

)(f)|{yi}|,

and the sum above is estimated by

τnf(y0)|{y1}|+
τn∑
i=1

(
f(yi)|{yi}|+ f(y′i)|{y′i}|

)
= ‖f‖1.

Consequently, cc
s(1,Tn) ≤ 5 holds for each n ∈ N which implies that cc

s(p,T1,p0) <∞.
In the next step we show that MT1,p0

is not of restricted weak type (p, p) for p ∈ [1, p0).
Indeed, fix p ∈ [1, p0) and n ∈ N, and consider g := 1{y0} ∈ Lp(Tn). We have ‖g‖p = 1 and
MTng(y′i) ≥ 1

n+1+(1/τn) ≥
1

n+2 for each i ∈ [τn] which gives |E1/(2(n+2))(MTnfn)| ≥ nτn. Thus,

cr(p,Tn) ≥ ‖MTng‖p,∞
‖g‖p

≥ (nτn)1/p

2(n+ 2)

and, as a consequence, cr(p,T1,p0) & limn→∞
(nτn)1/p

2(n+2) =∞.
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To complete the proof it suffices to show thatMT1,p0
is of strong type (p0, p0). Assume that

p0 ∈ (1,∞) (for p0 = ∞ the condition to check is trivial). Fix n ∈ N and estimate cs(p0,Tn)

from above. Let f ∈ Lp0(Tn), f ≥ 0. We have the inequality

‖MTnf‖p0p0 ≤
∑
B⊂Tn

∑
y∈B

AB(f)p0 |{y}| =
∑
B⊂Tn

AB(f)p0 |B|.

As before, note that each y ∈ Tn belongs to at most four different balls which are not elements
of G. Combining this observation with Hölder’s inequality, we obtain∑

B/∈G

AB(f)p0 |B| ≤
∑
B/∈G

∑
y∈B

f(y)p0 |{y}| ≤ 4‖f‖p0p0 .

Therefore,

‖MTnf‖p0p0 ≤ 4‖f‖p0p0 +

τn∑
i=1

(f(y0) + 1/τnf(yi) + nf(y′i)

1 + 1/τn + n

)p0
|{y0, yi, y

′
i}|. (2.3.8)

By Hölder’s inequality(
f(y0) + 1/τnf(yi) + nf(y′i)

)p0 ≤ 3p0−1
(
f(y0)p0 +

(
f(yi)/τn

)p0 +
(
nf(y′i)

)p0)
and combining this with

|{y0, yi, y
′
i}| ≤ 3|{y′i}| = 3n|{y0}|

we see that the sum in (2.3.8) is controlled by

3p0
(nτnf(y0)p0

(n+ 1)p0
|{y0}|+

τn∑
i=1

(
f(yi)/τn

)p0 + (nf(y′i)
)p0

(1 + 1/τn + n)p0
|{y′i}|

)
≤ 3p0‖f‖p0p0 .

Thus, cs(p0,Tn)p0 ≤ 4 + 3p0 for each n ∈ N which clearly implies cs(p0,T1,p0) <∞.

Finally, let us note that, as in the previous subsection, replacing the former τn by
τ ′n = b(log(n) + 1)(n + 1)p0/nc, p0 ∈ [1,∞), results in obtaining the space T′1,p0 for which
Ps(T

′
1,p0

) = Pw(T′1,p0) = Pr(T
′
1,p0

) = (p0,∞].

Second subtype. In contrast to the former case the spaces T we now construct, apart from
the basic property P c

s (T) = P c
w(T) = P c

r (T) = [1,∞], satisfy Ps(T)  Pw(T). More precisely, for
any fixed p0 ∈ [1,∞) we construct a space T2,p0 for which Ps(T2,p0) = (p0,∞] and Pw(T2,p0) =

[p0,∞]. As previously, we consider the cases p0 = 1 and p0 ∈ (1,∞) separately.
For any n ∈ N consider Tn = (Tn, ρn, µn), where Tn, ρn, and µn are defined as before with

the aid of τn = n and Fn(i) = 2i for each i ∈ [τn]. We denote by T2,1 the space Y obtained by
using Proposition 2.2.2 for Λ = N with Yn = Tn for each n ∈ N. In the following lemma we
describe the properties ofMc

T2,1
andMT2,1 .

Lemma 2.3.9. Let T2,1 be the metric measure space defined above. Then the associated centered
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operatorMc
T2,1

is of strong type (1, 1), while the noncentered operatorMT2,1 is not of strong type
(1, 1), but is of weak type (1, 1).

Proof. First, note that it is easy to verify that Mc
T2,1

is of strong type (1, 1), by using exactly
the same argument as in the proof of Lemma 2.3.7.

In the next step we show that MT2,1 is not of strong type (1, 1). Indeed, fix n ∈ N and let
g := 1{y0} ∈ L1(Tn). Then ‖g‖1 = 1 and we haveMTng(y′i) ≥ 1

1+1/n+2i
> 2−i−1 for each i ∈ [n].

Thus, we obtain ‖MTng‖1 ≥
∑n

i=1 2i·2−i−1 = n
2 and, consequently, cs(1,T2,1) & limn→∞

n
2 =∞.

To complete the proof it suffices to show that MT2,1 is of weak type (1, 1). Fix n ∈ N
and estimate cw(1,Tn) from above. Let f ∈ L1(Tn), f ≥ 0, and take λ ∈ (0,∞) such that
Eλ := Eλ(MTnf) 6= ∅. If λ ≤ ATn(f), then λ · |Eλ| ≤ ‖f‖1 follows. Thus, assume that
λ > ATn(f). First, consider the case Eλ ∩ T ′n = ∅. If y0 ∈ Eλ, then we obtain∑

y∈Tn\T ′n

f(y) |{y}| > λ · |{y0}|

and, since |Eλ| ≤ 2|{y0}|, we deduce that λ · |Eλ| ≤ 2‖f‖1. Otherwise, if y0 /∈ Eλ, then f(y) > λ

necessarily holds for every y ∈ Eλ ∩ Tn which implies that λ · |Eλ| ≤ ‖f‖1. Finally, in the case
Eλ ∩ T ′n 6= ∅, we denote

j := max
{
i ∈ [n] :MTnf(y′i) > λ

}
.

We have ∑
y∈Tn

f(y)|{y}| > λ · |{y′j}|

and combining this with the estimate |Eλ| ≤ 2|{y′j}|, we conclude that λ · |Eλ| ≤ 2‖f‖1 again
follows. Hence, we have cw(1,Tn) ≤ 2 for any n ∈ N which implies that cw(1,T2,1) . 2 <∞.

Now fix p0 ∈ (1,∞). For any n ∈ N consider Tn = (Tn, ρn, µn), where Tn, ρn, and µn are
introduced as before with the aid of τn = τn,p0 and Fn(i) = Fn,p0(i) defined as in the case of
S2,p0 , by using the auxiliary numbers cn, en and sequences (mn,j)

en
j=1, (sn,j)

en
j=1. We denote by

T2,p0 the space Y obtained by using Proposition 2.2.2 for Λ = N with Yn = Tn for each n ∈ N.
In the following lemma we describe the properties ofMc

T2,p0
andMT2,p0

.

Lemma 2.3.10. Fix p0 ∈ (1,∞) and let T2,p0 be the metric measure space defined above. Then
the associated centered maximal operator Mc

T2,p0
is of strong type (1, 1), while the noncentered

MT2,p0
is not of strong type (p0, p0), but is of weak type (p0, p0).

Proof. First, note that it is easy to verify thatMc
T2,p0

is of strong type (1, 1), by using the same
argument as in the proof of Lemma 2.3.7. Now we show thatMT2,p0

is not of strong type (p0, p0).
Indeed, fix n ∈ N and let g := 1{xn}. Then ‖g‖p0 = 1 and for each i ∈ [τn] we have

MTng(y′i) ≥
1

1 + 1/τn +mn,j(n,i)
≥ 1

2(1 +mn,j(n,i))
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and hence

‖MTng‖p0p0 ≥
en∑
j=1

sn,j∑
k=1

2−p0mn,j

(1 +mn,j)p0
=

en∑
j=1

2−p0sn,jmn,j

(1 +mn,j)p0
≥

en∑
j=1

22−j−p0ncn
(1 +mn,j)p0

=

en∑
j=1

21−p0ncn
(1 + n)p0

.

Thus, cs(p0,Tn)p0 ≥ en 21−p0ncn
(1+n)p0 . Since limn→∞ en =∞ and limn→∞

ncn
(1+n)p0 = 1, we are done.

To complete the proof it suffices to show that MT2,p0
is of weak type (p0, p0). Fix n ∈ N

and estimate cw(p0,Tn) from above. Let f ∈ Lp0(Tn), f ≥ 0, and consider λ ∈ (0,∞) such that
E2λ(MTnf) 6= ∅. We write f = f1 + f2, where f1 := f · 1Tn\{y0} and f2 := f · 1{y0}. Note that

E2λ(MTnf) ⊂ Eλ(MTnf1) ∪ Eλ(MTnf2) =: Eλ,1 + Eλ,2.

Applying Hölder’s inequality we deduce that

λp0 |Eλ,1| ≤ ‖MTnf1‖p0p0 ≤
∑
B⊂Tn

AB(f1)p0 |B| ≤
∑
B⊂Tn

∑
y∈B

f1(y)p0 |{y}| ≤ 5‖f1‖p0p0 ,

where in the last inequality we use the fact that each y ∈ Tn \ {y0} belongs to at most five
different balls B ⊂ Tn. Next, let f2(y0) = α ∈ (0,∞) and assume that Eλ,2 6= ∅. Thus, we have
α > λ. If Eλ,2 ∩ T ′n = ∅, then λp0 |Eλ,2| < 2‖f2‖p0p0 follows. Otherwise, denote

r := min
{
j ∈ [en] :

α

1 + 1/τn +mn,j
> λ

}
.

Then we have

λp0 |Eλ,2| ≤
2αp0

∑en
j=r sn,jmn,j

(1 + 1
τn

+mn,r)p0
≤
αp0

∑en
j=r 24−jncn

(1 +mn,r)p0
≤ 25−rαp0ncn

(1 +mn,r)p0
≤ 16αp0ncn

(1 + n)p0
≤ 16‖f2‖p0p0 .

Consequently,
(2λ)p0 |E2λ(MTnf)| ≤ 2p0 · 21‖f‖p0p0 .

Since cw(p0,Tn) ≤ 2 · 211/p0 for any n ∈ N, we conclude that cw(p0,T2,p0) . 2 · 211/p0 <∞.

Now we present a construction which will be applied to the third subtype of the second
generation spaces. Fix n0 ∈ N and let τ = τn0 = (τn0,i)

n0
i=1 be a given system of positive integers

satisfying τn0,i
2i−1 ∈ N. As previously, we include the dependence on n0 ∈ N in notation. Set

Tn0
:= Tn0(τ) :=

{
yi,j , y

◦
i,k, y

′
i,k : i ∈ [n0], j ∈ [2i−1], k ∈ [τn0,i]

}
,

where all elements yi,j , y◦i,k, y
′
i,k are different. We use auxiliary symbols for some subsets of Tn0 :

T ◦n0
:=
{
y◦i,k : i ∈ [n0], k ∈ [τn0,i]

}
,

T ′n0
:=
{
y′i,k : i ∈ [n0], k ∈ [τn0,i]

}
,



24 Chapter 2. Strong, weak, and restricted weak type

for i ∈ [n0],

T ◦n0,i
:=
{
y◦i,k : k ∈ [τn0,i]

}
,

T ′n0,i
:=
{
y′i,k : k ∈ [τn0,i]

}
,

and, for i, i′ ∈ [n0], i ≤ i′, and j ∈ [2i−1],

T ◦n0,i′,i,j
:=
{
y◦i′,k : k ∈

(j − 1

2i−1
τn0,i′ ,

j

2i−1
τn0,i′

]}
,

T ′n0,i′,i,j
:=
{
y′i′,k : k ∈

(j − 1

2i−1
τn0,i′ ,

j

2i−1
τn0,i′

]}
.

We define the metric ρn0
on Tn0 determining the distance between two different elements x

and y by the formula

ρn0
(x, y) := ρn0,τ (x, y) :=


1 if {x, y} = {yi,j , y◦i′,k} and x◦i′,k ∈ T ◦n0,i′,i,j

,

1 if {x, y} ⊂ Tn0 \ (T ◦n0
∪ T ′n0

),

1 if {x, y} = {y◦i′,k, y′i′,k},
2 otherwise.

Figure 2.4 shows a model of the space (Tn0 , ρn0
) with n0 = 2.

y1,1

y◦1,1 y◦1,τ2,1
...

y′1,1 y′1,τ2,1
...

y2,1

y◦2,1 y◦2,τ2,2/2
...

y′2,1 y′2,τ2,2/2
...

y2,2

y◦2,τ2,2/2+1 y◦2,τ2,2
...

y′2,τ2,2/2+1 y′2,τ2,2
...

Figure 2.4: The second generation space (Tn0 , ρn0
) with n0 = 2.

Note that we can explicitly describe any ball: for i ∈ [n0], j ∈ [2i−1],

B(yi,j , s) =


{yi,j} for 0 < s ≤ 1,(

Tn0 \ (T ◦n0
∪ T ′n0

)
)
∪
⋃n0
i′=i T

◦
n0,i′,i,j

for 1 < s ≤ 2,

Tn0 for 2 < s,
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and, for i′ ∈ [n0] and k ∈ [τn0,i],

B(y◦i′,k, s) =


{y◦i′,k} for 0 < s ≤ 1,

{y◦i′,k, y′i′,k} ∪ {yi,j : y◦i′,k ∈ T ◦n0,i′,i,j
} for 1 < s ≤ 2,

Tn0 for 2 < s,

and

B(y′i′,k, s) =


{y′i′,k} for 0 < s ≤ 1,

{y◦i′,k, y′i′,k} for 1 < s ≤ 2,

Tn0 for 2 < s.

Finally, we define the measure µn0
on Tn0 by letting

µn0
({y}) := µn0,τ,F,G,m({y}) :=


F (i) if y = yi,j for some i ∈ [n0], j ∈ [2i−1],

G if y = y◦i,k for some i ∈ [n0], k ∈ [τn0,i],

mi if y = y′i,k for some i ∈ [n0], k ∈ [τn0,i],

where 0 < F ≤ 1 is a given function and G,m are positive numbers satisfying G ≤ 1/
∑n0

i=1 τn0,i

and m ≥ 2n0 .
We are ready to describe the third subtype of the second generation spaces.

Third subtype. Now for any fixed p0 ∈ (1,∞) we construct a space denoted by T3,p0 for which
P c

s (T3,p0) = P c
w(T3,p0) = P c

r (T3,p0) = [1,∞], Pw(T3,p0) = (p0,∞] and Pr(T3,p0) = [p0,∞]. Note
that the last two conditions imply Ps(T3,p0) = (p0,∞].

Fix p0 ∈ (1,∞). For any n ∈ N we choose n0 = n and consider Tn = (Tn, ρn, µn), where Tn,
ρn, and µn are introduced as before with the aid of mn, τn = (τn,i)

n
i=1, Fn defined as in the case

of S3,p0 and Gn = 2(1−n)/(p0−1)/
∑n

i=1 τn,i. Observe that we have |{y}| ≥ mn ≥ 2n ≥ |Tn \ T ′n|
for any y ∈ T ′n and |{y}| ≥ |T ◦n | for any y ∈ Tn \ T ◦n . We denote by T3,p0 the space obtained by
using Proposition 2.2.2 for Λ = N with Yn = Tn for each n ∈ N. The following lemma describes
the properties ofMc

T3,p0
andMT3,p0

.

Lemma 2.3.11. Fix p0 ∈ (1,∞) and let T3,p0 be the metric measure space defined above. Then
the associated centered maximal operator Mc

T3,p0
is of strong type (1, 1) while the noncentered

operatorMT3,p0
is not of weak type (p0, p0), but is of restricted weak type (p0, p0).

Proof. First we show thatMc
T3,p0

is of strong type (1, 1). We fix n ∈ N and restrict our attention
to Tn. Let f ∈ L1(Tn), f ≥ 0. The following estimates hold: for i ∈ [n] and j ∈ [2i−1],

Mc
Tnf(yi,j) ≤ f(yi,j) + 2ATn\T ′n

(f) +ATn(f),

and, for i′ ∈ [n] and k ∈ [τn,i],

Mc
Tnf(y◦i′,k) ≤ f(y◦i′,k) + sup

y∈Tn\T ◦n
f(y) +ATn(f),

Mc
Tnf(y′i′,k) ≤ f(y′i′,k) +A{y◦

i′,k,y
′
i′,k}

(f) +ATn(f).
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Observe that

2ATn\T ′n
(f) · |Tn \ (T ◦n ∪ T ′n)| ≤ 2‖f‖1

and

n∑
i′=1

τn,i∑
k=1

A{y◦
i′,k,y

′
i′,k}
· |{y′i′,k}| ≤ ‖f‖1.

Moreover, since |{y}| ≥ |T ◦n | for any y ∈ Tn \ T ◦n , we have

n∑
i′=1

τn,i∑
k=1

sup
y∈Tn\T ◦n

f(y) · |{y◦i′,k}| ≤ sup
y∈Tn\T ◦n

f(y) · |{y}| ≤ ‖f‖1,

and hence ‖Mc
Tn
f‖1 ≤ 6‖f‖1. Thus, cc

s(1,Tn) ≤ 6 for each n ∈ N which gives cc
s(1,T3,p0) <∞.

In the next step we show thatMT3,p0
is not of weak type (p0, p0). Indeed, fix n ∈ N and take

g :=

n∑
i=1

2i−1∑
j=1

2(n−i)/(p0−1)1{yi,j} ∈ L
p0(Tn).

Then ‖g‖p0p0 = 2n−1n andMTng(y′i′,k) ≥ AB(y◦
i′,k,3/2)(g) ≥ i′

2|{y′
i′,k}|

= 1
2mn

holds for each y′i′,k ∈ T ′n
which implies that |E1/(4mn)(MTng)| ≥ |T ′n|. Therefore,

‖MTng‖
p0
p0,∞

‖g‖p0p0
≥
∑n

i=1 τn,i imn

n2n−1(4mn)p0
= 21−2p0

∑n
i=1 τn,i i

nmp0−1
n 2n

= 21−2p0

∑n
i=1baic
n

= 21−2p0np0−1.

Thus, we obtain cw(p0,Tn)p0 ≥ 21−2p0np0−1 which gives cw(p0,T3,p0) & limn→∞ n
1−1/p0 =∞.

In the last step we show that MT3,p0
is of restricted weak type (p0, p0). Fix n ∈ N and

estimate cr(p0,Tn) from above. Let U ⊂ Tn, U 6= ∅, and λ ∈ (0,∞). Our goal is to estimate

λp0 |Eλ|/|U |, (2.3.12)

where Eλ := Eλ(MTn1U ). Denote U◦ = U ∩ T ◦n and U ′ = U ∩ T ′n. For any y ∈ Tn we have

MTn1U (y) ≤ 3 max
{
MTn1U◦(y), MTn1U ′(y), MTn1U\(U◦∪U ′)(y)

}
.

Thus, it suffices to find a bound for (2.3.12) with U being a subset of T ◦n , T ′n, or Tn \ (T ◦n ∪ T ′n).
Moreover, in each case we may assume that ATn(1U ) < λ < 1.

First, consider U ⊂ T ′n and assume that Eλ 6= ∅. Thus, we have |Eλ| ≤ 2|Eλ ∩ T ′n|. Observe
that there is no ball B ( Tn containing two different points from T ′n. Therefore, if y ∈ Eλ ∩ T ′n,
then y ∈ U and hence λp0 |Eλ| ≤ λ|Eλ| ≤ 2λ|Eλ ∩ T ′n| ≤ 2|U | follows.

Now take U ⊂ T ◦n . First, assume that Eλ ∩ T ′n 6= ∅. If y′i′,k ∈ Eλ ∩ T ′n, then y◦i′,k ∈ U and
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λ < |{y◦i′,k}|/|{y′i′,k}|. Consequently,

λp0 |Eλ| ≤ λ|Eλ| ≤ 2λ|Eλ ∩ T ′n| ≤ 2|U |

again follows. Next, assume that Eλ ⊂ Tn \ T ′n and Eλ 6⊂ T ◦n . In this case we have |Eλ| ≤
2|Eλ \(T ◦n ∪T ′n)|. Moreover, the volume of any ball B such that B \(T ◦n ∪T ′n) 6= ∅ and B∩T ◦n 6= ∅
is greater than |Tn \ (T ◦n ∪ T ′n)|. Therefore, if there exists y ∈ Eλ \ (T ◦n ∪ T ′n), then

λ <MTn1U (y) ≤ |U |/|Tn \ (T ◦n ∪ T ′n)|

which gives λp0 |Eλ| ≤ λ|Tn \T ′n| ≤ 2|U |. Assume the last case Eλ ⊂ T ◦n . Since there are no balls
B ⊂ T ◦n containing two different points from T ◦n , we have Eλ = U which gives λp0 |Eλ| ≤ |U |.

Finally, take U ⊂ Tn\(T ◦n∪T ′n) and assume that Eλ 6= ∅. First, consider the case Eλ∩T ′n = ∅.
Then we have |Eλ| ≤ 2|Eλ \ (T ◦n ∪ T ′n)|. If λ ≤ ATn\(T ◦n∪T ′n)(1U ), then

λp0 |Eλ| ≤ λ|Eλ| ≤ 2ATn\(T ◦n∪T ′n)(1U )|Eλ \ (T ◦n ∪ T ′n)| ≤ 2|U |.

Otherwise, assume that λ > ATn\(T ◦n∪T ′n)(1U ). Suppose that there exists y ∈ Eλ \ (T ◦n ∪ T ′n).
Since the volume of each ball B 3 y with radius s > 1 is greater than |Tn \ (T ◦n ∪T ′n)|, we deduce
that AB(1U ) ≤ λ. This means that y ∈ U . Consequently,

λp0 |Eλ| ≤ λ|Eλ| ≤ 2|Eλ \ (T ◦n ∪ T ′n)| = 2|U |.

Now consider the case Eλ ∩ T ′n 6= ∅. We have |Eλ| ≤ 2|Eλ ∩ T ′n|. Moreover, if B ( Tn

satisfies B ∩ T ′n 6= ∅, then for each fixed i ∈ [n] the ball B contains at most one of the points
yi,1, . . . , yi,2i−1 . Consequently, for each y0 ∈ T ′n we haveMTn1U (y0) ≤ C ·maxy∈U{MTn1{y}(y0)}
with C :=

∑∞
i=0 2−i(p0−1). Thus,

Eλ ∩ T ′n ⊂
⋃
y∈U

Eλ/C(MTn1{y}) ∩ T ′n

and hence it suffices to estimate properly the quantity λp0 |Eλ ∩ T ′n|/|U | assuming U = {yi,j} ⊂
Tn \ (T ◦n ∪ T ′n) and λ > ATn(1U ). In this case, for each y ∈ T ′n,i′,i,j , i′ ≥ i, we obtain

MTn1U (y) = AB(y,3/2)(1U ) ≤ 2(i−n)/(p0−1)/(mni
′),

while for y ∈ T ′n \
⋃n
i′=i T

′
n,i′,i,j we haveMTn1U (y) = ATn(1U ) < λ. Since

2(i−n)p0/(p0−1)

(mn i′)p0

i′∑
l=i

|T ′n,l,i,j | =
2(i−n)p0/(p0−1)

(mn i′)p0

i′∑
l=i

|T ′n,l|
2i−1

=
2(i−n)p0/(p0−1)

(i′)p0

i′∑
l=i

τn,l l

mp0−1
n 2i−1
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=
2(i−n)p0/(p0−1)

(i′)p0

i′∑
l=i

2n−i+1balc

≤ 2((i−n)/(p0−1))+1

∑i′

l=1 al
(i′)p0

= 2|U |,

we conclude that λp0 |Eλ ∩ T ′n| ≤ 2|U | holds.
We thus have cr(p0,Tn) . C(p0) independently of n ∈ N which gives cr(p0,T3,p0) <∞.

2.4 Proof of the main result

Proof of Theorem 2.1.3. Let P c
s , P c

w, P c
r , Ps, Pw, and Pr be such that the conditions (i)–(iii)

hold. We consider three cases. If P c
s = Ps, P c

w = Pw, and P c
r = Pr hold, then Z may be chosen

to be a first generation space. If, in turn, we have P c
s = P c

w = P c
r = [1,∞], but Ps 6= [1,∞], then

Z may be chosen to be a second generation space. Finally, if none of these cases occurs, then we
can find spaces S and T of the first and second generations, respectively, for which

• P c
s (S) = Ps(S) = P c

s , P c
w(S) = Pw(S) = P c

w, and P c
r (S) = Pr(S) = P c

r ,

• P c
s (T) = P c

w(T) = P c
r (T) = [1,∞], Ps(T) = Ps, Pw(T) = Pw, and Pr(T) = Pr.

We let Z to be the space obtained by using Proposition 2.2.2 for Λ = {1, 2} with Y1 = S and
Y2 = T. One can easily see that Z has the following properties:

• P c
s (Z) = P c

s (S) ∩ P c
s (T) = P c

s ∩ [1,∞] = P c
s ,

• P c
w(Z) = P c

w(S) ∩ P c
w(T) = P c

w ∩ [1,∞] = P c
w,

• P c
r (Z) = P c

r (S) ∩ P c
r (T) = P c

r ∩ [1,∞] = P c
r ,

• Ps(Z) = Ps(S) ∩ Ps(T) = P c
s ∩ Ps = Ps,

• Pw(Z) = Pw(S) ∩ Pw(T) = P c
w ∩ Pw = Pw,

• Pr(Z) = Pr(S) ∩ Pr(T) = P c
r ∩ Pr = Pr,

and therefore it may be chosen to be the expected space.
Finally, in view of Remark 2.2.3 each space Z specified above is nondoubling.



Chapter 3

Modified maximal operators

In the following chapter we investigate the strong and weak type (p, p) inequalities for the mod-
ified maximal operators, centeredMc

κ and noncentered Mκ. Here κ ∈ [1,∞) is a modification
parameter and the difference between these operators and the classical ones is that the measure
of the ball κB instead of B occurs in the averages. Roughly speaking, for larger κ the operators
are smaller which makes them easier to be bounded between certain function spaces. On the
other hand, the modification is so small thatMc

κ andMκ can successfully play the role ofMc

andM in many situations. This idea is due to Nazarov, Treil and Volberg [42], who introduced
and analyzed the centered operatorMc

3 in the context of arbitrary metric measure spaces.
The major part of the research concerning the strong and weak type (p, p) inequalities for

Mc
κ and Mκ was devoted to the case p = 1, especially to the weak type (1, 1) boundedness.

In addition to the aforementioned paper [42], there were several articles focused on the general
description of all situations in which the weak type (1, 1) inequality must occur (see, for example,
[43, 51]). Finally, it was proven in [48] thatMc

κ andMκ are of weak type (1, 1) for κ ∈ [2,∞)
and κ ∈ [3,∞), respectively, in case of any metric measure space with a measure that is finite
on bounded sets. Moreover, it is known that these ranges of the parameter κ are sharp in the
sense that for any κ ∈ [1, 2) (or κ ∈ [1, 3)) one can find a metric measure space such that Mc

κ

(orMκ) is not of weak type (1, 1). The examples we mention are given in [43, 49] (see also [44],
where certain details justifying the correctness of the construction described in [43] are given).

Our intention is to broaden the scope of research by taking into account both mentioned
types of inequalities for the full range of the parameter p. More precisely, for a given space
X and each κ ∈ [1,∞) we introduce P c

κ,s(X), P c
κ,w(X), Pκ,s(X), and Pκ,w(X), the sets of all

parameters p ∈ [1,∞] for which the associated operators, centeredMc
κ,X or noncenteredMκ,X,

are of strong or weak type (p, p), respectively. Among others, we study the interrelations between
P c
κ,s(X), P c

κ,w(X), Pκ,s(X), and Pκ,w(X), and illustrate many possible configurations of them by
using structures similar to those occurring in Chapter 2. It is worth noting at this point that
our constructions are largely inspired by the examples given in [49].

The organization of this chapter is as follows. In Section 3.1 we collect basic information
about modified maximal operators. We also explain how to adapt the space combining technique
described in Section 2.2 to the current situation. Section 3.2 is devoted to studying the case of
fixed κ. We formulate the main result and prove it by using some variants of the spaces introduced
in Chapter 2 and some new structures, the so-called segment-type spaces. In Section 3.3 we
investigate the case of varying κ which turns out to be much more complex. In particular, the
space combining technique is very extensively used here. Finally, in Section 3.4 some further
remarks and additional examples are given.

29
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3.1 Preliminaries

Let κ ∈ [1,∞). For a given metric measure space X = (X, ρ, µ) we define the associated modified
Hardy–Littlewood maximal operators, centeredMc

κ and noncenteredMκ, by

Mc
κf(x) :=Mc

κ,Xf(x) := sup
s∈(0,∞)

1

|B(x, κs)|

∫
B(x,s)

|f | dµ, x ∈ X,

and
Mκf(x) :=Mκ,Xf(x) := sup

B3x

1

|κB|

∫
B
|f |dµ, x ∈ X,

respectively. Here κB refers to the ball concentric with B and of radius κ times that of B. Note
that, in general, neither the center nor the radius of a ball as a set are uniquely determined.
Moreover, in the case κ ∈ (1,∞) it is possible that for some x, y ∈ X and s1, s2 ∈ (0,∞) we have
B(x, s1) = B(y, s2), while B(x, κs1) 6= B(y, κs2). If κ = 1, then the modified operators coincide
with the standard Hardy–Littlewood maximal operators, noncentered and centered, and hence
we will write shortlyMc orM instead ofMc

1 orM1. As usual, the balls B such that |B| = 0

or |κB| = ∞ are omitted in the definitions of Mc
κ and Mκ. However, unless otherwise stated,

in this chapter we assume that the measure of each ball is finite and strictly positive.

Denote by cc
s,X(κ, p) the best constant in the strong type (p, p) inequality for the operator

Mc
κ (if Mc

κ is not of strong type (p, p), then we write cc
s,X(κ, p) = ∞). Analogously, we define

cc
w,X(κ, p), cs,X(κ, p), and cw,X(κ, p) (the meaning of each of these symbols should be clear to

the reader). Below we present a variant of Proposition 2.2.2 which allows us to use the space
combining technique in an effective way when dealing with the modified operators.

Proposition 3.1.1. Let κ0 ∈ [1,∞). Fix ∅ 6= Λ ⊂ N and for each n ∈ Λ let Yn = (Yn, ρn, µn)

be a given metric measure space satisfying µn(Yn) < ∞ and diam(Yn) < ∞. Denote by Y the
space constructed as in Section 2.2 with the only modification that κ0 + 1 instead of 2 is used in
(2.2.1). Then for each κ ∈ [1, κ0] and p ∈ [1,∞] we have the following estimates:

cc
s,Y(κ, p) ' sup

n∈Λ
cc

s,Yn
(κ, p), cc

w,Y(κ, p) ' sup
n∈Λ

cc
w,Yn

(κ, p),

cs,Y(κ, p) ' sup
n∈Λ

cs,Yn(κ, p), cw,Y(κ, p) ' sup
n∈Λ

cw,Yn(κ, p).

Proof. The proof is identical to the proof of Proposition 2.2.2 and hence it is omitted.

Two comments are in order. First, whenever we want to apply Proposition 3.1.1 later on, we
omit the details related to the proper indexing of the component spaces. We do not even specify
Λ. The only important thing is that we always use at most countably many spaces. Second, we
have the following analogue of Remark 2.2.3.

Remark 3.1.2. If at least one space from the family {Yn : n ∈ Λ} is nondoubling or Λ is
infinite, then Y is nondoubling.
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3.2 Results for fixed modification parameter

In this section we assume that the parameter κ ∈ [1,∞) is fixed. For a given space X we introduce
P c
κ,s(X) and P c

κ,w(X), the sets consisting of all parameters p ∈ [1,∞] for which the associated
centered operatorMc

κ,X is of strong or weak type (p, p), respectively. Similarly, let Pκ,s(X) and
Pκ,w(X) consist of all parameters p ∈ [1,∞] for which the associated noncentered operatorMκ,X

is of strong or weak type (p, p), respectively. If κ = 1, then we write shortly P c
s (X) instead of

P c
1,s(X) and so on.
Below we list the conditions that the four sets must satisfy in general. As in Chapter 2, we

drop the dependence on X for a moment and replace P c
κ,s(X), P c

κ,w(X), Pκ,s(X), and Pκ,w(X) with
P c
κ,s, P c

κ,w, Pκ,s, and Pκ,w, respectively.

Observation 3.2.1. The following assertions hold for each metric measure space X such that
the associated measure is finite on bounded sets:

(i) Each of the sets P c
κ,s, P c

κ,w, Pκ,s, and Pκ,w is of the form {∞}, [p0,∞] or (p0,∞], for some
p0 ∈ [1,∞).

(ii) We have the following inclusions:

Pκ,s ⊂ P c
κ,s, Pκ,w ⊂ P c

κ,w, P c
κ,s ⊂ P c

κ,w ⊂ P c
κ,s, Pκ,s ⊂ Pκ,w ⊂ Pκ,s,

where E denotes the closure of E in the usual topology of R ∪ {∞}.

(iii) If κ ∈ [2,∞), then P c
κ,w = [1,∞].

(iv) If κ ∈ [3,∞), then Pκ,w = [1,∞].

Indeed, the condition (i) is a natural consequence of the L∞-boundedness of the considered op-
erators and the Marcinkiewicz interpolation theorem, while the condition (ii) is a consequence of
both the Marcinkiewicz interpolation theorem and several obvious implications between different
types of inequalities for different operators. Finally, the conditions (iii) and (iv) must be satisfied
in view of the results obtained in the literature (see [42, 43, 48, 51]).

Our goal is to show that (i)–(iv) are the only conditions that the four sets considered above
satisfy in general. Thus, the following theorem can be viewed as an analogue of Theorem 2.1.3
stated for the modified operators.

Theorem 3.2.2. Fix κ ∈ [1,∞). Let P c
κ,s, P c

κ,w, Pκ,s, and Pκ,w be arbitrary sets satisfying (i)–
(iv). Then there exists a (nondoubling) metric measure space Z for which the associated modified
Hardy–Littlewood maximal operators, centeredMc

κ,Z and noncenteredMκ,Z, satisfy the following
properties:

• Mc
κ,Z is of strong type (p, p) if and only if p ∈ P c

κ,s,

• Mc
κ,Z is of weak type (p, p) if and only if p ∈ P c

κ,w,

• Mκ,Z is of strong type (p, p) if and only if p ∈ Pκ,s,
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• Mκ,Z is of weak type (p, p) if and only if p ∈ Pκ,w.

We will prove Theorem 3.2.2 in Subsection 3.2.3. To do that we need a few auxiliary lemmas
which will be formulated in Subsections 3.2.1 and 3.2.2. The analysis will be made separately
for each of the following three cases: κ ∈ [1, 2), κ ∈ [2, 3), and κ ∈ [3,∞). We also emphasize
that the first two cases are the most interesting ones. Indeed, if κ ∈ [3,∞), then we have only
three possibilities depending on whetherMc

κ andMκ are of strong type (1, 1) or not.

3.2.1 First and second generation spaces

To prove Theorem 3.2.2 we use some of the results obtained in Chapter 2. Recall that the four
types of structures have been introduced there, namelyS = (S, ρ, µ), S = (S, ρ, µ), T = (T, ρ, µ),
and T = (T , ρ, µ). Since the restricted weak type inequalities are not considered in this chapter,
we may focus only on the spaces S and T here.

Note that for any space of type S the associated metric ρ takes only two nonzero values,
namely 1 and 2. Hence, in this case, for any κ ∈ [1, 2) the operatorsMc

κ,S andMκ,S coincide
withMc

S andMS, respectively. The key point here is that if κ ∈ [1, 2), then we can find s > 1

such that κs ≤ 2. Moreover, the same is true if an arbitrary space of type T is considered instead.
Thus, in Proposition 2.2.2 one can consider the modified operatorsMc

κ andMκ instead ofMc

andM, and the conclusion does not change. Namely, we have cc
s,Y(κ, p) ' supn∈Λ cc

s,Yn
(κ, p) and

so on. Consequently, one clearly gets that for each space Z obtained in Chapter 2 by applying
Proposition 2.2.2 to a certain family of spaces of types S or T, the following identities hold:

P c
κ,s(Z) = P c

s (Z), Pκ,s(Z) = Ps(Z), P c
κ,w(Z) = P c

w(Z), Pκ,w(Z) = Pw(Z).

In the case κ ∈ [2, 3) the situation is a bit different. The first change is that this time we
should use Proposition 3.1.1 with κ0 = κ instead of Proposition 2.2.2 in order to combine spaces
in an effective way. The second change is more crucial. Namely, if κ ∈ [2, 3), then for any
ball B ⊂ S (or B ⊂ T ) containing at least two points the ball κB coincides with the whole
space. This fact makes both modified maximal operators trivially bounded on L1(S) (or L1(T))
with their norms not larger than 2. However, a slight modification of the metric used in the
construction of T will allow us to obtain more subtle results.

Let (T, ρ, µ) be a given space of type T. We define the metric ρ′ determining the distance
between two different elements x, y ∈ T by the formula

ρ′(x, y) :=


1 if ρ(x, y) = 1,

2 if there exists z ∈ T such that ρ(x, z) = ρ(y, z) = 1,

3 otherwise.

We emphasize that ρ′ is well-defined. Indeed, it can easily be shown that there is no set {x, y, z} ⊂
T satisfying

ρ(x, y) = ρ(x, z) = ρ(y, z) = 1,

and thus the first two conditions in the definition of ρ′ cannot happen at the same time. We
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denote by T′ the space (T, ρ′, µ). In the following lemma we describe what happens if one uses
T′ instead of T to obtain the corresponding variant of the second generation spaces.

Lemma 3.2.3. Fix κ ∈ [2, 3) and consider a second generation space of either first or second
subtype T0. Let {Tn = (Tn, ρn, µn) : n ∈ N} be the family of component spaces used to define
T0. We denote by T′0 the space obtained by using Proposition 3.1.1 with κ0 = κ for the family
{T′n = (Tn, ρ

′
n, µn) : n ∈ N}, where ρ′n is the modification of ρn described above. Then we have

P c
κ,s(T

′
0) = P c

κ,w(T′0) = [1,∞], while Pκ,s(T′0) = Pκ,s(T0) and Pκ,w(T′0) = Pκ,w(T0).

Proof. Fix n ∈ N and notice that L1(Tn) and L1(T′n) are equal as Banach spaces. Moreover, we
claim that for any f ∈ L1(Tn) we have Mc

κ,T′n
f ≤ Mc

Tn
f and Mκ,T′n(f) ≤ MTn(f). Indeed,

regarding the centered operators suppose that f ≥ 0 and fix y0 ∈ Tn. If s ≤ 2, then we have the
inclusion Bρ′(y0, κs) ⊃ Bρ′(y0, s) = Bρ(y0, s), which implies that

1

|Bρ′(y0, κs)|
∑

y∈Bρ′ (y0,s)

f(y) · |{y}| ≤ 1

|Bρ(y0, s)|
∑

y∈Bρ(y0,s)

f(y) · |{y}| ≤ Mc
Tnf(y0).

On the other hand, if s > 2, then we have Bρ′(y0, κs) = Tn, which implies that

1

|Bρ′(y0, κs)|
∑

y∈Bρ′ (y0,s)

f(y) · |{y}| ≤ 1

|Tn|
∑
y∈Tn

f(y) · |{y}| ≤ Mc
Tnf(y0).

This gives Mc
κ,T′n

f ≤ Mc
Tn
f and the second claimed estimate may be verified analogously.

Consequently, we obtain the following identities and inclusions:

P c
κ,s(T

′
0) = P c

κ,w(T′0) = [1,∞], Pκ,s(T
′
0) ⊃ Ps(T0), Pκ,w(T′0) ⊃ Pw(T0).

Now it remains to show that ifMT0 is not of strong (or weak) type (p, p) for some p ∈ [1,∞),
then Mκ,T′0

fails to be of strong (or weak) type (p, p) for the same p. To this end, we recall
briefly the argument that was used in Chapter 2 to obtain a certain property ofMT0 and then
convince the reader that the situation is very similar in the context of Mκ,T′0

instead. For the
sake of brevity we describe only the case related to the strong type (p, p) inequalities.

Notice that each time when it was shown that the noncentered operator associated with the
second generation space T is not of strong type (p, p), the functions gn = 1{y0} ∈ Lp(Tn), n ∈ N,
were considered. Then, the maximal functionsMTngn were estimated from below by:

• the average value of gn on the ball B centered at yi with s = 3
2 (denoted by ABρn (yi,

3
2

)(gn))
for the points y′i with i ∈ [τn],

• 0 for all other points,

and finally it turned out that

lim
n→∞

‖MTn(gn)‖pp
‖gn‖pp

≥ lim
n→∞

∑τn
i=1

(
ABρn (yi,

3
2

)(gn)
)p |{y′i}|

‖gn‖pp
=∞.
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Let us assume that the estimate stated above holds for some p ∈ [1,∞). Take s > 1 such
that κs ≤ 3 and observe that Bρ′n(yi, s) = Bρn(yi,

3
2) and

|Bρ′n(yi, κs)| = |{y′i} ∪ (Tn \ T ′n)| ≤ 2|Bρn(yi, 3/2)|.

This implies thatMκ,T′n(gn)(y′i) ≥ 1
2ABρn (yi,

3
2

)(gn) and hence

lim
n→∞

‖Mκ,T′n(gn)‖p
‖gn‖p

=∞

as well. In view of Proposition 3.1.1, we obtain thatMκ,T′0
is not of strong type (p, p).

3.2.2 Segment-type spaces

Now we turn our attention to certain specific situations in which Mc
κ or Mκ are not of strong

type (1, 1) for some κ ∈ [2,∞) or κ ∈ [3,∞), respectively. We present a construction which
allows us to introduce the segment-type spaces mentioned before. Then, we specify two subtypes
of these spaces and prove auxiliary lemmas related to them.

Fix n0 ∈ N and let d = dn0 = (dn0,i)
n0
i=1 be a given system of strictly positive numbers. Set

Jn0
:= {x0, . . . , xn0}, where all elements are different. We define the metric ρn0 on Jn0 by

ρn0(xj , xk) := ρn0,d(xj , xk) :=

k∑
i=j+1

dn0,i,

where j, k ∈ {0}∪ [n0] with j < k. Figure 3.1 shows a model of the space (Jn0 , ρn0) with n0 = 4.

x0 x1 x2 x3 x4

d4,1 d4,2 d4,3 d4,4

Figure 3.1: The segment-type space (Jn0 , ρn0) with n0 = 4.

We define the measure µn0 on Jn0 by letting

µn0({xi}) := µn0,d,F ({xi}) := F (i),

where F > 0 is a given function.
We are ready to describe two subtypes of segment-type spaces.

First subtype. Now for any fixed κ ∈ [2,∞) we construct a space denoted by J1,κ for which
P c
κ,s(J1,κ) = Pκ,s(J1,κ) = (1,∞] and P c

κ,w(J1,κ) = Pκ,w(J1,κ) = [1,∞].
Fix κ ∈ [2,∞). For each n ∈ N we choose n0 = n and consider Jn = (Jn, ρn, µn), where Jn,

ρn, and µn are introduced as before with the aid of dn,i = (κ+ 1)i for each i ∈ [n] and Fn(i) = 1

for each i ∈ {0} ∪ [n].
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We denote by J1,κ the space Y obtained by Proposition 3.1.1 with κ0 = κ for the family
{Jn : n ∈ N}. In the following lemma we describe the properties ofMc

κ,J1,κ andMκ,J1,κ .

Lemma 3.2.4. Fix κ ∈ [2,∞) and let J1,κ be the metric measure space defined above. Then
the associated modified maximal operators, centered Mc

κ,J1,κ and noncentered Mκ,J1,κ, are not
of strong type (1, 1), but are of weak type (1, 1).

Proof. First we show that Mc
κ,J1,κ is not of strong type (1, 1). Fix n ∈ N and let g := 1x0 ∈

L1(Jn). Then ‖g‖1 = 1 holds. Observe that for each j ∈ [n− 1] we have

κ

j∑
i=1

dn,i < dn,j+1.

Consequently, there exists sj ∈ (0,∞) such that B(xj , sj) = B(xj , κsj) = {x0, . . . , xj}, which
implies thatMc

κ,Jng(xj) ≥ 1
j+1 holds. Therefore, for each n ∈ N we obtain

cc
s,Jn(κ, 1) ≥

‖Mc
κ,Jng‖1
‖g‖1

≥
n−1∑
j=1

1

j + 1

and, consequently, cc
s,J1,κ(κ, 1) =∞.

It remains to show thatMκ,J1,κ is of weak type (1, 1). We fix n ∈ N and estimate cw,Jn(κ, 1)

from above. Let f ∈ L1(Jn), f ≥ 0, and consider λ ∈ (0,∞) such that Eλ := Eλ(Mκ,Jnf) 6= ∅.
Observe that, because of the linear structure of Jn, any ball B ⊂ Jn is of the form {xi, . . . , xj}
for some i, j ∈ {0} ∪ [n] with i ≤ j. Define B := {B ⊂ Jn :

∑
x∈B f(x)/|κB| > λ} and observe

that the elements of B form a cover of Eλ. By using the fact that each element of B has the
form described above, we can find a subcover B′ such that each x ∈ Eλ belongs to at most two
elements of B′. Therefore,

λ · |Eλ| ≤
∑
B∈B′

λ · |B| ≤
∑
B∈B′

(∑
x∈B

f(x)
) |B|
|κB|

≤ 2
∑
x∈Eλ

f(x) ≤ 2‖f‖1.

Consequently, for each n ∈ N we have cw,Jn(κ, 1) ≤ 2, which implies that cw,J1,κ(κ, 1) <∞.

Second subtype. Now for any fixed κ ∈ [3,∞) we construct a space denoted by J2,κ for which
Pκ,s(J2,κ) = (1,∞] and P c

κ,s(J2,κ) = P c
κ,w(J2,κ) = Pκ,w(J2,κ) = [1,∞].

Fix κ ∈ [3,∞). For each n ∈ N we choose n0 = n and consider Jn = (Jn, ρn, µn), where Jn,
ρn, and µn are introduced as before with the aid of dn,i = (κ − 1

2)i for each i ∈ [n] and Fn(i)

chosen (uniquely) in such a way that Fn(0) = 1 and Fn(i+ 1) = 2i+1Fn(i) for each i ∈ [n].
We denote by J2,κ the space Y obtained by Proposition 3.1.1 with κ0 = κ for the family

{Jn : n ∈ N}. In the following lemma we describe the properties ofMc
κ,J2,κ andMκ,J2,κ .

Lemma 3.2.5. Fix κ ∈ [3,∞) and let J2,κ be the metric measure space defined above. Then the
associated modified centered maximal operatorMc

κ,J2,κ is of strong type (1, 1), while the modified
noncentered operatorMκ,J2,κ is not of strong type (1, 1), but is of weak type (1, 1).
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Proof. Since κ ∈ [3,∞), the operator Mκ,J2,κ is of weak type (1, 1). Hence, it suffices to show
that Mκ,J2,κ is not of strong type (1, 1), while Mc

κ,J2,κ is of strong type (1, 1). Moreover, we
notice that for each n ∈ N and j ∈ {0} ∪ [n− 1] we have the inequalities

∑j
i=1 dn,i < dn,j+1 and∑j

i=1 Fn(i) < Fn(j + 1).
First we show thatMκ,J2,κ is not of strong type (1, 1). Fix n ∈ N and let g := 1x0 ∈ L1(J ′n).

Then ‖g‖1 = 1 holds. Observe that for each j ∈ [n− 1] we have

j−1∑
i=1

dn,i < dn,j <
dn,j+1

κ− 1
.

Consequently, there exists sj ∈ (0,∞) such that B(xj−1, sj) = B(xj−1, κsj) = {x0, . . . , xj},
which implies thatMκ,Jng(xj) ≥ 1

2 |{xj}|
−1 holds. Therefore, for each n ∈ N we obtain

cs,J ′n(κ, 1) ≥
‖Mc

κ,Jng‖1
‖g‖1

≥ n− 1

2

and, consequently, cs,J2,κ(κ, 1) =∞.
It remains to show thatMc

κ,J2,κ is of strong type (1, 1). Fix n ∈ N and estimate cc
s,Jn(κ, 1)

from above. Let f ∈ L1(Jn), f ≥ 0. Observe that for each j ∈ [n − 1] we have κdn,j > dn,j+1.
Thus, if B is centered at xj and xj−1 ∈ B, then xj+1 ∈ κB. From this for each j ∈ {0} ∪ [n− 1]

we deduce the following estimate

Mc
κ,Jnf(xj) ≤

∑j−1
i=0 f(xi)|{xi}|
|{xj+1}|

+
n∑
i=j

f(xi),

while for j = n we obtainMc
κ,Jnf(xn) ≤ ‖f‖1/|{xn}|. Therefore,

n∑
j=0

Mc
κ,Jnf(xj)|{xj}| ≤

n∑
j=0

f(xj)|{xj}|
(

2 +

n−1∑
i=j+1

|{xi}|
|{xi+1}|

+

j−1∑
i=0

|{xi}|
|{xj}|

)
≤ 4‖f‖1.

Since cc
s,Jn(κ, 1) ≤ 4 holds for each n ∈ N, we conclude that cc

s,J2,κ(κ, 1) <∞.

3.2.3 Proof of the main result

Proof of Theorem 3.2.2. First we note that if P c
κ,s = Pκ,s = P c

κ,w = Pκ,w = [1,∞], then one can
find a first generation space Z for which P c

s (Z) = Ps(Z) = P c
w(Z) = Pw(Z) = [1,∞], and hence

we also have P c
κ,s(Z) = Pκ,s(Z) = P c

κ,w(Z) = Pκ,w(Z) = [1,∞] for every κ ∈ [1,∞). Therefore,
from now on, assume that Pκ,s (and possibly some other sets) is a proper subset of [1,∞]. We
shall consider the following cases: κ ∈ [1, 2), κ ∈ [2, 3) and κ ∈ [3,∞).

Suppose that κ ∈ [1, 2). Then the sets P c
κ,s, Pκ,s, P c

κ,w, and Pκ,w satisfy (i) and (ii), while the
remaining two conditions are empty. We can find two spaces S and T of the first and second
generations, respectively, for which

• P c
s (S) = Ps(S) = P c

κ,s and P c
w(S) = Pw(S) = P c

κ,w,
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• P c
s (T) = P c

w(T) = [1,∞], Ps(T) = Pκ,s and Pw(T) = Pκ,w,

and, in view of the observation made in Section 3.2.1, the same identities hold with P c
κ,s(S) in

place of P c
s (S) and so on. Now we let Z be the space obtained by using Proposition 3.1.1 with

κ0 = κ for S and T. One can easily see that Z has the following properties:

• P c
κ,s(Z) = P c

κ,s(S) ∩ P c
κ,s(T) = P c

κ,s ∩ [1,∞] = P c
κ,s,

• P c
κ,w(Z) = P c

κ,w(S) ∩ P c
κ,w(T) = P c

κ,w ∩ [1,∞] = P c
κ,w,

• Pκ,s(Z) = Pκ,s(S) ∩ Pκ,s(T) = P c
κ,s ∩ Pκ,s = Pκ,s,

• Pκ,w(Z) = Pκ,w(S) ∩ Pκ,w(T) = P c
κ,w ∩ Pκ,w = Pκ,w,

and therefore it may be chosen to be the expected space.
Next, suppose that κ ∈ [2, 3). Then the sets P c

κ,s, Pκ,s, P c
κ,w, and Pκ,w satisfy (i)–(iii), while

the condition (iv) is empty. We can find a second generation space T for which P c
s (T) = P c

w(T) =

[1,∞] = P c
κ,w, Ps(T) = Pκ,s, and Pw(T) = Pκ,w, and therefore we obtain the same identities

with P c
s (T), Ps(T), P c

w(T), and Pw(T) replaced by P c
κ,s(T

′), Pκ,s(T′), P c
κ,w(T′), and Pκ,w(T′),

respectively, where T′ is the modification of T considered in Lemma 3.2.3. If P c
κ,s = [1,∞], then

the expected space may be chosen to be just T′. Otherwise (that is, if P c
κ,s = (1,∞]) we use

Proposition 3.1.1 with κ0 = κ for T′ and the space J1,κ considered in Lemma 3.2.4. Then the
obtained space Y satisfies P c

κ,s(Y) = P c
κ,s, Pκ,s(Y) = Pκ,s, P c

κ,w(Y) = P c
κ,w, and Pκ,w(Y) = Pκ,w.

Finally, suppose that κ ∈ [3,∞) and the sets P c
κ,s, Pκ,s, P c

κ,w, and Pκ,w satisfy (i)–(iv). If
P c
κ,s = Pκ,s = (1,∞], then the expected space may be chosen to be the space J1,κ considered

in Lemma 3.2.4. Otherwise, if P c
κ,s = [1,∞] and Pκ,s = (1,∞], then the expected space may be

chosen to be the space J2,κ considered in Lemma 3.2.5.
Finally, in view of Remark 3.1.2 each space Z specified above is nondoubling.

3.3 Results for varying modification parameter

This section is devoted to studying the case of varying parameter κ ∈ [1,∞). For the sake of
clarity, we focus only on the weak type (p, p) inequalities. For a given metric measure space X

let us define two auxiliary functions

hc
X(κ) := inf{p ∈ [1,∞] : cc

w,X(κ, p) <∞} and hX(κ) := inf{p ∈ [1,∞] : cw,X(κ, p) <∞}.

SinceMc
2,X andM3,X are of weak type (1, 1), we can assume that the domains of hc

X and hX are
[1, 2] and [1, 3], respectively. The following assertions hold:

(i) We have hc
X : [1, 2]→ [1,∞] and hX : [1, 3]→ [1,∞].

(ii) Both hc
X and hX are nonincreasing.

(iii) For for κ ∈ [1, 2] we have h(κ) ≥ hc
X(κ).

(iv) We have hc
X(2) = hX(3) = 1.
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(v) For each κ ∈ [1, 2], if hc
X(κ) = ∞, then P c

κ,w(X) = {∞}, and if hc
X(κ) < ∞, then either

P c
κ,w(X) = (hc

X(κ),∞] or P c
κ,w(X) = [hc

X(κ),∞].

(vi) For each κ ∈ [1, 3], if hX(κ) = ∞, then Pκ,w(X) = {∞}, and if hX(κ) < ∞, then either
Pκ,w(X) = (hX(κ),∞] or Pκ,w(X) = [hX(κ),∞].

Our principal motivation is to take arbitrary functions hc and h such that (i)–(iv) hold with
hc and h in place of hc

X and hX, respectively, and to ask whether it is possible to find a metric
measure space Z such that (v) and (vi) hold with P c

κ,w(X), Pκ,w(X), hc
X, and hX replaced by

P c
κ,w(Z), Pκ,w(Z), hc, and h, respectively. It turns out that the answer is always positive. Namely,

we have the following theorem.

Theorem 3.3.1. Let hc and h be such that (i)–(iv) hold with hc and h in place of hc
X and

hX, respectively. Then there exists a metric measure space Z such that for each κ ∈ [1, 2) the
associated modified centered maximal operatorMc

κ,Z is of weak type (p, p) if and only if p > hc(κ)

or p = ∞, while for each κ ∈ [1, 3) the modified noncentered maximal operator Mκ,Z is of weak
type (p, p) if and only if p > h(κ) or p =∞.

One comment is in order. Observe that the conditions (i)–(vi) usually do not cover complete
information about the finiteness of cc

w,X(κ, p) and cw,X(κ, p). Namely, having only the values
of hc

X and hX available, one is often unable to determine whether the values cc
w,X(κ, hc

X(κ)) for
κ ∈ [1, 2) and cw,X(κ, hX(κ)) for κ ∈ [1, 3), are finite or not. Sometimes, there can be many
possible cases depending on X and the characterization of them is a difficult problem which will
not be treated here. Nevertheless, the obtained results may be helpful to find a general principle
related to this issue.

We prove Theorem 3.3.1 in Subsection 3.3.3. Before that, in Subsections 3.3.1 and 3.3.2 some
auxiliary structures are considered. From now on we write shortly cc

X(κ, p) and cX(κ, p) instead
of cc

w,X(κ, p) and cw,X(κ, p), respectively.

3.3.1 Basic spaces

In this subsection we introduce and analyze certain simple structures which we call the basic
spaces later on. Studying this class of structures allows us to produce many examples of spaces
for which the associated modified maximal operators have very specific properties. We consider
two types of basic spaces which are denoted by S and T in order to indicate their similarity to
the components of the first and second generation spaces, respectively.

First type. Fix τ ∈ N, d ∈ (1, 2], and m ∈ [1,∞). We introduce the basic space of the first
type S = Sτ,d,m = (S, ρ, µ) as follows. Set S := {x0, . . . , xτ}. Define ρ by letting

ρ(x, y) := ρd(x, y) :=

{
1 if x0 ∈ {x, y},
d otherwise,
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where x and y are two different elements of S. Finally, take µ defined by

µ({xi}) := µm({xi}) :=

{
1 if i = 0,

m if i ∈ [τ ].

Figure 3.2 shows a model of the basic space S.

x0

x1 x2 xτ−1 xτ...

Figure 3.2: The basic space of the first type.

We can explicitly describe any ball:

B(x0, s) =

{
{x0} for 0 < s ≤ 1,

S for 1 < s,

and, for i ∈ [τ ],

B(xi, s) =


{xi} for 0 < s ≤ 1,

{x0, xi} for 1 < s ≤ d,
S for d < s.

In the following lemma we describe the properties ofMc
κ,S andMκ,S for all κ ∈ [1,∞).

Lemma 3.3.2. Let S be the basic space of the first type defined above. Then

cS(κ, p) ' cc
S(κ, p) '

{
max{1, τ1/pm1/p−1} if κ ∈ [1, d) and p ∈ [1,∞),

1 if κ ∈ [d,∞) or p =∞.

Proof. First we notice that, in view of the inequality cS(κ, p) ≥ cc
S(κ, p), it suffices to estimate

cS(κ, p) from above and cc
S(κ, p) from below by the appropriate terms.

Let f : S → [0,∞). Clearly, we have Mc
κ,Sf ≥ f and hence cc

S(κ, p) ≥ 1 holds for any
κ ∈ [1,∞) and p ∈ [1,∞]. Next, if κ ∈ [d,∞) and p ∈ [1,∞), then for any ball B containing at
least two points, the ball κB coincides with S. Therefore, for each x ∈ S we have

Mc
κ,Sf(x) ≤ f(x) +AS(f).

Applying Hölder’s inequality we obtain ‖Mc
κ,Sf‖

p
p ≤ 2p−1‖f‖pp which implies that cS(κ, p) ≤

2(p−1)/p . 1 holds. Obviously, we also have cS(κ,∞) ≤ 1 for each κ ∈ [1,∞). Thus, it remains
to analyze the case κ ∈ [1, d) and p ∈ [1,∞).

Write f = f1 + f2 with f1 := f ·1{x0} and f2 := f ·1S\{x0}. SinceMκ,S is sublinear, we have
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Mκ,Sf ≤ Mκ,Sf1 +Mκ,Sf2. Observe that Mκ,Sf1(x0) = f1(x0) and Mκ,Sf1(xi) ≤ 1
mf1(x0)

for each i ∈ [τ ]. Thus, ‖Mκ,Sf1‖pp ≤ (1 + τm1−p) ‖f1‖pp. For f2, in turn, we have the estimate
Mκ,Sf2 ≤ f2 + AS(f2), which gives ‖Mκ,Sf2‖pp ≤ 2p−1‖f2‖pp. Therefore, ‖Mκ,Sf‖pp ≤ 2p−1(1 +

τm1−p + 2p−1)‖f‖pp holds and, consequently, we obtain

cS(κ, p) ≤
(
2p−1(1 + τm1−p + 2p−1)

)1/p
. max{1, τ1/pm1/p−1}.

Finally, let g := 1{x0}. Then ‖g‖p = 1 andMc
κ,Sf(xi) = 1

m+1 >
1

2m for each i ∈ [τ ]. Thus,

cc
S(κ, p) ≥ 1

2m

∣∣E 1
2m

(g)
∣∣1/p & τ1/pm1/p−1

and, combining this with the inequality cc
S(κ, p) ≥ 1, we obtain the desired estimate.

Second type. Fix τ ∈ N, d ∈ (1, 3], and m ∈ [1,∞). We introduce the basic space of the second
type T = Tτ,d,m = (T, ρ, µ) as follows. Set T := {y0, y

◦
1, . . . , y

◦
τ , y
′
1, . . . , y

′
τ}. We use auxiliary

symbols for certain subsets of T : T ◦ := {y◦1, . . . , y◦τ}, T ′ := {y′1, . . . , y′τ}, and, for each i ∈ [τ ],
Ti := {y◦i , y′i}. Define ρ by the formula

ρ(x, y) := ρd(x, y) :=


1 if y0 ∈ {x, y} ⊂ T \ T ′ or {x, y} = Ti for some i ∈ [τ ],

d+1
2 if {x, y} ⊂ T ◦ or {x, y} ⊂ T \ T ◦,
d otherwise,

where x and y are two different elements of T . Finally, take µ defined by

µ({y}) := µm({y}) :=


1 if y = y0,
1
τ if y = y◦i for some i ∈ [τ ],

m if y = y′i for some i ∈ [τ ].

Figure 3.3 shows a model of the space T. Adding an imaginary point at the top makes ρ easily
readable as a minor modification of the geodesic distance on the graph.

y0

y◦1 y◦2 y◦τ−1 y◦τ...

y′1 y′2 y′τ−1 y′τ...

Figure 3.3: The basic space of the second type.
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Once again we explicitly describe any ball:

B(y0, s) =


{y0} for 0 < s ≤ 1,

T \ T ′ for 1 < s ≤ d+1
2 ,

T for d+1
2 < s,

and, for i ∈ [τ ],

B(y◦i , s) =


{y◦i } for 0 < s ≤ 1,

{y0} ∪ Ti for 1 < s ≤ d+1
2 ,

{y0, y
′
i} ∪ T ◦ for d+1

2 < s ≤ d,
T for d < s,

and

B(y′i, s) =


{y′i} for 0 < s ≤ 1,

Ti for 1 < s ≤ d+1
2 ,

{y0, y
◦
i } ∪ T ′ for d+1

2 < s ≤ d,
T for d < s.

In the following lemma we describe the properties ofMc
κ,T andMκ,T, κ ∈ [1,∞).

Lemma 3.3.3. Let T be the basic space of the second type defined above. Then cc
T(κ, p) ' 1 for

all κ ∈ [1,∞) and p ∈ [1,∞], while

cT(κ, p) '

{
max{1, τ1/pm1/p−1} if κ ∈ [1, d) and p ∈ [1,∞),

1 if κ ∈ [d,∞) or p =∞.

Proof. First, note that cc
T(κ, p) ≥ 1 and cT(κ, p) ≥ 1 for all κ ∈ [1,∞) and p ∈ [1,∞]. Moreover,

both cc
T(κ, p) and cT(κ, p) are nonincreasing as functions of κ. Therefore, to prove that cc

T(κ, p) '
1, it remains to show that cc

T(1, p) . 1.

Let f : T → [0,∞). Observe that max{Mc
Tf(y) : y ∈ T} = max{f(y) : y ∈ T} which implies

that cc
T(1,∞) = 1. Now assume that p ∈ [1,∞). We have

Mc
Tf(y0) ≤ max{f(y0), AT\T ′(f), AT (f)}.

Moreover, since the estimate |{y0, y
◦
i } ∪ T ′| ≥ |T ′| ≥ |T |/3 holds for each i ∈ [τ ], we obtain

A{y0,y◦i }∪T ′(f) ≤ 3AT (f) and, consequently,

Mc
Tf(y′i) ≤ max{f(y′i), ATi(f), 3AT (f)}.

Finally, observe that

A{y0}∪Ti(f) ≤ max{f(y0), ATi(f)} ≤ max{Mc
Tf(y0),Mc

Tf(y′i)}

and
A{y0,y′i}∪T ◦(f) ≤ max{AT\T ′(f), f(y′i)} ≤ max{Mc

Tf(y0),Mc
Tf(y′i)}.
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Consequently,
Mc

Tf(y◦i ) ≤ max{f(y◦i ),Mc
Tf(y0),Mc

Tf(y′i), AT (f)}.

Therefore, since |{y◦i }| ≤ |{y′i}| and
∑τ

i=1 |{y◦i }| = |{y0}|, we can estimate ‖Mc
Tf‖

p
p by

2
(∑
y∈T

f(y)p|{y}|+ 3pAT (f)p|T |+AT\T ′(f)p|{y0}|+
τ∑
i=1

ATi(f)p|{y′i}|
)
.

Applying Hölder’s inequality we obtain ‖Mc
Tf‖

p
p ≤ 2(3p + 3)‖f‖pp and hence cc

T(1, p) ≤ 12.

From now on we discuss only the noncentered case. It is easy to verify that cT(κ, p) ' 1 if
κ ∈ [d,∞) or p = ∞, arguing as in the proof of Lemma 3.3.2. In the next step we prove that
cT(κ, p) . max{1, τ1/pm1/p−1} holds for κ ∈ [1, d) and p ∈ [1,∞). In fact, it suffices to consider
the case κ = 1. Take f ≥ 0 and observe that we have

MTf(y0) ≤ max{f(y0), AT\T ′(f),MTf(y′1), . . . ,MTf(y′τ )},

since {y0} and T \ T ′ are the only balls containing y0 and disjoint with T ′. Furthermore,

MTf(y◦i ) ≤ max{f(y◦i ),MTf(y0),MTf(y′1), . . . ,MTf(y′τ )}

holds for each i ∈ [τ ]. Notice that if y′i ∈ B ⊂ T , then either B ⊂ {y0, y
′
i} ∪ T ◦ or |B| ≥ 1

3 |T |.
Since |{y′i}| ≥ 1

3 |{y0, y
′
i} ∪ T ◦|, we obtain

MTf(y′i) ≤ 3 max{A{y0,y′i}∪T ◦(f), AT (f)}.

Since |{y0, y
◦
i , y
′
i}| ≤ 3|{y′i}| holds for each i ∈ [τ ], we arrive at the inequality

‖MTf‖pp ≤ 3
( ∑
y∈T\T ′

f(y)p|{y}|+AT\T ′(f)p|{y0}|+ 3pAT (f)p|T ′|+ 3p
τ∑
i=1

A{y0,y′i}∪T ◦(f)p|{y′i}|
)

and, since |{y0, y
′
i} ∪ T ◦| ≥ |{y′}|, by Hölder’s inequality the last sum above is controlled by

2p−1
τ∑
i=1

(
f(y′i)

p + ‖f · 1T\T ′‖
p
1|{y

′
i}|−p

)
|{y′i}| ≤ 2p−1

( τ∑
i=1

f(y′i)
p|{y′i}|+ τm1−p‖f · 1T\T ′‖

p
1

)
.

Notice that |T \ T ′| = 2. We apply Hölder’s inequality again in order to get

‖MTf‖pp ≤ 3
(
2 + 3p + 3 · 6p−1(1 + 2p−1τm1−p)

)
‖f‖pp,

and, consequently, we obtain cT(1, p) . max{1, τ1/pm1/p−1}.

Finally, we estimate cc
T(κ, p) from below for κ ∈ [1, d) and p ∈ [1,∞). Take g := 1{y0}. Then

we have ‖g‖p = 1 andMc
κ,Tg(y′i) = (1 + 1

τ +m)−1 > (3m)−1 for each i ∈ [τ ]. Thus,

cc
T(κ, p) ≥ 1

3m

∣∣E 1
3m

(g)
∣∣1/p & τ1/pm1/p−1
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and, combining this with the inequality cc
T(κ, p) ≥ 1, we obtain the desired estimate.

3.3.2 Composite spaces

In the following subsection we use Proposition 3.1.1 for certain properly chosen families of basic
spaces. The structures obtained here can be regarded as intermediate objects between basic
spaces and the spaces we want to construct in the proof of Theorem 3.2.2.

Lemma 3.3.4. Fix κ̃ ∈ [1, 2), p̃ ∈ [1,∞), ε ∈ (0, 1
4 ], δ ∈ (0, 2 − κ̃), and N ∈ N. For each

n ∈ N \ [N ] let Sn = Sτn,dn,mn be the basic space of the first type constructed with the aid of
τn = N2p̃bnp̃(p̃−1)/εc, dn = κ̃ + δ

n , and mn = np̃/ε. Denote by S̃ = S̃κ̃,p̃,ε,δ,N the space obtained
by applying Proposition 3.1.1 for κ0 = κ̃+ δ and the family {Sn : n ∈ N \ [N ]}. Then

c
S̃

(κ, p) ' cc
S̃

(κ, p)

for all κ ∈ [1,∞) and p ∈ [1,∞]. Moreover, the following assertions hold:

(a) If κ ∈ [κ̃+ δ,∞) or p ∈ [p̃+ 4ε,∞], then c
S̃

(κ, p) ' 1.

(b) If κ ∈ (κ̃,∞), then c
S̃

(κ, p) <∞.

(c) If κ ∈ [1, κ̃] and p ∈ [1, p̃), then c
S̃

(κ, p) =∞.

(d) If p ∈ [p̃,∞], then c
S̃

(κ, p) . N2.

(e) If κ ∈ [1, κ̃] and p ∈ [p̃, p̃+ ε], then c
S̃

(κ, p) & N1/2.

Figure 3.4 describes the behavior of the function c
S̃

(κ, p) (and thus also of cc
S̃

(κ, p)).

κ

p

1

p̃

p̃+ ε

p̃+ 4ε

1 κ̃ κ̃+ δ

=∞ <∞

& N1/2 ' 1

. N2

' 1

Figure 3.4: The behavior of the function c
S̃

(κ, p).

Proof. First, observe that c
S̃

(κ, p) ' cc
S̃

(κ, p) for κ ∈ [1, κ0] and p ∈ [1,∞]. Indeed, in this case

cSn(κ, p) ' cc
Sn(κ, p)



44 Chapter 3. Modified maximal operators

holds for each n ∈ N\ [N ], and hence the same is true if we take the supremum over n. Moreover,
we have κ0 ≥ dn for each n, which implies that c

S̃
(κ0, p) ' cc

S̃
(κ0, p) ' 1 for all p ∈ [1,∞].

Combining this with the facts that c
S̃

(κ, p) and cc
S̃

(κ, p) are estimated from below by 1 and
nonincreasing as functions of κ, we conclude that c

S̃
(κ, p) ' cc

S̃
(κ, p) holds for the full ranges of

the parameters κ and p.
Now, to prove (a), it suffices to show that c

S̃
(1, p) ' 1 for p ∈ [p̃ + 4ε,∞). For each such p

and any n ∈ N \ [N ] we have the inequality

cSn(1, p) . 1 +N2p̃/p · np̃(p̃−1)/(εp) · np̃(1−p)/(εp)

. 1 +N2p̃/p · np̃(p̃−p)/(εp) . 1 +N2n−2 . 1,

since 1 ≤ p̃/p ≤ 2 and p̃− p ≤ −4ε. This implies that

c
S̃

(1, p) . sup
n∈N∩(N,∞)

cSn(1, p) . 1.

The condition (b), in turn, is a simple consequence of the fact that if κ ∈ (κ̃,∞), then dn > κ

holds only for finitely many values of n. Next, consider κ ∈ [1, κ̃] and p ∈ [1, p̃) (of course, we
can do this only if p̃ ∈ (1,∞)). Then

lim sup
n→∞

cSn(κ, p) & lim
n→∞

N2p̃/p · np̃(p̃−1)/(εp) · np̃(1−p)/(εp) & lim
n→∞

N2p̃/p · np̃(p̃−p)/(εp) =∞

and hence (c) holds. To prove (d) assume that p ∈ [p̃,∞) (the case p = ∞ is trivial). For each
n ∈ N \ [N ] we have

cSn(κ, p) . 1 +N2p̃/p · np̃(p̃−1)/(εp) · np̃(1−p)/(εp)

. 1 +N2p̃/p · np̃(p̃−p)/(εp) ≤ 1 +N2 · 1 . N2

which gives
c
S̃

(κ, p) . sup
n∈N∩(N,∞)

cSn(κ, p) . N2.

Finally, take κ ∈ [1, κ̃] and p ∈ [p̃, p̃+ ε]. Since 3
4 ≤ p̃/p ≤ 1 and −ε ≤ p̃− p ≤ 0, we have

c
S̃

(κ, p) & cS2N
(κ, p) & N2p̃/p · (2N)p̃(p̃−1)/(εp) · (2N)p̃(1−p)/(εp)

& N2p̃/p · (2N)p̃(p̃−p)/(εp) & N3/2 ·N−1 = N1/2,

which justifies (e) and completes the proof.

Lemma 3.3.5. Fix κ̂ ∈ (1, 2] (respectively, κ̂ ∈ [1, 2)). For each n ∈ N let Sn = Sτn,dn,mn

be the basic space of the first type constructed with the aid of τn = n, dn = κ̂ (respectively,
dn = κ̂+ 2−κ̂

n ), and mn = 1. Denote by Ŝ = Ŝκ̂ the space obtained by applying Proposition 3.1.1
for κ0 = 2 and the family {Sn : n ∈ N}. Then c

Ŝ
(κ, p) =∞ if and only if κ ∈ [1, κ̂) (respectively,

κ ∈ [1, κ̂]) and p ∈ [1,∞), and the same is true with cc
Ŝ

(κ, p) in place of c
Ŝ

(κ, p).

Proof. We prove only the first version of this lemma and the second one may be verified similarly.
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Assume that p ∈ [1,∞) (the case p =∞ is trivial). If κ ∈ [1, κ̂), then for any n ∈ N we have
κ < dn and hence cc

Sn
(κ, p) ' n1/p. Therefore,

c
Ŝ

(κ, p) ≥ cc
Ŝ

(κ, p) & lim sup
n→∞

cSn(κ, p) ' lim
n→∞

n1/p =∞.

Consider the remaining case κ ∈ [κ̂,∞). Since κ̂ = dn, we have cSn(κ̂, p) ' 1. Consequently,

cc
Ŝ

(κ, p) ≤ c
Ŝ

(κ, p) ≤ c
Ŝ

(κ̂, p) . 1 <∞,

which completes the proof.

Finally, we notice (without furnishing the detailed proof) that using the adequate spaces
Tτn,dn,mn instead of Sτn,dn,mn leads to the following counterparts of Lemmas 3.3.4 and 3.3.5.

Lemma 3.3.6. Fix κ̃ ∈ [1, 3), p̃ ∈ [1,∞), ε ∈ (0, 1
4 ], δ ∈ (0, 3 − κ̃), and N ∈ N. For each

n ∈ N \ [N ] let Tn = Tτn,dn,mn be the basic space of the second type constructed with the aid of
τn = N2p̃bnp̃(p̃−1)/εc, dn = κ̃+ δ

n , and mn = np̃/ε. Denote by T̃ = T̃κ̃,p̃,ε,δ,N the space obtained by
applying Proposition 3.1.1 for κ0 = κ̃+ δ and the family {Tn : n ∈ N \ [N ]}. Then the following
assertions hold:

• We have cc
T̃
(κ, p) ' 1 for all κ ∈ [1,∞) and p ∈ [1,∞].

• The conditions (a)–(e) from Lemma 3.3.4 hold with c
T̃
(κ, p) in place of c

S̃
(κ, p).

Lemma 3.3.7. Fix κ̂ ∈ (1, 3] (respectively, κ̂ ∈ [1, 3)). For each n ∈ N let Tn = Tτn,dn,mn
be the basic space of the second type constructed with the aid of τn = n, dn = κ̂ (respectively,
dn = κ̂+ 3−κ̂

n ), and mn = 1. Denote by T̂ = T̂κ̂ the space obtained by applying Proposition 3.1.1
for κ0 = 3 and the family {Tn : n ∈ N}. Then c

T̂
(κ, p) =∞ if and only if κ ∈ [1, κ̂) (respectively,

κ ∈ [1, κ̂]) and p ∈ [1,∞), and the same is true with cc
T̂
(κ, p) in place of c

T̂
(κ, p).

3.3.3 Proof of the main result

Proof of Theorem 3.3.1. In the first step we construct a metric measure space Z1 such that for
each κ ∈ [1, 2) the associated modified maximal operators Mc

κ,Z1
and Mκ,Z1 are of weak type

(p, p) if and only if p > hc(κ) or p = ∞, while M2,Z1 is of weak type (1, 1). The last property
can easily be verified, since only the basic spaces of the first type will be used to build Z1.

First, consider the case hc(κ) < ∞ for each κ ∈ [1, 2]. Let us introduce a countable set
Σ = Σ1∪Σ2 = {κ1, κ2, . . . }, where Σ1 is the set of all κ ∈ [1, 2) for which limκ′→κ+ h

c(κ′) < hc(κ)

(the case Σ1 = ∅ is possible) and Σ2 is a dense subset of the interval (1, 2) that has no common
points with Σ1. By induction we will construct a family of metric measure spaces {Sn,j : n, j ∈ N}
and then we will obtain Z1 by applying Proposition 3.1.1.

Take κ1 ∈ Σ and let δ1 ∈ (0, 2−κ1) be such that hc(κ′) ≥ limκ→κ+1
hc(κ)−1 for κ′ ∈ [1, κ1+δ1].

For each j ∈ N we denote by S1,j the space S̃κ̃,p̃,ε,δ,N from Lemma 3.3.4 constructed with the
aid of κ̃ = κ1, p̃ = hc(κ1), ε = 1

4j , δ = δ1
j , and N = j. Now we let n ∈ N \ {1} and suppose

that for each i ∈ [n − 1] and j ∈ N the space Si,j has already been constructed. We choose
δn ∈ (0, 2− κn) such that the following conditions are satisfied:
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• We have hc(κ′) ≥ limκ→κ+n h
c(κ)− 1

n for each κ′ ∈ [1, κn + δn].

• If κi > κn for some i ∈ [n− 1], then κn + δn < κi.

For each j ∈ N we denote by Sn,j the space S̃κ̃,p̃,ε,δ,N from Lemma 3.3.4 constructed with the
aid to κ̃ = κn, p̃ = hc(κn), ε = 1

4j , δ = δn
j , and N = j. Finally, denote by Z1 the space obtained

by applying Proposition 3.1.1 for κ0 = 2 and the family {Sn,j : n, j ∈ N}. It suffices to show
that for each κ ∈ [1, 2) we have cc

Z1
(κ, hc(κ)) =∞, while cZ1(κ, p) <∞ if p > hc(κ).

Fix κ ∈ [1, 2). If limκ′→κ+ h
c(κ′) < hc(κ), then κ = κn ∈ Σ for some n ∈ N. Therefore, for

each j ∈ N we have cc
Sn,j

(κ, hc(κ)) & j1/2, which implies that

cc
Z1

(κ, hc(κ)) & sup
j∈N

cc
Sn,j (κ, h

c(κ)) & lim
j→∞

j1/2 =∞.

In turn, if limκ′→κ+ h
c(κ′) = hc(κ), then for each i ∈ N we can choose κni ∈ Σ such that κni > κ

and hc(κni) > hc(κ) − 1
4i . Hence cc

Z1
(κ, hc(κ)) & cc

Sni,i
(κ, hc(κ)) & i1/2 and letting i → ∞ we

obtain cc
Z1

(κ, hc(κ)) =∞.
Next, fix κ ∈ [1, 2) and let p ∈ (hc(κ), hc(κ) + 1). It is obvious that cSn,j (κ, p) <∞ for any

fixed n and j. We will prove that supn,j∈N cSn,j (κ, p) <∞. Let n0 ∈ N be such that

hc(κ) +
1

n0 + 1
≤ p < hc(κ) +

1

n0
.

Take n ∈ N such that κ /∈ [κn, κn + δn). With this assumption we obtain cSn,j (κ, p) ' 1 for
j ≥ n0 +1. In turn, if j < n0 +1, then cSn,j (κ, p) . j

2 ≤ (n0 +1)2. Otherwise, let n ∈ N be such
that κ ∈ [κn, κn + δn). There exists j0 = j0(n) such that κ /∈ [κn, κn + δn,j0) or hc(κn) + 1

j0
< p.

This implies that cSn,j (κ, p) ' 1 for any j ≥ j0. Hence, we deduce that supn,j∈N cSn,j (κ, p) <∞
holds provided that κ /∈ [κn, κn + δn) for all but finitely many values of n. Finally, suppose
that this is not the case. Then we can choose l ≥ 2(n0 + 1) such that κ ∈ [κl, κl + δl). If
κ ∈ [κn, κn + δn) for some n > l, then

hc(κ) ≥ lim
κ′→κ+l

hc(κ′)− 1

l
≥ hc(κn)− 1

2(n0 + 1)
,

since κn ∈ (κl, κl + δl), which implies that

p ≥ hc(κ) +
1

n0 + 1
≥ hc(κn) +

1

2(n0 + 1)
.

Hence, for that n, if j ≥ 2(n0 + 1), then cSn,j (κ, p) ' 1. Since cSn,j (κ, p) . 4(n0 + 1)2 for
j < 2(n0 + 1), we conclude that supn,j∈N cSn,j (κ, p) <∞ follows.

Now suppose that hc takes the value ∞ and set a := sup{κ : hc(κ) =∞}. If a = 2, then we
use the appropriate version of Lemma 3.3.5 with κ̂ = 2 to choose Z1. Assume that a ∈ [1, 2). If
limκ→a+ h

c(κ) =∞, then hc is continuous at a and we just construct Z1 in the same way as we
did in the case hc < ∞, but now using [a, 2) and (a, 2) instead of [1, 2) and (1, 2), respectively.
It is not hard to verify that Z1 has all the expected properties. Otherwise, we introduce an
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auxiliary function h′ defined by the formula

h′(κ) :=

{
h0 if κ ∈ [1, a],

hc(κ) if κ ∈ (a, 2],

where h0 = hc(a) if hc(a) <∞ or h0 = limκ→a+ h
c(κ) otherwise. Let Z′1 be the space constructed

as before with h′ instead of hc. We use Proposition 3.1.1 with κ0 = 2 one more time and obtain
Z1 combining Z′1 with the space from Lemma 3.3.5 with κ̂ = a (we use the appropriate version
of Lemma 3.3.5 depending on whether hc(a) <∞ or hc(a) =∞).

In the second step we construct a metric measure space Z2 such that for each κ ∈ [1, 3) the
associated modified maximal operator Mκ,Z2 is of weak type (p, p) if and only if p > h(κ) or
p = ∞, while for each κ ∈ [1, 2) the operator Mc

κ,Z2
is of weak type (p, p) for all p ∈ [1,∞].

The method is similar to that which was used to construct Z1. The key point is that this
time Lemmas 3.3.6 and 3.3.7 instead of Lemmas 3.3.4 and 3.3.5 should be used. Moreover,
Proposition 3.1.1 should be applied with κ0 = 3. We skip the technical details here.

Finally, we build the metric measure space Z by applying Proposition 3.1.1 with κ0 = 3 for
Z1 and Z2. It is not hard to see that we have: for each κ ∈ [1, 2),

cc
Z(κ, p) <∞ ⇐⇒ max{cc

Z1
(κ, p), cc

Z2
(κ, p)} <∞ ⇐⇒ p ∈ (hc(κ),∞],

and, for each κ ∈ [1, 3),

cZ(κ, p) <∞ ⇐⇒ max{cZ1(κ, p), cZ2(κ, p)} <∞ ⇐⇒ p ∈ (h(κ),∞],

where by (∞,∞] we mean the singleton {∞}. Thus, the space Z satisfies all the expected
conditions and the proof of Theorem 3.3.1 is complete.

3.4 Further comments

In the last part of this section we focus on the situation in which we want to find a space Z such
that the associated modified maximal operators Mc

κ,Z and Mκ,Z are of weak type (p, p) if and
only if p ≥ hc(κ) and p ≥ h(κ), respectively. In particular, we ask if there is a counterpart of
Theorem 3.3.1 with these inequalities instead of p > hc(κ) and p > h(κ). For simplicity, from
now on we deal only with the centered operators.

The first example indicates that the answer is positive if hc and h are continuous.

Example 3.4.1. Let hc : [1, 2]→ [1,∞] be a continuous nonincreasing function with hc(2) = 1.
Then there exists a metric measure space Z such that for each κ ∈ [1, 2) the associated modified
centered maximal operatorMc

κ,Z is of weak type (p, p) if and only if p ≥ hc(κ).

Proof. If hc(1) = 1, then the result is trivial since Z may be chosen to be {a}, the set of one point,
equipped with the unique metric and counting measure. From now on assume that hc(1) > 1.
Let us introduce the following auxiliary set

Ω := {(κ, p) ∈
(
[1, 2] ∩Q

)
×
(
[1,∞) ∩Q

)
: p < hc(κ)} := {(κn, pn) : n ∈ N}.
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For each n ∈ N we choose δn ∈ (0, 2 − κn) such that pn < hc(κn + δn). We denote by Sn the
space S̃κ̃,p̃,ε,δ,N from Lemma 3.3.4 constructed with the aid of κ̃ = κn, p̃ = pn, ε = 1

4 , δ = δn, and
N = 1. Then it is easy to show that Z may be chosen to be the space constructed by applying
Proposition 3.1.1 for κ0 = 2 and the family {Sn : n ∈ N}.

The second example shows that there is no counterpart of Theorem 3.3.1 for arbitrary func-
tions hc and h satisfying (i)–(iv). This example is more general in the sense that we take into
account all metric measure spaces, not only those satisfying the assumptions specified at the
beginning of this chapter. In the proof we will apply the estimates for the operator norm that
can be obtained via interpolation (see, for example, [12, Theorem VIII.9.1, p. 392]). Moreover,
we will use the basic fact that for any metric measure space X we have

lim
κ→κ+0

cc
X(κ, p0) = cc

X(κ0, p0), κ0 ≥ 1, p0 ∈ [1,∞].

Example 3.4.2. Let (q1, q2, . . . ) be an arbitrary enumeration of the set Q ∩ (1, 2). Define

hc
0(κ) := 2−

∑
i∈N:qi<κ

1

2i
, κ ∈ [1, 2].

Then there is no metric measure space X such that for each κ ∈ [1, 2] the associated maximal
operatorMc

κ,X is of weak type (p, p) if and only if p ≥ hc
0(κ).

Proof. Suppose by contradiction that X is such a space. First we show that for any 1 ≤ a < b ≤ 2

and N ∈ N we can find a ≤ a′ < b′ ≤ b such that cc
X(κ, hc

0(κ)) ≥ N for κ ∈ [a′, b′]. Indeed, take
qi ∈ (a, b) and observe that

lim
κ→q+i

cc
X(κ, hc

0(qi)− 2−i−1) =∞. (3.4.3)

Next, let ε ∈ (0, 2− qi). Then we have hc
0(qi)− 2−i−1 − hc

0(qi + ε) ≥ 2−i−1. Moreover, note that
qi /∈ (1, qi), which implies that 1 ≤ hc

0(qi)− 2−i−1 ≤ 2. Thus, if cc
X(qi + ε, hc

0(qi + ε)) ≤ N , then

cc
X(qi + ε, hc

0(qi)− 2−i−1) ≤ 2
( hc

0(qi)− 2−i−1

hc
0(qi)− 2−i−1 − hc

0(qi + ε)

) 1

hc0(qi)−2−i−1
N

1− hc0(qi+ε)

hc0(qi)−2−i−1 ≤ 2i+3N

by interpolation. Of course, in view of (3.4.3), such an estimate cannot occur for sufficiently
small values of ε. Therefore, we can choose an interval [a′, b′] ⊂ (qi, b] ⊂ [a, b] with the expected
property. The rest of the proof consists of constructing inductively a sequence of closed intervals
[1, 2] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . . in such a way that for each n ∈ N and κ ∈ [an, bn] we have
cc
X(κ, hc

0(κ)) ≥ n. Clearly, we have
⋂∞
n=1[an, bn] 6= ∅ and cc

X(κ, hc
0(κ)) = ∞ holds for any

κ ∈
⋂∞
n=1[an, bn]. This contradicts the assumption thatMc

κ,X is of weak type (hc
0(κ), hc

0(κ)).



Chapter 4

Boundedness from Lp,q to Lp,r

In the following chapter we return to the standard Hardy–Littlewood maximal operators, centered
Mc and noncentered M, and study their mapping properties in the context of Lorentz spaces
Lp,q. In the case of Rd and the classical Lorentz spaces some results may be found in [4, 45], for
example. However, little is known in this field about maximal operators associated with general
metric measure spaces. In particular, to the author’s best knowledge, there are no examples in
the literature showing explicitly various peculiar behaviors ofMc andM in this context. Here
we introduce an appropriate class of spaces which provides the opportunity to generate a lot of
such examples. For clarity, we deal only with the centered Hardy–Littlewood maximal operator
Mc, but we emphasize that very similar analysis may be done also forM instead.

The aim of this part of the dissertation is to study inequalities of the form

‖Mc
Xf‖p,r ≤ c(p, q, r,X)‖f‖p,q, f ∈ Lp,q(X), (4.0.1)

which, for various parameters p, q, and r, may or may not hold, depending on the structure of
X. To be more precise, we are particularly interested in showing that the sets of parameters
for which (4.0.1) occurs can vary in many different ways. In our approach, to avoid making the
problem too complicated, we always assume that the parameter p is fixed. Then the analysis is
divided into the following three cases:

• Case I: q fixed and r varying.

• Case II: q varying and r fixed.

• Case III: both q and r varying.

In each of these cases, we illustrate the situation with appropriately selected examples and the
general rule is that the more difficult the problem is, the more complicated structures are used.

The organization of this chapter is as follows. In Section 4.1 we describe Lorentz spaces
Lp,q(X). We also present an improved version of the space combining technique introduced in
Section 2.2. Sections 4.2, 4.3, and 4.4, in turn, are devoted to the study of mapping properties of
Mc in the situations corresponding to the three cases specified above. Throughout this chapter,
unless otherwise stated, we assume that (X, ρ) is bounded and |X| < ∞. We also assume that
the measure of each ball is strictly positive.

49
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4.1 Preliminaries

We begin with basic information about Lorentz spaces Lp,q(X). For any Borel function f : X → C
we define the distribution function df : [0,∞)→ [0,∞) by

df (t) := |{x ∈ X : |f(x)| > t}|,

and the decreasing rearrangement f∗ : [0,∞)→ [0,∞) by

f∗(t) := inf{u ∈ (0,∞) : df (u) ≤ t}.

Then for any p ∈ [1,∞) and q ∈ [1,∞] the space Lp,q(X) consists of those functions f for which
the quasinorm ‖f‖p,q is finite, where

‖f‖p,q :=

 p1/q
( ∫∞

0

(
tdf (t)1/p

)q dt
t

)1/q
if q ∈ [1,∞),

supt∈(0,∞) tdf (t)1/p if q =∞,

or, equivalently,

‖f‖p,q :=


(∫∞

0

(
t1/pf∗(t)

)q dt
t

)1/q
if q ∈ [1,∞),

supt∈(0,∞) t
1/pf∗(t) if q =∞.

The second formula is valid also for p = ∞ (here we use the convention t1/∞ = 1). However, it
turns out that L∞,q is nontrivial only if q =∞, since in each of the remaining cases it contains
only the zero-function. Let us also note that one could consider Lp,q(X) even for the wider range
p, q ∈ (0,∞], but this is not the case of our study.

Many observations and details concerning Lorentz spaces are included in [6], for example.
For our purposes, it is instructive that one can estimate ‖f‖p,q very precisely by calculating the
values df (2k) for all k ∈ Z. Furthermore, observe that for each p ∈ [1,∞] the space Lp,p(X)

coincides with the usual Lebesgue space Lp(X) and hence we write shortly ‖f‖p instead of ‖f‖p,p.
Now we present several facts concerning Lp,q(X) spaces. The metric measure space is arbitrary
here, except for the condition |X| ∈ (0,∞) assumed in Fact 4.1.2.

Fact 4.1.1. Let p ∈ (1,∞), q ∈ [1,∞], and n0 ∈ N. Then there exists a numerical constant
C4(p, q) independent of n0 and X such that

∥∥ n0∑
n=1

fn
∥∥
p,q
≤ C4(p, q)

n0∑
n=1

‖fn‖p,q, fn ∈ Lp,q(X), n ∈ [n0].

Fact 4.1.2. Let p ∈ (1,∞) and q ∈ [1,∞], and assume that |X| ∈ (0,∞). Then there exists
a numerical constant Cavg(p, q) independent of X such that

‖favg‖p,q ≤ Cavg(p, q)‖f‖p,q, f ∈ Lp,q(X),

where favg ≡ ‖f‖1/|X| is constant.
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Fact 4.1.3. Let p ∈ [1,∞) and q, r ∈ [1,∞] with q ≤ r. Then Lp,q(X) ⊂ Lp,r(X) and there exists
a numerical constant C↪→(p, q, r) independent of X such that

‖f‖p,r ≤ C↪→(p, q, r)‖f‖p,q, f ∈ Lp,q(X).

All these facts are well known. For the proof of Fact 4.1.3 see [6, Proposition 4.2], for example.
Facts 4.1.1 and 4.1.2 are in turn easy consequences of [6, Lemma 4.5 and Theorem 4.6].

Now we formulate a lemma which will be very useful later on.

Lemma 4.1.4. Let X be an arbitrary metric measure space. Fix p ∈ [1,∞), q ∈ [1,∞], and
n0 ∈ N, and consider a finite sequence of functions (fn)n0

n=1 with disjoint supports An ⊂ X.
Assume that for each n ∈ N \ {1} and t ∈ (0,∞) we have either dfn(t) ≥ |A1 ∪ · · · ∪ An−1| or
dfn(t) = 0. Then there exists a numerical constant Csupp = Csupp(p, q) independent of X, n0,
and (fn)n0

n=1 such that: if q ∈ [1,∞), then

1

Csupp

( n0∑
n=1

‖fn‖qp,q
)1/q

≤
∥∥ n0∑
n=1

fn
∥∥
p,q
≤ Csupp

( n0∑
n=1

‖fn‖qp,q
)1/q

,

and, if q =∞, then

1

Csupp
sup
n∈[n0]

‖fn‖p,∞ ≤
∥∥ n0∑
n=1

fn
∥∥
p,∞ ≤ Csupp sup

n∈[n0]
‖fn‖p,∞.

Proof. Let f =
∑n0

n=1 fn and consider q ∈ [1,∞) (the case q =∞ is very similar). The claim is
an easy consequence of the fact that, under the specified assumptions, the quantities df (t)1/p and
(
∑n0

n=1 dfn(t)q/p)1/q are comparable with multiplicative constants independent of t ∈ (0,∞).

For our purposes, it will also be convenient to state the following variant of Lemma 4.1.4.

Lemma 4.1.5. Let X be an arbitrary metric measure space. Fix p ∈ (1,∞) and q ∈ [1,∞], and
consider a sequence of functions (fn)∞n=1 with disjoint supports An ⊂ X. Assume that for each
n ≥ 1 and t ∈ (0,∞) we have either dfn(t) ≥ |An+1 ∪An+2 ∪ · · · | or dfn(t) = 0. Then we have:
for q ∈ [1,∞),

1

Csupp

( ∞∑
n=1

‖fn‖qp,q
)1/q

≤
∥∥ ∞∑
n=1

fn
∥∥
p,q
≤ Csupp

( ∞∑
n=1

‖fn‖qp,q
)1/q

,

and, for q =∞,

1

Csupp
sup
n∈N
‖fn‖p,∞ ≤

∥∥ ∞∑
n=1

fn
∥∥
p,∞ ≤ Csupp sup

n∈N
‖fn‖p,∞,

where Csupp = Csupp(p, q) is the constant from Lemma 4.1.4.

Proof. The proof is identical to the proof of Lemma 4.1.4 and hence it is omitted.
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Range of parameters. Recall that given a space X we are interested in studying inequalities
of the form (4.0.1) for various parameters p, q, and r. Now we indicate the exact range of
parameters that will be taken into account later on.

For each triple (p, q, r) and each X we denote by c(p, q, r,X) the smallest constant c(p, q, r,X)

for which (4.0.1) holds (if there is no such constant, then we write c(p, q, r,X) = ∞). Let us
mention here that for each fixed p ∈ [1,∞) the case c(p, q, r,X) <∞ is easier to meet for smaller
values of q and bigger values of r. We say that a triple (p, q, r) is admissible if one of the following
conditions is satisfied:

• p = q = 1 and r ∈ [1,∞],

• p ∈ (1,∞) and q, r ∈ [1,∞] with q ≤ r.

The range proposed above seems to be suitable for the following reasons. First, the considered
problem is trivial if p = ∞. Next, if r < q, then we have c(p, q, r,X) = ∞ under very mild
assumptions on X (see Observation 4.1.6). The reason for this is that there are natural (usually
proper) inclusions between Lorentz spaces and the maximal functionMc

Xf is usually not smaller
than the initial function f . Finally, the case p = 1 and q ∈ (1,∞] also turns out to be outside
our area of interest (see Observation 4.1.7).

In Observations 4.1.6 and 4.1.7 below we remove the restriction that the diameter of a given
space is finite. Moreover, in Observation 4.1.6 the condition |X| < ∞ is also skipped. Finally,
by supp(µ) we mean the support of µ, that is, the set {x ∈ X : |B(x, s)| > 0 for all s ∈ (0,∞)}.

Observation 4.1.6. Let X be such that |X \ supp(µ)| = 0. Assume that there exists an infinite
family B of pairwise disjoint balls B satisfying |B| ∈ (0,∞). Then for each fixed p ∈ (1,∞) and
q, r ∈ [1,∞] with r < q we have c(p, q, r,X) =∞.

Indeed, fix p, q ∈ (1,∞) and r ∈ [1,∞] with r < q (the case q = ∞ can be considered very
similarly). For any n0 ∈ N we can find a family of pairwise disjoint sets {En : n ∈ [n0]} with the
following properties:

• Each En is a union of finitely many elements from B.

• For each n ∈ [n0] \ {1} the estimate |En| ≥ |E1 ∪ · · · ∪ En−1| holds.

Consider gn0 ∈ Lp,q(X) defined by

gn0
:=

n0∑
n=1

n−2/(q+r)|En|−1/p1En .

By Lemma 4.1.4 the following estimates hold

‖g‖p,q ≤ Csupp(p, q)
(p
q

)1/q( n0∑
n=1

n
− 2q
q+r

)1/q
, ‖g‖p,r ≥

1

Csupp(p, r)

(p
r

)1/r( n0∑
n=1

n
− 2q
q+r

)1/r
.

Observe that for each x ∈ supp(µ) we haveMc
Xg(x) ≥ g(x). Since 2r/(q + r) < 1 < 2q/(q + r),

we obtain limn0→∞
‖g‖p,r
‖g‖p,q =∞ and, consequently, c(p, q, r,X) =∞.
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One additional comment should be made here. Namely, if B from Observation 4.1.6 does not
exist, then there are only finitely many points x ∈ supp(µ) such that |B(x, sx)| < ∞ for some
sx ∈ (0,∞). In this case Mc

X is trivially bounded between any two Lorentz spaces, provided
that |X \ supp(µ)| = 0 is satisfied. On the other hand, spaces for which |X \ supp(µ)| 6= 0 holds
are rather exotic and will not be considered here.

Observation 4.1.7. Let X be such that |X| < ∞. Assume that for any ε ∈ (0,∞) there exists
a Borel set E with |E| ∈ (0, ε). Then for any q ∈ (1,∞] and r ∈ [1,∞] the associated maximal
operatorMc

X does not map L1,q(X) into L1,r(X). In particular, we have c(1, q, r,X) =∞.

Indeed, fix q ∈ (1,∞) and r ∈ [1,∞] (we omit the case q = ∞ since the thesis is the stronger
the smaller q is). Let {En : n ∈ N} be a family of pairwise disjoint Borel subsets of X such that

2−ln−1 < |En| ≤ 2−ln ,

where (ln)n∈N is an arbitrary sequence of positive integers satisfying ln+1 ≥ ln + 2. Define

g :=
∞∑
k=1

1En
n|En|

and observe that, in view of Lemma 4.1.5, we have

‖g‖1,q ≤ Csupp(1, q)
(1

q

)1/q( ∞∑
n=1

1

nq

)1/q
<∞.

On the other hand, |X| <∞ implies that for any x ∈ X we have

Mc
Xg(x) ≥ ‖g‖1

|X|
≥ 1

|X|

∞∑
k=1

1

k
=∞

and henceMc
Xg does not belong to L1,r(X).

The following remarks will be useful later on.

Remark 4.1.8. Let X = (X, ρ, µ) be an arbitrary metric measure space. Define X′ = (X, ρ′, µ′)

by letting ρ′ = C1ρ and µ′ = C2µ for some numerical constants C1, C2 ∈ (0,∞). Then for each
admissible triple (p, q, r) we have c(p, q, r,X) = c(p, q, r,X′).

Indeed, one can easily see that replacing ρ with ρ′ does not change anything since for any x ∈ X
the families {Bρ(x, s) : s ∈ (0,∞)} and {Bρ′(x, s) : s ∈ (0,∞)} coincide. Moreover, replacing µ
with µ′ makes that both quasinorms in (4.0.1) are multiplied by C1/p

2 .

Remark 4.1.9. Let X = (X, ρ, µ) be an arbitrary metric measure space. Fix an admissible triple
(p, 1, r) with p ∈ (1,∞) and suppose that there exists C = C(p, r,X) ∈ (0,∞) such that

‖Mc
X1E‖p,r ≤ C‖1E‖p,1



54 Chapter 4. Boundedness from Lp,q to Lp,r

holds for all measurable sets E ⊂ X satisfying |E| < ∞. Then we have c(p, 1, r,X) ≤ C1C,
where C1 = C1(p, r) ∈ (0,∞) is some numerical constant independent of X.

Indeed, the result for r = ∞ is well known and can be found in the literature (see [6, Theo-
rem 5.3, p. 231]). Moreover, careful analysis of the proof in [6] reveals that the claim follows
also for r ∈ [1,∞).

Space combining technique. At the end of this section we describe how to adapt the technique
introduced in Section 2.2 to the Lorentz setting. Suppose that for each n ∈ N there is some space
Yn = (Yn, ρn, µn) for which the behavior of the function c(p, q, r,Yn) is known. Our goal is to
use the family {Yn : n ∈ N} to create a new space, say Y = (Y, ρ, µ), for which c(p, q, r,Y) is
comparable to supn∈N c(p, q, r,Yn). It turns out that Y may be built in a very transparent way
under the additional assumption that each of the spaces Yn consists of finitely many elements.

Proposition 4.1.10. Let (Yn)n∈N be a given sequence of spaces Yn = (Yn, ρn, µn). Assume
that each of them consists of finitely many elements and µn(Yn) ∈ (0,∞). Let Y = (Y, ρ, µ) be
the space constructed with the aid of (Yn)n∈N by using the method described below.

Step 1. Introduce ρ′n and µ′n by rescaling (if necessary) ρn and µn, respectively, in such a way
that the following conditions are satisfied:

• The diameter of Yn with respect to ρ′n is strictly smaller than 1.

• For every y ∈ Yn and n ∈ N we have 0 < 2µ′n+1(Yn+1) ≤ µ′n({y}).

Step 2. Denote Y′n := (Yn, ρ
′
n, µ

′
n) and notice that in view of Remark 4.1.8 we have c(p, q, r,Yn) =

c(p, q, r,Y′n) for each n ∈ N, p ∈ [1,∞), and q, r ∈ [1,∞].

Step 3. Set Y :=
⋃
n∈N Yn, assuming that Yn1 ∩ Yn2 = ∅ for any n1 6= n2. Finally, define the

metric ρ on Y by

ρ(y1, y2) :=

{
ρ′n(y1, y2) if {y1, y2} ⊂ Yn for some n ∈ N,

1 otherwise,

and the measure µ on Y by

µ(E) :=
∑
n∈N

µ′n(E ∩ Yn), E ⊂ Y.

Then for each p ∈ (1,∞) and q, r ∈ [1,∞] with q ≤ r we have

1

C
sup
n∈N

c(p, q, r,Yn) ≤ c(p, q, r,Y) ≤ C sup
n∈N

c(p, q, r,Yn), (4.1.11)

where C = C(p, q, r) is a numerical constant independent of (Xn)n∈N.

Proof. In the proof, it will be convenient to use the following local and global versions ofMc
Y:

Mc
locf(y) := sup

s∈(0,1]

1

|B(y, s)|

∫
B(y,s)

|f | dµ, Mc
globf(y) := sup

s∈(1,∞)

1

|B(y, s)|

∫
B(y,s)

|f |dµ.
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First we show the inequality

sup
n∈N

c(p, q, r,Yn) ≤ c(p, q, r,Y),

assuming that c(p, q, r,Y) < ∞ holds. For fixed n ∈ N take f ∈ Lp,q(Y′n) and extend it to
F ∈ Lp,q(Y) by setting F (y) = 0 for all y ∈ Y \ Yn. Then ‖F‖p,q = ‖f‖p,q (here the symbol
‖ · ‖p,q refers to function spaces over different measure spaces). Moreover, by the definition of ρ,
for any y ∈ Yn we have

Mc
YF (y) ≥Mc

locF (y) =Mc
Y′n
f(y).

Thus, if ‖Mc
YF‖p,r ≤ c(p, q, r,Y)‖F‖p,q, then also ‖Mc

Y′n
f‖p,r ≤ c(p, q, r,Y)‖f‖p,q.

Conversely, let us show

c(p, q, r,Y) ≤ C sup
n∈N

c(p, q, r,Yn).

Assume that r <∞ (the case r =∞ is similar) and take F ∈ Lp,q(Y). By Fact 4.1.1 we have

‖Mc
YF‖p,r ≤ C4(p, r)

(
‖Mc

locF‖p,r + ‖Mc
globF‖p,r

)
.

For n ∈ N define fn ∈ Lp,q(Y′n) by restricting F to Yn. Using Lemma 4.1.5, together with the
definitions of ρ and µ, we see that

‖Mc
locF‖rp,r ≤ Csupp(p, r)

( ∞∑
n=1

‖Mc
locF · 1Yn‖rp,r

)1/r

= Csupp(p, r)
( ∞∑
n=1

‖Mc
Y′n
fn‖rp,r

)1/r

≤ Csupp(p, r) sup
n∈N

c(p, q, r,Yn)
( ∞∑
n=1

‖fn‖rp,q
)1/r

.

Using Lemma 4.1.5 again, we obtain

( ∞∑
n=1

‖fn‖rp,q
)1/r

≤
( ∞∑
n=1

‖fn‖qp,q
)1/q

=
( ∞∑
n=1

‖F · 1Yn‖qp,q
)1/q

≤ Csupp(p, q)‖F‖p,q.

Let us now estimate ‖Mc
globF‖p,r. Note thatMc

globF ≡ ‖F‖1/µ(Y ) is constant by the definition
of ρ. Thus, Facts 4.1.2 and 4.1.3 imply

‖Mc
globF‖p,r ≤ Cavg(p, r)‖F‖p,r ≤ Cavg(p, q)C↪→(p, q, r)‖F‖p,q.

Consequently,

c(p, q, r,Y) ≤ C4(p, r)
(
C1(p, r)C1(p, q) sup

n∈N
c(p, q, r,Yn) + Cavg(p, q)C↪→(p, q, r)

)
.
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Finally, it remains to notice that supn∈N c(p, q, r,Yn) cannot be arbitrarily small. Indeed, taking
g := 1Y1 ∈ Lp,q(Y′1) we see that

‖Mc
Y′1
g‖p,r = ‖g‖p,r = p1/r−1/qr−1/rq1/q‖g‖p,q

(here for r =∞ we use the convention ∞1/∞ =∞−1/∞ = 1). Hence,

sup
n∈N

c(p, q, r,Yn) ≥ c(p, q, r,Y1) ≥ p1/r−1/qr−1/rq1/q

and the proof is complete.

As in the previous sections, we have the following remark.

Remark 4.1.12. Each space Y obtained by using Proposition 4.1.10 is nondoubling.

Indeed, fix ε ∈ (0,∞) and let n0 = n0(ε) ∈ N be such that µ(Yn0) < ε. Then for any y ∈ Yn0 we
have B(y, 3

2) = Yn0 which implies that µ(B(y, 3
2)) < ε, while µ(B(y, 3)) = µ(Y ).

Several times in Sections 4.2 and 4.3, to avoid notational complications we write shortly
A1 . A2 (equivalently, A2 & A1) to indicate that A1 ≤ CA2 with a positive constant C
independent of all significant quantities (in particular, A1 =∞ implies that A2 =∞). We shall
write A1 ' A2 if A1 . A2 and A2 . A1 hold simultaneously. While studying the behavior of
Mc

X acting from Lp,q(X) to Lp,r(X), we allow the implicit constant to depend on the parameters
p, q, and r, but not on any other factors, including the underlying metric measure space. We
also use the convention that [v, v) = (v, v] = ∅ and [v, v] = {v} for any v ∈ R ∪ {∞}. Finally,
let us emphasize here that, in view ofMc

Xf =Mc
X|f |, each time we study the behavior ofMc

X

later on, we restrict our attention to functions f ≥ 0.

4.2 Results for q fixed and r varying

In this section we describe the situation in which the maximal operator acts on a single Lorentz
space Lp0,q0(X). Our goal is to prove the following theorem.

Theorem 4.2.1. For each admissible triple (p0, q0, r0) the following statements are true:

• There exists a (nondoubling) metric measure space Z such that c(p0, q0, r,Z) = ∞ for
r ∈ [q0, r0], while c(p0, q0, r,Z) <∞ for r ∈ (r0,∞]

• There exists a (nondoubling) metric measure space Z′ such that c(p0, q0, r,Z
′) = ∞ for

r ∈ [q0, r0), while c(p0, q0, r,Z
′) <∞ for r ∈ [r0,∞].

The proof of Theorem 4.2.1 is located in Subsection 4.2.2.
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4.2.1 Test spaces of type I

Now we introduce and analyze auxiliary structures which we call the test spaces of type I. Each
such space is a system of finitely many points equipped with a metric measure structure. Hence,
we can use it as a component space in Proposition 4.1.10.

Test spaces of type I for p ∈ (1,∞). Fix l ∈ N and take a nondecreasing sequence m =

m(l) = (mi)
l
i=1 ⊂ N. Let (Mj)

l
j=0 satisfy Mj =

∑j
i=1mi for each j ∈ {0} ∪ [l]. We introduce

S = Sm = (S, ρ, µ), a test space of type I, as follows. Set S := {xi : i ∈ {0} ∪ [Ml]}, where all
points are different. Define ρ determining the distance between two different elements of S by

ρ(x, y) :=

{
1 if x0 ∈ {x, y},
2 otherwise.

Finally, take µ defined by

µ({xi}) := µm({xi}) :=

{
1 if i = 0,

2j if i ∈ [Mj ] \ [Mj−1] for some j ∈ [l].

Figure 4.1 shows a model of the space S.

x0

x1 x2 xMl−1 xMl...

Figure 4.1: The test space of type I for p ∈ (1,∞).

Note that we can explicitly describe any ball:

B(x0, s) =

{
{x0} for 0 < s ≤ 1,

S for 1 < s,

and, for i ∈ [Ml],

B(xi, s) =


{xi} for 0 < s ≤ 1,

{x0, xi} for 1 < s ≤ 2,

S for 2 < s.

In the following lemma we express the behavior of c(p, q, r,S) in terms of m.

Lemma 4.2.2. Let S be the test space of type I defined above. Then for each admissible triple
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(p, q, r) there is a numerical constant C1 = C1(p, q, r) independent of m such that: for r ∈ [1,∞),

1

C1

( l∑
j=1

2jr(−1+1/p)m
r/p
j

)1/r
≤ c(p, q, r,S) ≤ C1

( l∑
j=1

2jr(−1+1/p)m
r/p
j

)1/r
,

and, for r =∞,

1

C1
sup
j∈[l]

2j(−1+1/p)m
1/p
j ≤ c(p, q, r,S) ≤ C1 sup

j∈[l]
2j(−1+1/p)m

1/p
j .

Proof. Fix an admissible triple (p, q, r). First we estimate c(p, q, r,S) from above. It is worth
noting here that if r ∈ [1,∞), then

( l∑
j=1

2jr(−1+1/p)m
r/p
j

)1/r
≥ sup

j∈[l]
2j(−1+1/p)m

1/p
j ≥ 1

2
.

Take f ∈ Lp,q(S) such that ‖f‖p,q = 1. One can easily check that

Mc
Sf ≤ max{f, 2Mc

0f, favg},

whereMc
0f(x0) := 0 andMc

0f(xi) := f(x0)/2j for i ∈ [Mj ] \ [Mj−1], j ∈ [l]. By Fact 4.1.1,

‖Mc
Sf‖p,r ≤ 2C∆(p, r)

(
‖f‖p,r + ‖Mc

0f‖p,r + ‖favg‖p,r
)

and then, by Facts 4.1.2, and 4.1.3, ‖f‖p,r ≤ C↪→(p, q, r) and ‖favg‖p,r ≤ Cavg(p, r)C↪→(p, q, r).
Thus, it remains to estimate ‖Mc

0f‖p,r. Note that ‖f‖p,q = 1 implies that f(x0) ≤ ( qp)1/q if
q ∈ [1,∞) and f(x0) ≤ 1 if q = ∞. We consider only the first case and the second one can be
treated very similarly. Since m is nondecreasing, we have

d(f, j) := dMc
0f

((q
p

)1/q
2−j−1

)
≤


0 for j ∈ Z \ N,

mj2
j+1 for j ∈ [l − 1],

ml2
l+1 for j ∈ N \ [l − 1],

which implies that, for r ∈ [1,∞),

‖Mc
0f‖rp,r .

∑
j∈Z

d(f, j)r/p2−jr .
l∑

j=1

2jr(−1+1/p)m
r/p
j ,

and, for r =∞,
‖Mc

0f‖p,r . sup
j∈Z

d(f, j)1/p2−j . sup
j∈[l]

2j(−1+1/p)m
1/p
j .

Finally, to obtain the reverse inequality from the thesis it suffices to take g := 1{x0} and calculate
‖Mc

Sg‖p,r. We omit the details here.



4.2. Results for q fixed and r varying 59

Before we go further let us look at the expression

( l∑
j=1

2jr(−1+1/p)m
r/p
j

)1/r
(4.2.3)

that appears in the thesis of Lemma 4.2.2. Observe that if p ∈ (1,∞), then the factor
2jr(−1+1/p) tends rapidly to 0 as j tends to ∞. Thus, for example, given r0 ∈ [1,∞), we can find
a nondecreasing sequence of positive integers (mj)j∈N such that the series in (4.2.3) diverges if
and only if r ∈ [1, r0]. Unfortunately, this idea does not work for p = 1 and hence we consider
this case separately.

Test spaces of type I for p = 1. Fix l ∈ N and take a nondecreasing sequence of positive
integers m̃ = m̃(l) = (m̃j)

l
j=1 satisfying m̃1 = 1. Next, associate with m̃ a strictly increasing

sequence of positive integers (hj)
l
j=1 such that

b2hj+1/m̃j+1c > 2hj (4.2.4)

for each j ∈ [l − 1]. We introduce S̃ = S̃m̃ = (S, ρ, µ), a test space of type I, as follows. Set

S := {x0} ∪
{
xj,k : k ∈ [2hj ], j ∈ [l]

}
,

where all elements are different. We use auxiliary symbols for certain subsets of S. Namely, we
set S̃0 := Sl+1 := ∅ and for j ∈ [l] denote

Sj :=
{
xj,k : k ∈ [2hj ]

}
, S̃j :=

{
xj,k : k ∈ [2hj ] \ [2hj/m̃j ]

}
,

where we use the convention [c] = [bcc] for noninteger c ∈ (0,∞) (notice that if m̃j = 1 for some
j, then S̃j = ∅). Then we define the metric ρ determining the distance between two different
elements x, y ∈ S by the formula

ρ(x, y) :=

{
1 if x0 ∈ {x, y} or {x, y} ∈ S̃j−1 ∪ Sj for some j ∈ [l],

2 otherwise.

Finally, we let µ to be counting measure. Again we can explicitly describe any ball:

B(x0, s) =

{
{x0} for 0 < s ≤ 1,

S for 1 < s,

for k ∈ [2hj/m̃j ], j ∈ [l],

B(xj,k, s) =


{xj,k} for 0 < s ≤ 1,

{x0} ∪ S̃j−1 ∪ Sj for 1 < s ≤ 2,

S for 2 < s,
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and, for k ∈ [2hj ] \ [2hj/m̃j ], j ∈ [l],

B(xj,k, s) =


{xj,k} for 0 < s ≤ 1,

{x0} ∪ S̃j−1 ∪ Sj ∪ Sj+1 for 1 < s ≤ 2,

S for 2 < s.

In the following lemma we express the behavior of c(1, 1, r, S̃) in terms of m̃.

Lemma 4.2.5. Let S̃ be the test space of type I defined above. Then for each r ∈ [1,∞] there is
a numerical constant C1 = C1(r) independent of m̃ such that: for r ∈ [1,∞),

1

C1

( l−1∑
j=1

(m̃j)
−r
)1/r

≤ c(1, 1, r, S̃) ≤ C1

( l−1∑
j=1

(m̃j)
−r
)1/r

,

and, for r =∞,
1

C1
≤ c(1, 1, r, S̃) ≤ C1.

Proof. Fix r ∈ [1,∞]. First we estimate c(1, 1, r, S̃) from above. It is worth mentioning that if
r ∈ [1,∞), then m̃1 = 1 implies that

(∑l−1
j=1(m̃j)

−r)1/r ≥ 1. We take f ∈ L1(S̃) with ‖f‖1 = 1.
One can easily check that

Mc
S̃
f ≤ max{f,Mc

0f, favg},

whereMc
0f(x0) := 0 andMc

0f(x) := |B(x, 3
2)|−1 for x ∈ S \ {x0}. Therefore,

‖Mc
S̃
f‖1,r . ‖f‖1,r + ‖Mc

0f‖1,r + ‖favg‖1,r

(now Fact 4.1.1 is not available but we still have the quasitriangle inequality since the number of
summands is controlled uniformly). By Fact 4.1.3 we have ‖f‖1,r ≤ C↪→(1, 1, r) and ‖favg‖1,r ≤
C↪→(1, 1, r) ‖favg‖1 = C↪→(1, 1, r). It remains to estimate ‖Mc

0f‖1,r. By using (4.2.4) and the
fact that (hj)

l
j=1 is strictly increasing we obtain

d(f, i) := dMc
0f

(
2−i
)
.


0 for i ∈ (Z \ N) ∪ [h1],

2hj (m̃j)
−1 for i ∈ [hj+1] \ [hj ], j ∈ [l − 1],

2hl for i ∈ N \ [hl],

which implies that, for r ∈ [1,∞),

‖Mc
0f‖r1,r .

∑
i∈Z

d(f, i)r2−ir .
l−1∑
j=1

(m̃j)
−r

and, for r =∞,
‖Mc

0f‖1,r . sup
i∈Z

d(f, i)2−i . 1

Finally, to obtain the reverse inequality from the thesis it suffices to take g := 1{x0} and calculate
‖Mc

S̃
g‖1,r. Again we omit the details.
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4.2.2 Proof of the main result

Proof of Theorem 4.2.1. Fix an admissible triple (p0, q0, r0). We consider four cases depending
on the values of p0 and r0.

Case 1: p0 ∈ (1,∞) and r0 ∈ [1,∞). First we obtain Z such that c(p0, q0, r,Z) = ∞ for
r ∈ [q0, r0], while c(p0, q0, r,Z) < ∞ for r ∈ (r0,∞]. Let (ai)i∈N be given by the formula
ai = 2i(p0−1)i−p0/r0 and let i0 ∈ N be the first index such that ai0+1 ≥ 1 and (ai)

∞
i=i0+1 is

nondecreasing. Thus, the sequence (āi)i∈N satisfying

āi =

{
1 for i ∈ [i0],

daie for i ∈ N \ [i0],

is also nondecreasing (here the symbol d · e refers to the ceiling function). Then, for any n ∈ N
let Sn = Smn(ln) be the test space of type I constructed with the aid of ln = n and mn =

(ā1, . . . , ān). We denote by Z the space Y obtained by applying Proposition 4.1.10 with Yn = Sn

for each n ∈ N. It is not hard to see that Z satisfies the desired properties. Indeed, fix r ∈ [1,∞).
By using Lemma 4.2.2 we have

c(p0, q0, r,Z) ' sup
n∈N

( n∑
i=1

2ir(−1+1/p0) ā
r/p0
i

)1/r

which gives

c(p0, q0, r,Z) ' sup
n∈N\[i0]

( i0∑
i=1

2jr(−1+1/p0) +

n∑
i=i0+1

i−r/r0
)1/r

.

We can easily see that the second series above tends to ∞ as n→∞ if and only if r ∈ [1, r0].

Finally, a slight modification of the argument above allows us to get a space Z′ such that
c(p0, q0, r,Z

′) = ∞ for r ∈ [q0, r0), while c(p0, q0, r,Z
′) < ∞ for r ∈ [r0,∞]. Namely, instead of

(ai)i∈N we will use a family of sequences {(a(n)
i )i∈N : n ∈ N}, where a(n)

i = ai log(n + 3)−p0/r0 .
Then for each n ∈ N we build (ā

(n)
i )i∈N as before, this time using (a

(n)
i )i∈N and the critical index

i
(n)
0 . After all, we let S′n = Smn(ln) be the test space of type I constructed with the aid of ln = n

and mn = (ā
(n)
1 , . . . , ā

(n)
n ). Then the space Z′ is constructed by applying Proposition 4.1.10 with

Yn = S′n for each n ∈ N. It is clear that

c(p0, q0, r0,Z
′) . sup

n∈N

( ∞∑
i=1

2jr0(−1+1/p0) +
n∑
i=1

i−1 log(n+ 3)−1
)1/r0

and, since the quantity above is finite, we obtain c(p0, q0, r,Z
′) < ∞ for r ∈ [r0,∞]. Now let

r ∈ [q0, r0). Since for every n ∈ N the sequence (a
(n)
i )∞i=i0+1 is nondecreasing, for each n ∈ N we

have ā(n)
i ≥ a(n)

i whenever i > i0. Thus,

c(p0, q0, r,Z
′) & sup

n∈N\[i0]

( n∑
i=i0+1

i−r/r0 log(n+ 3)−r/r0
)1/r0

.
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Since the quantity above is infinite, the argument is complete.

Case 2: p0 ∈ (1,∞) and r0 = ∞. Let (bi)i∈N be a nondecreasing sequence of positive integers
such that limi→∞ 2i(−1+1/p0)b

1/p0
i = ∞. Then for each n ∈ N we let Sn = Smn(ln) be the test

space of type I constructed with the aid of ln = n and mn = (b1, . . . , bn). Finally, we let Z to be
the space Y obtained by applying Proposition 4.1.10 with Yn = Sn for each n ∈ N. It is routine
to check that c(p0, q0, r,Z) =∞ holds for every r ∈ [q0,∞].

In order to obtain Z′ such that c(p0, q0, r,Z
′) =∞ for r ∈ [q0,∞), while c(p0, q0,∞,Z′) <∞

we use a proper variant of the diagonal argument. Namely, consider a sequence (r(i))i∈N such
that r(i) ∈ [1,∞) for each i ∈ N and limi→∞ r

(i) =∞. Then for each i ∈ N let {Si
n : n ∈ N} be

the family consisting of the test spaces used in Case 1 to build Z for r0 = r(i). Now we construct
Z′ by applying Proposition 4.1.10 to the whole family {Si

n : n, i ∈ N}. For every r ∈ [1,∞) there
is i0 ∈ N such that r(i0) > r, which implies that

c(p0, q0, r,Z
′) & sup

n∈N
c(p0, q0, r,S

i0
n ) =∞.

On the other hand, it is not hard to see that for each n, i ∈ N we have c(p0, q0,∞,Si
n) . 1,

which implies c(p0, q0,∞,Z′) <∞.

Case 3: p0 = 1 and r0 ∈ [1,∞). First we obtain a space Z such that c(1, 1, r,Z) = ∞ for
r ∈ [1, r0], while c(1, 1, r,Z) < ∞ for r ∈ (r0,∞]. For each i ∈ N set ci = bi1/r0c and observe
that (ci)i∈N is nondecreasing. For each n ∈ N let S̃n = S̃m̃n(ln) be the test space of type I
constructed with the aid of ln = n and m̃n = (c1, . . . , cn). We denote by Z the space Y obtained
by applying Proposition 4.1.10 with Yn = S̃n for each n ∈ N. Again, it is not hard to see that
Z satisfies the desired properties. Indeed, fix r ∈ [1,∞). By using Lemma 4.2.5 we have that
c(1, 1, r,Z) is comparable to supn∈N

(∑n
i=1 i

−r/r0
)1/r which is equal to∞ if and only if r ∈ [1, r0].

Now we build Z′ such that c(1, 1, r,Z′) = ∞ for r ∈ [1, r0), while c(1, 1, r,Z′) < ∞ for
r ∈ (r0,∞]. For each n ∈ N let (c

(n)
i )i∈N be defined by c

(n)
i = bi1/r0 log(n + 3)1/r0c. We

let S̃′n = S̃m̃n(ln) be the test space of type I constructed with the aid of ln = n and m̃n =

(c
(n)
1 , . . . , c

(n)
n ) and construct Z′ by applying Proposition 4.1.10 with Yn = S̃′n for each n ∈ N.

Then, by using Lemma 4.2.5, for each fixed r ∈ [1,∞) we obtain that c(1, 1, r,Z′) is comparable
to supn∈N

(∑n
i=1 i

−r/r0 log(n+ 3)−r/r0
)1/r which is equal to ∞ if and only if r ∈ [1, r0).

Case 4: p0 = 1 and r0 =∞. In order to obtain Z such that c(1, 1, r,Z) =∞ for every r ∈ [1,∞]

we proceed as in Case 2. Namely, we choose a nondecreasing sequence of positive integers (di)i∈N

such that limi→∞ di =∞. Next, for any n ∈ N we let Sn = Smn(ln) be the test space of type I
constructed with the aid of ln = n and mn = (d1, . . . , dn). Then we denote by Z the space Y

obtained by applying Proposition 4.1.10 with Yn = Sn for each n ∈ N. By using Lemma 4.2.2
we conclude that Z satisfies the desired properties.

Finally, we can obtain Z′ such that c(1, 1, r,Z′) =∞ for r ∈ [1,∞), while c(1, 1,∞,V) <∞,
by using a family of spaces {S̃i

n : n, i ∈ N} introduced similarly to the family {Si
n : n, i ∈ N}

considered in Case 2, but this time choosing appropriate test spaces S̃m̃ considered in Case 3.
We skip the details here.
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4.3 Results for q varying and r fixed

Our next goal is to construct spaces X such that, given admissible triples (p0, q0, r0) and (p0, q
′
0, r0)

with q′0 < q0, there exists a significant difference between the behaviors of Mc
X acting from

Lp0,q0(X) to Lp0,r0(X) and from Lp0,q
′
0(X) to Lp0,r0(X), respectively. The approach proposed in

this section allows us to obtain such a result only if q′0 = 1. The reason for such a limitation
is that the use of Remark 4.1.9 is required here. Nevertheless, the following theorem is a good
starter before the main course served in Section 4.4.

Theorem 4.3.1. Fix an admissible triple (p0, q0, r0) with q0 ∈ (1,∞]. Then there exists a (non-
doubling) metric measure space Z such that c(p0, 1, r0,Z) <∞ and c(p0, q0, r0,Z) =∞.

The proof of Theorem 4.3.1 is located in Subsection 4.3.2.

4.3.1 Test spaces of type II

Let us begin with the following observation. Each test space introduced in Subsection 4.2.1 had
one central point, namely x0, and the function 1{x0} played the main role in estimating the
size of c(p, q, r,S) or c(p, q, r, S̃). Since the values ‖1{x0}‖p0,1 and ‖1{x0}‖p0,q0 are comparable,
we are now forced to change the strategy and introduce test spaces of another type, say T,
for which the size of c(p0, q0, r0,T) will be calculated by testing the action of the associated
maximal operator on more complicated functions. This can be done if we ensure that the new
spaces will have more central points grouped into several different types. The detailed analysis
will be made separately for the following two cases: q0, r0 ∈ (1,∞) with q0 ≤ r0 or q0 ∈ (1,∞)

and r0 =∞. We omit the case q0 = r0 =∞.

Test spaces of type II for r ∈ (1,∞). Fix l ∈ N and an admissible triple (p, q, r) with
q, r ∈ (1,∞) (note that, in particular, p ∈ (1,∞) and q ≤ r). Associate with the quadruple
(p, q, r, l) four sequences of positive integers, (mi)

l
i=1, (hi)

l
i=1, (αi)

l
i=1, and (βi)

l
i=1, with the

following properties:

(i) hi+1/hi ∈ N,

(ii) mi+1 ≥ 2mihi,

(iii) 1 ≤ m1−p
i hi < 2,

(iv) l
p

(p−1)rα1 ≥ 2mlhl,

(v) αi+1 ≥ 2αiβi,

(vi) 1 ≤ α1−p
i βihi < 2.

The sequences introduced above will determine the structure of the test space constructed in
this section. Let us emphasize that the properties (i)–(vi) can be met simultaneously. Indeed,
let h1 = m1 = 1 and choose m2 such that m2 ≥ 2m1h1 and the set {h ∈ N : 1 ≤ m1−p

2 h < 2}
contains at least h1 elements. Thus, it is possible to take h2 for which the conditions h2/h1 ∈ N
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and 1 ≤ m1−p
2 h2 < 2 are satisfied. Continue this way until the whole sequences (mi)

l
i=1 and

(hi)
l
i=1 are chosen. Next, let α1 satisfies l

p
(p−1)rα1 ≥ 2mlhl and α

1−p
1 h1 < 2. Take β1 such that

1 ≤ α1−p
1 β1h1 < 2. Then choose α2 such that α2 ≥ 2α1β1 and α1−p

2 h2 < 2 and take β2 satisfying
1 ≤ α1−p

2 β2h2 < 2. Continue this way until the whole sequences (αi)
l
i=1 and (βi)

l
i=1 are chosen.

Now we formulate a few thoughts that one should keep in mind later on.

• The sequences (mi)
l
i=1 and (αi)

l
i=1 are used to define the associated measure, while (hi)

l
i=1

and (βi)
l
i=1 help to describe the number of elements of a given type.

• The property (i) allows the set of points of a given type to be divisible into an appropriate
number of equinumerous subsets.

• The properties (ii) and (v) say that the sequences (mi)
l
i=1 and (αi)

l
i=1 grow very fast. This

fact results in large differences between the masses of points of different types, which in
turn simplifies many calculations regarding the distribution function.

• The properties (iii) and (vi) are of rather technical nature. They are responsible for the
balance between the number of points of a given type and the mass of each one of them.

• The property (iv) says that the values α1, . . . , αl are relatively large compared with
m1, . . . ,ml and h1, . . . , hl. Thus, the points from the upper level (see Figure 4.2) will
have much greater masses than those from the lower level.

• The property (iv) is the only one where the parameter l is involved.

We construct T = Tp,q,r,l = (T, ρ, µ), a test space of type II, as follows. Set

T :=
{
xi,j , x

◦
i,k : i ∈ [l], j ∈ [hi], k ∈ [hiβi]

}
,

where all elements xi,j , x◦i,k are different. We use auxiliary symbols for certain subsets of T :

T ◦ :=
{
x◦i,k : i ∈ [l], k ∈ [hiβi]

}
,

for i ∈ [l],
Ti :=

{
xi,j : j ∈ [hi]

}
, T ◦i :=

{
x◦i,k : k ∈ [hiβi]

}
,

and, for i, i∗ ∈ [l] with i ≤ i∗ and j ∈ [hi],

T ◦i∗,i,j :=
{
x◦i∗,k : k ∈

[ j
hi
hi∗βi∗

]
\
[j − 1

hi
hi∗βi∗

]}
.

Observe that the family {T ◦i∗,i,j : j ∈ [hi]} consists of disjoint sets, each of them containing
exactly hi∗βi∗/hi elements (here the property (i) was used) and

⋃hi
j=1 T

◦
i∗,i,j = T ◦i∗ .

We introduce µ by letting

µ({x}) :=

{
mi if x = xi,j for some i ∈ [l], j ∈ [hi],

l
p

(p−1)rαi if x = x◦i,k for some i ∈ [l], k ∈ [hiβi].
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By using (ii), (iv), and (v), we deduce that µ satisfies the following inequalities: for each x ∈ T ◦,

|{x}| > |T \ T ◦|,

and for each i, i∗ ∈ [l] with i ≤ i∗, x1 ∈ Ti∗ , and x2 ∈ T ◦i∗ ,

|{x1}| > |T1 ∪ · · · ∪ Ti|, |{x2}| > |T ◦1 ∪ · · · ∪ T ◦i |.

Finally, we define the metric ρ on T determining the distance between two different elements
x, y ∈ T by the formula

ρ(x, y) :=

{
1 if {x, y} = {xi,j , x◦i∗,k} and x◦i∗,k ∈ T ◦i∗,i,j ,
2 otherwise.

It is worth noting here that for each i, i∗ ∈ [l] with i ≤ i∗ and x ∈ T ◦i∗ there is exactly one point
y ∈ Ti such that ρ(x, y) = 1.

Figure 4.2 shows a model of the space (T, ρ) with l = 2, h1 = 1, and h2 = 2.

x1,1

x◦1,1 x◦1,β1
...

x2,1

x◦2,1 x◦2,β2
...

x2,2

x◦2,β2+1 x◦2,2β2
...

Figure 4.2: The test space of type II for r ∈ (1,∞) with l = 2, h1 = 1, and h2 = 2.

As usual, we explicitly describe any ball: for i ∈ [l], j ∈ [hi],

B(xi,j , s) =


{xi,j} for 0 < s ≤ 1,

{xi,j} ∪
⋃l
i∗=i Ti∗,i,j for 1 < s ≤ 2,

T for 2 < s,

and, for i∗ ∈ [l], k ∈ [hiβi],

B(x◦i∗,k, s) =


{x◦i∗,k} for 0 < s ≤ 1,

{x◦i∗,k} ∪ {xi,j : x◦i∗,k ∈ Ti∗,i,j} for 1 < s ≤ 2,

T for 2 < s.

In the following lemma we describe the properties of c(p, 1, r,T) and c(p, q, r,T).
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Lemma 4.3.2. Fix l ∈ N and an admissible triple (p, q, r) with q, r ∈ (1,∞). Let T be the test
space of type II defined above. Then there is a numerical constant C2 = C2(p, q, r) independent
of l such that

c(p, 1, r,T) ≤ C2

and
c(p, q, r,T) ≥ 1

C2
l1−1/q.

Proof. First we estimate c(p, 1, r,T) from above. According to Remark 4.1.9 it suffices to prove
that ‖Mc

T1E‖p,r . ‖1E‖p,1 holds uniformly in E ⊂ T . Take ∅ 6= E ⊂ T and let f = 1E . By
using the sublinearity ofMc

T, we can assume that either E ⊂ T ◦ or E ⊂ T \ T ◦. Consider the
case E ⊂ T ◦. Then

Mc
Tf ≤ max{f,1T\T ◦ , favg}

and the desired estimate follows easily from the fact that |T \ T ◦| < |E|. Now consider the case
E ⊂ T \ T ◦. We have

Mc
Tf ≤ max{f,Mc

0f, favg},

where

Mc
0f(x) := 1T ◦(x)

|E ∪B(x, 3
2)|

|B(x, 3
2)|

.

As previously, in view of Facts 4.1.1, 4.1.2, and 4.1.3 it remains to prove the estimate

‖Mc
0f‖pp,r . |E|. (4.3.3)

Suppose for a moment that (4.3.3) holds for each E such that E ⊂ Ti for some i ∈ [l]. Then, for
arbitrary E ⊂ T \ T ◦, we let Ei := E ∩ Ti and fi := 1Ei for each i ∈ [l]. By (ii) we have

Mc
0f(x) ≤ 2 max

i∈[l]
Mc

0fi(x)

for each x ∈ T . Therefore, given t ∈ (0,∞) we have

dMc
0f

(2t) ≤
l∑

i=1

dMc
0fi

(t).

Denoting d(f, i, n) := dMc
0fi

(2n) we thus obtain

‖Mc
0f‖pp,r .

(∑
n∈Z

2nr
( l∑
i=1

d(f, i, n)
)r/p)p/r

.

If r ≥ p, then by Minkowski’s inequality we have

(∑
n∈Z

2nr
( l∑
i=1

d(f, i, n)
)r/p)p/r

≤
l∑

i=1

(∑
n∈Z

2nrd(f, i, n)r/p
)p/r

.
l∑

i=1

|Ei| = |E|.
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On the other hand, if r < p, then

(∑
n∈Z

2nr
( l∑
i=1

d(f, i, n)
)r/p)p/r

≤
( l∑
i=1

∑
n∈Z

2nrd(f, i, n)r/p
)p/r

.
( l∑
i=1

|Ei|r/p
)p/r

. |E|

where in the last estimate we again used (ii).

Now we return to the proof of (4.3.3) for E ⊂ Ti. Suppose that E consists of γ elements for
some γ ∈ [hi]. For each x ∈ T ◦i∗ with i∗ ∈ [i − 1] we haveMc

0f(x) = 0. On the other hand, for
each i∗ ∈ [l] \ [i− 1] we have precisely γhi∗βi∗/hi elements x ∈ T ◦i∗ for whichMc

0f(x) is nonzero.
Moreover, for each such x we haveMc

0f(x) ≤ l
p

(1−p)rmiα
−1
i∗ . Thus, we obtain

‖Mc
l f‖rp,r .

l∑
i∗=i

(
l

p
(1−p)rmiα

−1
i∗
)r(

l
p

(p−1)rαi∗γhi∗βi∗h
−1
i

) r
p . γr/pmr

ih
−r/p
i l−1

l∑
i∗=i

(
α1−p
i∗ βi∗hi∗

) r
p

which is controlled by a constant multiple of γr/pmr/p
i = |E|r/p in view of (iii) and (vi), and the

fact that the sum in the expression above has at most l elements.

In the next step we estimate c(p, q, r,T) from below. Take g defined by

g :=
l∑

i=1

1

mi
1Ti .

Then, by using (ii) we have

‖g‖qp,q .
l∑

i=1

m−qi |Ti|
q/p =

l∑
i=1

(m1−p
i hi)

q/p

and then (iii) gives ‖g‖p,q . l1/q. Let us now focus onMc
Tg. For each i ∈ [l] and x ∈ T ◦i we have

Mc
Tg(x) ≥ 1

|B(x, 3
2)|

∑
y∈B(x,3/2)

g(y) |{y}|.

Note that (iv) implies that |B(x, 3
2)| ≤ 2l

p
(p−1)rαi and, as a result, we obtain

Mc
Tg(x) & l

p
(1−p)rα−1

i

i∑
i∗=1

1

mi
mi = l

p
(1−p)rα−1

i .

Next, by using (v) we deduce that

‖Mc
Tg‖rp,r &

l∑
i=1

(
i l

p
(1−p)rα−1

i

)r|T ◦i |r/p = l−1
l∑

i=1

ir
(
α1−p
i βihi

)r/p
.
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In view of (vi) each element of the series above is bigger than ir and hence

‖Mc
Tg‖p,r & l−1/r

( l∑
i=1

ir
)1/r
& l−1/r+(r+1)/r = l.

Thus, the estimates obtained for ‖g‖p,q and ‖Mc
Tg‖p,r imply that c(p, q, r,T) & l1−1/q.

Test spaces of type II for r = ∞. The argument described above needs only a few minor
modifications to cover the second case under consideration. Fix l ∈ N and an admissible triple
(p, q,∞) with q ∈ (1,∞) (note that, in particular, p ∈ (1,∞)). Associate with (p, q, r, l) a large
constant α ∈ (0,∞) and three sequences of positive integers, (m̃i)

l
i=1, (h̃i)

l
i=1, and (β̃i)

l
i=1, with

the following properties:

(i) h̃i+1/h̃i ∈ N,

(ii) m̃i+1 ≥ 2m̃ih̃i,

(iii) 1 ≤ (m̃i)
1−ph̃i < 2,

(iv) α ≥ 2m̃lh̃l,

(v) ip−2 ≤ α1−pβ̃ih̃i ≤ 2ip−2.

As before, we notice that the properties (i)–(v) can be met simultaneously.
We construct T̃ = T̃p,q,l = (T, ρ, µ), a test space of type II, as follows. The set T and the

metric ρ are defined as before with the aid of (h̃i)
l
i=1 and (β̃i)

l
i=1 instead of (hi)

l
i=1 and (βi)

l
i=1,

respectively. Then we introduce µ by letting

µ({x}) :=

{
m̃i if x = xi,j for some i ∈ [l], j ∈ [h̃i],

iα if x = x◦i,k for some i ∈ [l], k ∈ [h̃iβ̃i].

The following lemma describes the properties of c(p, 1,∞, T̃) and c(p, q,∞, T̃).

Lemma 4.3.4. Fix l ∈ N and an admissible triple (p, q,∞) with q ∈ (1,∞). Let T̃ be the text
space of type II defined above. Then there is a numerical constant C̃2 = C̃2(p, q) independent of
l such that

c(p, 1,∞, T̃) ≤ C̃2

and
c(p, q,∞, T̃) ≥ 1

C̃2

l1−1/q.

Proof. We present only a sketch of the proof. First we want to estimate c(p, 1,∞, T̃) from above.
The main step here, as in the proof of Lemma 4.3.2, is to prove that

‖Mc
01E‖pp,∞ . |E|
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holds uniformly in E ⊂ Ti and i ∈ [l], where

Mc
01E(x) := 1T ◦(x)

|E ∪B(x, 3
2)|

|B(x, 3
2)|

.

Suppose that E consists of γ elements for some γ ∈ [h̃i].
For each x ∈ T ◦i∗ with i∗ ∈ [i − 1] we have Mc

0f(x) = 0. On the other hand, for each
i∗ ∈ [l] \ [i − 1] we have precisely γh̃i∗ β̃i∗/h̃i elements x ∈ T ◦i∗ for which Mc

0f(x) is nonzero.
Moreover, for each such x we haveMc

0f(x) ≤ m̃i (i∗α)−1. We observe that

( m̃i

i∗α

)p i∗∑
j=i

jαγβ̃j h̃j h̃
−1
1 = γm̃p

i h̃
−1
i (i∗)−p

i∗∑
j=i

jα1−pβ̃j h̃j

and, in view of (iii) and (v), we have

γm̃p
i h̃
−1
i (i∗)−p

i∗∑
j=i

jα1−pβ̃j h̃j . γm̃i(i
∗)−p

i∗∑
j=i

jp−1 . γm̃i = |E|.

Now we estimate c(p, q,∞, T̃) from below. Take g defined by

g :=
l∑

i=1

1

m̃i
1Ti .

Then, by (ii) and (iii), we have

‖g‖qp,q .
l∑

i=1

m̃−qi |Ti|
q/p =

l∑
i=1

(m̃1−p
i h̃i)

q/p . l.

By (iv) for each i ∈ [l] and x ∈ T ◦i we haveMc
T̃
g(x) ≥ (2α)−1. Thus, in view of (v), we obtain

‖Mc
T̃
g‖pp,∞ & α−p |T ◦| =

l∑
i=1

α1−pjβ̃j h̃j ≥
l∑

i=1

jp−1 & lp.

Thus, the estimates obtained for ‖g‖p,q and ‖Mc
T̃
g‖p,∞ imply that c(p, q,∞, T̃) & l1−1/q.

4.3.2 Proof of the main result

Let (p0, q0, r0) be a fixed admissible triple with q0 ∈ (1,∞) (we omit the case q0 =∞ since the
thesis is the stronger the smaller q0 is). Consider the case r0 ∈ [q0,∞). For each n ∈ N let
Tn = Tpn,qn,rn,ln be the test space of type II constructed with the aid of (pn, qn, rn) = (p0, q0, r0)

and ln = n. We let Z be the space Y obtained by applying Proposition 4.1.10 with Yn = Tn for
each n ∈ N. By using Lemma 4.3.2 we conclude that c(p0, 1, r0,Y) <∞, while c(p0, q0, r0,Y) =

∞. On the other hand, if r0 = ∞, then we let T̃n = T̃pn,qn,ln be the test space of type II
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constructed with the aid of (pn, qn) = (p0, q0) and ln = n. Finally, we construct Z by applying
Proposition 4.1.10 with Yn = T̃n for each n ∈ N. By using Lemma 4.3.4 we conclude that
c(p0, 1,∞,Y) <∞, while c(p0, q0,∞,Y) =∞.

4.4 Results for q and r varying

The aim of this section is to complete the picture outlined in Sections 4.2 and 4.3. Namely, for
each p ∈ (1,∞) we introduce a family of spaces X for which we are able to control the behavior
of c(p, q, r,X) considered as a function of two variables, q and r. As a result, we characterize all
possible shapes of the sets

Ωp
HL(X) :=

{(1

q
,
1

r

)
∈ [0, 1]2 :Mc

X is bounded from Lp,q(X) to Lp,r(X)
}
⊂ [0, 1]2

(the shapes of these sets are described in terms of their topological boundaries and the underlying
space is the square [0, 1]2 with its natural topology). The following theorem, the culmination
point of this dissertation, can be viewed as an extension of Theorems 4.2.1 and 4.3.1.

Theorem 4.4.1. Fix p ∈ (1,∞) and let X be an arbitrary metric measure space such that
|X \ supp(µ)| = 0. Then one of the following two possibilities holds:

• The boundary of Ωp
HL(X) is empty, that is, Ωp

HL(X) = ∅ or Ωp
HL(X) = [0, 1]2.

• The boundary of Ωp
HL(X) is of the form

{δ} × [0, lim
u→δ

F (u)] ∪ {(u, F (u)) : u ∈ (δ, 1]},

where δ ∈ [0, 1] and F : [δ, 1]→ [0, 1] is concave, nondecreasing, and satisfying F (u) ≤ u.

Conversely, for each F as above there exists X such thatMc
X is bounded from Lp,q(X) to Lp,r(X)

if and only if the point (1
q ,

1
r ) lies on or under the graph of F , that is, 1

q ≥ δ and 1
r ≤ F

(
1
q

)
.

Let us emphasize one more time that even though Theorem 4.4.1 is stated for the centered
operatorMc

X, it is possible to obtain its analogue for the noncentered operatorMX.
To prove Theorem 4.4.1 we should focus on two separate tasks. First we want to indicate

some conditions that the sets Ωp
HL(X) must satisfy in general, in order to ensure that no situations

other than those listed in Theorem 4.4.1 are possible. This problem is treated in Subsection 4.4.3
(see Remarks 4.4.10 and 4.4.11, and Theorem 4.4.12). The second goal, which turns out to be
the harder one, is to introduce a special class of spaces for which we are able to control precisely
the behavior of the maximal operator and, at the same time, this behavior is very peculiar. This
problem is covered by Theorem 4.4.2 stated below. We note that, in fact, Theorem 4.4.2 is
slightly more general and it consists of four similar results which have been collected together
for the sake of completeness.
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Theorem 4.4.2. Fix p ∈ (1,∞) and δ ∈ [0, 1] (respectively, δ ∈ [0, 1)). Let F : [δ, 1] → [0, 1]

(respectively, F : (δ, 1] → [0, 1]) be concave, nondecreasing and satisfying F (u) ≤ u for each
u ∈ [δ, 1] (respectively, u ∈ (δ, 1]). Then the following statements are true:

• There exists a (nondoubling) metric measure space Z such that c(p, q, r,Z) <∞ if and only
if 1

q ≥ δ (respectively, 1
q > δ) and 1

r ≤ F
(

1
q

)
.

• There exists a (nondoubling) metric measure space Z′ such that c(p, q, r,Z′) < ∞ if and
only if 1

q ≥ δ (respectively, 1
q > δ) and 1

r < F
(

1
q

)
.

A short comment should be made here regarding the spaces Z and Z′. Although the word “exists”
is used in the formulation of Theorem 4.4.2, each space is constructed explicitly. Moreover, the
construction process described later on originates in the idea of Stempak, who provided some
interesting examples of spaces, when dealing with a certain related problem regarding modified
maximal operators (see [49]).

The rest of this section is organized as follows. In Subsections 4.4.1 and 4.4.2 we study the
behavior of the maximal operator in the context of two classes of very specific spaces, namely,
the test spaces of type III and their advanced cousins, the composite test spaces. The latter class
is used in Subsection 4.4.3 to prove Theorem 4.4.2 and, as a consequence, the second part of
Theorem 4.4.1. The rest of Subsection 4.4.3 is devoted to indicating properties of Ωp

HL(X) which
allow us to deduce the first part of Theorem 4.4.1. In particular, we formulate a suitable inter-
polation theorem for Lorentz spaces Lp,q(X) with the first parameter fixed (see Theorem 4.4.12).
This theorem, in fact, follows from a much more general result [7, Theorem 5.3.1] using advanced
interpolation methods. However, in Appendix we give its elementary proof which, to the author’s
best knowledge, has never appeared in the literature so far.

To avoid misunderstandings, we note that several times later on we identify 1/∞ and 1/0

with 0 and ∞, respectively, when dealing with q, r ∈ [1,∞] and u, F (u) ∈ [0, 1]. Also, for δ = 1

the conventions [δ, 1] = {1}, (δ, 1] = ∅, and limu→δ F (u) = F (1) are used.

4.4.1 Test spaces of type III

Let p ∈ (1,∞) and N,M,L ∈ N. We associate with each quadruple (p,N,M,L) four sequences
of positive integers, (mi)

N
i=1, (hi)

N
i=1, (αk)

M
k=1, and (βk)

M
k=1, satisfying the following assertions:

(i) hN/hi ∈ N,

(ii) mi+1 ≥ 2mihi,

(iii) 1 ≤ m1−p
i hi < 2,

(iv) α1 ≥ 2mNhN ,

(v) αk+1 ≥ 2αkLβkhN ,

(vi) 1 ≤ α1−p
k βkhN < 2.

Let us check that the properties (i)–(vi) can be met simultaneously. Set m1 = h1 = 1. Then we
specify mi+1 and hi+1 for some i ∈ [N − 1], assuming that the quantities m1, . . . ,mi, h1, . . . , hi
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have already been chosen. We take mi+1 ≥ 2mihi such that the set {h ∈ N : 1 ≤ m1−p
i+1h < 2}

contains at least hi elements. Then we choose hi+1 for which hi+1/hi ∈ N and 1 ≤ m1−p
i+1hi+1 < 2

hold simultaneously. Thus, the properties (i)–(iii) are satisfied. Next we take α1 such that
α1 ≥ 2mNhN and α1−p

1 hN < 2 hold, and choose β1 satisfying 1 ≤ α1−p
1 β1hN < 2. Then we

specify αk+1 and βk+1 for some k ∈ [M − 1], assuming that the quantities α1, . . . , αk, β1, . . . , βk

have already been chosen. We take αk+1 ≥ 2αkLβkhN . Since α1−p
k+1hN ≤ α1−p

1 hN < 2, we can
choose βk+1 satisfying 1 ≤ α1−p

k+1βk+1hN < 2. Thus, the properties (iv)–(vi) are satisfied as well.

The four sequences will determine the structure of the test space of type III constructed
below. Here we formulate a few thoughts that one should keep in mind later on.

• Our space consists of two levels (lower and upper) concerning points of N and M types,
respectively (see Figure 4.3).

• The sequences (mi)
N
i=1 and (αk)

M
k=1 are used to define the associated measure, while (hk)

N
k=1

and (βk)
M
k=1 are responsible for the number of elements of a given type.

• The property (i) makes the set of points of a given type divisible into an appropriate
number of equinumerous subsets.

• The properties (i) and (v) say that the sequences (mi)
N
i=1 and (αk)

M
i=k grow very fast.

The huge differences between the masses of points of different types allow one to use
Lemma 4.1.4 frequently.

• The property (iv) says that the values αi are large compared with mk and hk. The points
from the upper level have much greater masses than the ones from the lower level and
Lemma 4.1.4 can be applied also in this context.

• The properties (iii) and (vi) are of rather technical nature. They keep the balance between
the number of points of a given type and the mass of each one of them.

• The property (iv) is the only property involving the parameter L.

Let K ∈ [1,∞). We define U = Up,N,M,K,L = (U, ρ, µ), the test space of type III, as follows.
Set

U :=
{
xi,j , x

◦
k,l : i ∈ [N ], j ∈ [hi], k ∈ [M ], l ∈ [LβkhN ]

}
,

where all elements xi,j , x◦k,l are different. We use auxiliary symbols for certain subsets of U :

U◦ :=
{
x◦k,l : k ∈ [M ], l ∈ [LβkhN ]

}
;

for i ∈ [N ] and k ∈ [M ],

Ui :=
{
xi,j : j ∈ [hi]

}
, U◦k :=

{
x◦k,l : l ∈ [LβkhN ]

}
;

for i ∈ [N ], j ∈ [hi], and k ∈ [M ],

U◦i,j,k :=
{
x◦k,l : l ∈

[ j
hi
LβkhN

]
\
[j − 1

hi
LβkhN

]}
.
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Observe that the sets U◦i,j,k, j ∈ [hi], are disjoint and, in view of (i), each of them contains exactly
LβkhN/hi elements. Moreover,

⋃hi
j=1 U

◦
i,j,k = U◦k holds for each i ∈ [N ].

We introduce µ by letting

µ({x}) :=

{
mi if x = xi,j for some i ∈ [N ], j ∈ [hi],

Kαk if x = x◦k,l for some k ∈ [M ], l ∈ [LβkhN ].

Note that, in view of (iv), (ii), and (v), the following inequalities hold: for each x ∈ U◦,

|{x}| > |U \ U◦|,

for each i ∈ [N ] \ {1} and x ∈ Ui,

|{x}| > |U1 ∪ · · · ∪ Ui−1|,

and for each k ∈ [M ] \ {1} and x◦ ∈ U◦k ,

|{x◦}| > |U◦1 ∪ · · · ∪ U◦k−1|.

Finally, we define ρ by the formula

ρ(x, y) :=


0 if x = y,

1 if {x, y} = {xi,j , x◦k,l} and x◦k,l ∈ U◦i,j,k,
2 otherwise.

It is worth noting here that for each i ∈ [N ], k ∈ [M ], and x◦ ∈ U◦k , there is exactly one point
x ∈ Ui such that ρ(x, x◦) = 1. This point is denoted by Γi(x

◦) later on.

Figure 4.3 shows a model of the space (U, ρ) with N = 3 and M = 2. The solid line between
two points indicates that the distance between them equals 1. Otherwise the distance equals 2.

x1,1 x2,1 x2,2 x3,1 x3,2 x3,3 x3,4

x◦1,1 x
◦
1,2 x

◦
1,3 x

◦
1,4 x◦2,1 x

◦
2,2 x

◦
2,3 x

◦
2,4 x

◦
2,5 x

◦
2,6 x

◦
2,7 x

◦
2,8

Figure 4.3: The test space of type III with N = 3 and M = 2.
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As usual, we explicitly describe any ball B ⊂ U . We thus have: for i ∈ [N ], j ∈ [hi],

B(xi,j , s) =


{xi,j} for 0 < s ≤ 1,

{xi,j} ∪ {x◦ ∈ U◦ : Γi(x
◦) = xi,j} for 1 < s ≤ 2,

U for 2 < s,

and, for k ∈ [M ], l ∈ [LβkhN ],

B(x◦k,l, s) =


{x◦k,l} for 0 < s ≤ 1,

{x◦k,l} ∪ {Γi(x◦k,l) : i ∈ [N ]} for 1 < s ≤ 2,

U for 2 < s.

Now, for each fixed i ∈ [N ] and k ∈ [M ], we introduce a linear operator Ak,i = Ak,i,S given
by the formula

Ak,if(x) :=

{
f(Γi(x)) |{Γi(x)}|

|{x}| if x ∈ U◦k ,
0 otherwise.

In the following lemma we estimate the norm of Ak,i acting from Lp,q(U) to Lp,r(U).

Lemma 4.4.3. Let U be the test space of type III defined above. Fix q, r ∈ [1,∞] with q ≤ r,
i ∈ [N ], and k ∈ [M ], and consider the operator Ak,i. Then there exists a numerical constant
C3,1 = C3,1(p, q, r) independent of N , M , K, L, i, and k such that

1

C3,1
K−1+1/pL1/p ≤ ‖Ak,i‖Lp,q(U)→Lp,r(U) ≤ C3,1K

−1+1/pL1/p.

Proof. First we estimate ‖Ak,i‖Lp,q(U)→Lp,r(U) from above. Take f ∈ Lp,q(U). Since Ak,if ≡
Ak,i(f · 1Ui), we may assume that the support of f is contained in Ui. If this is the case, then
for each t ∈ (0,∞) we have the equality

dAk,if (t) =
KLαkβkhN

mihi
df (tKαk/mi)

and simple calculations give

‖Ak,if‖p,r = K−1+1/pL1/pm
1−1/p
i h

−1/p
i α

−1+1/p
k β

1/p
k h

1/p
N ‖f‖p,r.

Thus, in view of (iii), (vi), and Fact 4.1.3, we obtain

‖Ak,if‖p,r ≤ 4C↪→(p, q, r)K−1+1/pL1/p‖f‖p,q.

Finally, consider g := 1Ui . Then we have Ak,ig = mi
Kαk

1U◦k and hence

‖Ak,ig‖p,r
‖g‖p,q

= K−1+1/pL1/pm
1−1/p
i α

−1+1/p
k β

1/p
k h

1/p
N h−1/p ≥ K−1+1/pL1/p,

where in the last inequality we again used (iii) and (vi).
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Next we introduce a linear operator A = AS given by the formula

Af(x) :=

{ ∑N
i=1Ak,if(x) if x ∈ U◦k , k ∈ [M ],

0 otherwise.

As before, we estimate the norm of A acting from Lp,q(U) to Lp,r(U).

Lemma 4.4.4. Let U be the test space of type III defined above. Fix q, r ∈ [1,∞] with q ≤ r and
consider the operator A. Then there exists a numerical constant C3 = C3,2(p, q, r) independent
of N , M , K, and L such that

1

C3,2
K−1+1/pL1/pM1/rN1−1/q ≤ ‖A‖Lp,q(U)→Lp,r(U) ≤ C3,2K

−1+1/pL1/pM1/rN1−1/q.

Proof. First we estimate ‖A‖Lp,q(U)→Lp,r(U) from above. Take f ∈ Lp,q(U). In view of Af ≡
A(f · 1U\U◦), we may assume that the support of f is contained in U \ U◦. We decompose
f =

∑N
i=1 fi, where fi := f · 1Ui . Then, by (ii), (v), and Lemma 4.1.4, we have

‖f‖p,q ≥
1

Csupp(p, q)

( N∑
i=1

‖fi‖qp,q
)1/q

and

‖Af‖p,r ≤ Csupp(p, r)
( M∑
k=1

∥∥Af · 1U◦k∥∥rp,r)1/r
.

Moreover, by using Fact 4.3 and Lemma 4.4.3, we obtain the following estimate

‖Af · 1U◦k ‖p,r ≤ C4(p, r)

N∑
i=1

‖Ak,ifi‖p,r ≤ C4(p, r)C3,1(p, q, r)K−1+1/pL1/p
N∑
i=1

‖fi‖p,q

for each k ∈ [M ]. Therefore,

‖Af‖p,r ≤ Csupp(p, r)C4(p, r)C3,1(p, q, r)K−1+1/pL1/pM1/r
N∑
i=1

‖fi‖p,q.

On the other hand, an application of Hölder’s inequality gives

( N∑
i=1

‖fi‖qp,q
)1/q

≥ N−1+1/q
N∑
i=1

‖fi‖p,q.

Combining the two estimates above we conclude that

‖Af‖p,r ≤ Csupp(p, q)Csupp(p, r)C4(p, r)C3,1(p, q, r)K−1+1/pL1/pM1/rN1−1/q‖f‖p,q.
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Finally, consider g :=
∑N

i=1(himi)
−1/p · 1Ui . Then, by using (iii), we have

Ag ≥
M∑
k=1

N

21/pKαk
· 1U◦k

and thus

‖Ag‖p,r
‖g‖p,q

≥

(∑M
k=1

(
K−1+1/pL1/pNα

−1+1/p
k β

1/p
k h

1/p
N

)r)1/r

21/pCsupp(p, q)Csupp(p, r)N1/q
≥ K−1+1/pL1/pM1/rN1−1/q

21/pCsupp(p, q)Csupp(p, r)
,

where we used (ii), (v), and Lemma 4.1.4 in the first inequality, and (vi) in the second.

In the following lemma we estimate the norm of the maximal operator Mc
U acting from

Lp,q(U) to Lp,r(U). This is the main result of this subsection.

Lemma 4.4.5. Let U be the test space of type III defined above. Fix q, r ∈ [1,∞] with q ≤ r and
consider the associated operator Mc

U. Then there exists a numerical constant C3 = C3(p, q, r)

independent of N , M , K, and L such that

1

C3

(
1 +K−1+1/pL1/pM1/rN1−1/q

)
≤ c(p, q, r,U) ≤ C3

(
1 +K−1+1/pL1/pM1/rN1−1/q

)
.

Proof. First we estimate c(p, q, r,U) from above. Take f ∈ Lp,q(U) such that ‖f‖p,q = 1. It is
easy to check that

Mc
Uf ≤ max

{
f, 4Af, 2M̃cf, favg

}
,

where M̃cf := 1U\U◦ ·maxx◦∈U◦ f(x◦). Therefore, by Fact 4.1.1, we have

‖Mc
Uf‖p,r ≤ 4C4(p, r)

(
‖f‖p,r + ‖Af‖p,r + ‖M̃cf‖p,r + ‖favg‖p,r

)
.

The inequalities ‖M̃cf‖p,r ≤ ‖f‖p,r and ‖favg‖p,r ≤ Cavg(p, r)‖f‖p,r follows from (iv) and
Fact 4.1.2, respectively. Combining the estimates above with Lemma 4.4.4 we conclude that

‖Mc
Uf‖p,r ≤ 4C4(p, r)

(
C↪→(p, q, r)

(
2 + Cavg(p, r)

)
+ C3,2(p, q, r)

(
K−1+1/pL1/pM1/rN1−1/q

))
.

Now we estimate c(p, q, r,U) from below. First, arguing as in the proof of Proposition 4.1.10,
we obtain c(p, q, r,U) ≥ p1/r−1/qr−1/rq1/q. Finally, the inequality

c(p, q, r,U) ≥ 1

2C3,2(p, q, r)
K−1+1/pL1/pM1/rN1−1/q

is a consequence of Lemma 4.4.4 and the fact thatMc
Uf ≥ Af/2 for each f ∈ Lp,q(U).

At the end of this subsection we reformulate the result of the previous lemma in a way that
makes it easier to use later on.
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Corollary 4.4.6. Fix p ∈ (1,∞), λ ∈ (0,∞), and a, b, κ ∈ N. Let U(p,λ,a,b,κ) be the test space
Up,N,M,K,L with p as above, N = κb, M = κa, and some K,L satisfying K−1+1/pL1/p = λκ−b.
Then for each q, r ∈ [1,∞] with q ≤ r we have

1

C3

(
1 + λκa/r−b/q

)
≤ c(p, q, r,U(p,λ,a,b,κ)) ≤ C3

(
1 + λκa/r−b/q

)
,

where C3 = C3(p, q, r) is the constant from Lemma 4.4.5.

4.4.2 Composite test spaces

In the following two sections by a composite test space we mean any metric measure space W

that arises as a result of applying Proposition 4.1.10 to a certain family of test spaces introduced
in Subsection 4.4.1. This is a bit imprecise, but one can think of composite test spaces as inter-
mediate objects between test spaces and the spaces we want to obtain in Theorem 4.4.2. More
precisely, these latter ones will be composite test spaces constructed with the aid of a sequence
of simpler composite test spaces. We now briefly explain the details of such a construction.

Proposition 4.4.7. Let (Wn)n∈N be a given sequence of composite test spaces. Then there exists
a composite test space W such that for each p ∈ (1,∞) and q, r ∈ [1,∞] with q ≤ r we have

1

C2
sup
n∈N

c(p, q, r,Wn) ≤ c(p, q, r,W) ≤ C2 sup
n∈N

c(p, q, r,Wn),

where C = C(p, q, r) is the constant from Proposition 4.1.10.

Proof. Note that each space Wn is constructed with the aid of some sequence of test spaces,
say {Un,m : m ∈ N}. Let W be the space obtained by applying Proposition 4.1.10 to the family
{Un,m : n,m ∈ N}. The thesis follows directly from Proposition 4.1.10.

Now we show how to construct composite test spaces for which the associated maximal
operators have very specific properties.

Lemma 4.4.8. Let p, ε ∈ (1,∞), γ ∈ R, and a, b, R ∈ N. Then there exists a composite test
space W = Wp,γ,a,b,R,ε such that for each q, r ∈ [1,∞] with q ≤ r we have

c(p, q, r,W) =∞ if a/r − b/q = γ,

C−1
4 Rεd ≤ c(p, q, r,W) ≤ C4

(
1 +R2εd

)
if a/r − b/q ∈ (γ − 2εd, γ − εd),

c(p, q, r,W) ≤ C4 if a/r − b/q ≤ γ − 3εd,

where d =
√
a2 + b2 and C4 = C4(p, q, r) is independent of γ, a, b, R, and ε.

Figure 4.4 describes the behavior of the function c(p, q, r,W). We notice that the parameter d
appears here only for purely aesthetic reasons (for example, the Euclidean distance between the
lines a/r − b/q = γ and a/r − b/q = γ − εd equals ε).
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1/q

1/r

0

1

1

q = r

a/r − b/q = γ

a/r − b/q = γ − εd
a/r − b/q = γ − 2εd

a/r − b/q = γ − 3εd

=∞

C−1
4 Rεd ≤ · ≤ C4(1 +R2εd)

≤ C4

Figure 4.4: The behavior of the function c(p, q, r,W).

Proof. For each n ∈ N let Un be the test space U(p,λ,a,b,κ) from Corollary 4.4.6 with p, a, and
b as above, κ = Rn, and λ = R−nγ+(n+2)εd. We let W be the space obtained by applying
Proposition 4.1.10 to the family {Un : n ∈ N}. The following estimates forMc

W are satisfied: if
a/r − b/q = γ, then

c(p, q, r,W) ≥ 1

CC3
lim
n→∞

R−nγ+(n+2)εdRnγ =∞,

if a/r − b/q ∈ (γ − 2εd, γ − εd), then

c(p, q, r,W) ≥ 1

CC3
sup
n∈N

R−nγ+(n+2)εdRn(γ−2εd) =
Rεd

CC3

and
c(p, q, r,W) ≤ CC3 sup

n∈N

(
1 +R−nγ+(n+2)εdRn(γ−εd)

)
≤ CC3

(
1 +R2εd

)
,

and, if a/r − b/q ≤ γ − 3εd, then

c(p, q, r,W) ≤ CC3 sup
n∈N

(
1 +R−nγ+(n+2)εdRn(γ−3εd)

)
= 2CC3.

Therefore, W satisfies the desired properties.

At the end of this section we present another result for composite test spaces, which is
particularly helpful if the domain of F in Theorem 4.4.2 is of the form (δ, 1], or if the domain is
of the form [δ, 1], but either δ = 1 or F is not continuous at δ.

Lemma 4.4.9. Let p ∈ (1,∞), δ ∈ [0, 1], and ω ∈ [0, δ]. Then the following statements are true.

• There exists a composite test space W≤ = W≤p,δ,ω such that c(p, q, r,W≤) <∞ if and only
if 1/q > δ, r ≥ q or 1/q = δ, 1/r ≤ ω.



4.4. Results for q and r varying 79

• There exists a composite test space W< = W<
p,δ,ω such that c(p, q, r,W<) <∞ if and only

if 1/q > δ, r ≥ q or 1/q = δ, 1/r < ω.

Proof. Fix p ∈ (1,∞), δ ∈ [0, 1], and ω ∈ [0, δ]. First we construct W≤. For each n take an = n,
bn = n2, and γn satisfying anω − bnδ = γn − 3dnεn, where dn =

√
a2
n + b2n and εn = 1/(3n). Let

Wn be the composite test space from Lemma 4.4.8 with p as above, γ = γn, a = an, b = bn,
R = nn, and ε = εn. Since limn→∞ bn/an =∞ and an(ω + 1/n)− bnδ > γn − 2dεn, it is easy to
check that W≤ may be chosen to be the space obtained by applying Proposition 4.1.10 to the
family {Wn : n ∈ N} (to obtain c(p, q, r,W≤) =∞ for 1/q > δ, r < q we use Remark 4.4.11, see
Subsection 4.4.3). Finally, in order to construct W< we take an = n, bn = n2, and γn satisfying
an(ω − 1/n)− bnδ = γn − 3dnεn and anω − bnδ ∈ (γn − 2dnεn, γn − dnεn), where dn and εn are
as before, and then we repeat the previous procedure.

We note that Lemma 4.4.9 may also be used to construct Z such that Ωp
HL(Z) = ∅. Indeed, it

suffices to take W< with p as above, δ = 1, and ω = 0.

4.4.3 Proof of the main result

This section is devoted to proving Theorem 4.4.1. The proof consists of two parts. First of
them relies on showing that the conditions imposed on F in Theorem 4.4.1 are necessary. The
second one consists of furnishing a bunch of examples of spaces so that each of the scenarios
specified in the thesis can be illustrated with some nondoubling space. This part will be ensured
by Theorem 4.4.2.

Necessary conditions

Here we briefly discuss why there are no alternatives for the shape of Ωp
HL(X) other than those

mentioned in Theorem 4.4.1. We begin with the following simple observation.

Remark 4.4.10. Fix p ∈ (1,∞) and let X be an arbitrary metric measure space. If (u,w) ∈
Ωp

HL(X), then [u, 1]× [w, 1] ⊂ Ωp
HL(X).

Indeed, this follows by the fact that the Lorentz spaces Lp,q(X) increase as the parameter q
increases.

By Remark 4.4.10 we know that either Ωp
HL(X) is empty or it consists of points lying under

the graph of some nondecreasing function, say F , and the domain of F is of the form [δ, 1] or
(δ, 1] for some δ ∈ [0, 1] or δ ∈ [0, 1), respectively. More precisely, for each u from the domain of
F we have (u,w) ∈ Ωp

HL(X) for w < F (u) and (u,w) /∈ Ωp
HL(X) for w > F (u) (here we do not

focus on whether (u, F (u)) belongs to Ωp
HL(X) or not, except for the case F (u) = 0, which forces

that the first option actually takes place).
Remark 4.4.11 below, in turn, explains why the assumption F (u) ≤ u is needed.

Remark 4.4.11. Let X be a metric measure space such that |X \ supp(µ)| = 0. Assume that
there exists an infinite family B of pairwise disjoint balls B satisfying |B| ∈ (0,∞). Then for
each p ∈ (1,∞) we have Ωp

HL(X) ⊂ {(u,w) ∈ [0, 1]2 : u ≤ w}.
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Indeed, this is just a reformulation of Observation 4.1.6.

Finally, the fact that Ωp
HL(X) is convex, and hence F must be concave, is justified by the

following interpolation argument.

Theorem 4.4.12. Fix p ∈ [1,∞) and q0, q1, r0, r1 ∈ [1,∞] with q0 ≤ q1, q0 ≤ r0, and q1 ≤ r1.
Let X be an arbitrary metric measure space and assume that the associated maximal operator
Mc

X is bounded from Lp,qi(X) to Lp,ri(X) for i ∈ {0, 1}. Then for each θ ∈ (0, 1) the operator
Mc

X is bounded from Lp,qθ(X) to Lp,rθ(X), where

1

qθ
=

1− θ
q0

+
θ

q1
,

1

rθ
=

1− θ
r0

+
θ

r1
.

We explain briefly how Theorem 4.4.12 can be inferred from the general theory of interpolation.
We begin with the comment that Lorentz spaces in this context were considered for the first
time by Hunt in [20]. However, the theorem formulated there does not cover Theorem 4.4.12.
Hence, we are forced to refer to the literature where some more advanced interpolation methods
are developed. The appropriate variant of Theorem 4.4.12 for linear operators can be directly
deduced from [7, Theorem 5.3.1] (see also [37], where theK-functional for the couple (Lp,q0 , Lp,q1)

is computed). Then, a suitable linearization argument (see [22], for example) allows us to extend
this result to the class of sublinear operators and thus the maximal operatorMc

X is also included.
Although there are several ways to deduce Theorem 4.4.12 from the theorems that appear

in the literature, each of them, to the author’s best knowledge, requires a deep understanding of
the interpolation theory. As the author found an elegant, elementary proof of Theorem 4.4.12,
he decided to present it in Appendix.

Proof of Theorem 4.4.2

Proof of Theorem 4.4.2. We consider three cases depending on the properties of F .

Case 1: F : [δ, 1]→ [0, 1], F continuous at δ. Fix p ∈ (1,∞) and δ ∈ [0, 1], and take F : [δ, 1]→
[0, 1] concave, nondecreasing, continuous at δ, and such that F (u) ≤ u for each u ∈ [δ, 1].

First we construct Z. We can assume that δ ∈ [0, 1), since the case δ = 1 is covered by
Lemma 4.4.9. Consider the following countable set{(1

q
,
1

r

)
∈
(
[0, 1] ∩Q

)2
:

(
1

q
≥ δ ∧ 1

r
> F

(1

q

))
∨

(
1

q
< δ

)}

and enumerate it to obtain a sequence (P1, P2, . . . ). Fix n ∈ N and let Pn =
(

1
qn
, 1
rn

)
. Since F

is concave and nondecreasing, we can choose γn ∈ R, an, bn ∈ N, and εn ∈ (0,∞) such that

• an/rn − bn/qn = γn,

• if an/r − bn/q > γn − 3εndn, then 1
q ≥ δ,

1
r > F

(
1
q

)
or 1

q < δ, where dn =
√
a2
n + b2n.

Let Wn be the composite test space from Lemma 4.4.8 with p as above, γ = γn, a = an, b = bn,
R = 1, and ε = εn. It is easy to check that Y may be chosen to be the space obtained by applying
Proposition 4.4.7 to the family {Wn : n ∈ N}.
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Now we construct Z′. Again we assume that δ ∈ [0, 1), since the case δ = 1 is covered by
Lemma 4.4.9. For each n ∈ N and u ∈ [δ, 1] we choose γn,u ∈ R and an,u, bn,u ∈ N such that

• γn,u − 2dn,u/n < an,uu− bn,uF (u) < γn,u − dn,u/n, where dn,u =
√
a2
n,u + b2n,u,

• if an,u/r − bn,u/q ≥ γn,u − dn,u/n, then 1
q ≥ δ,

1
r > F

(
1
q

)
or 1

q < δ.

Let Wn,u be the composite test space from Lemma 4.4.8 with p as above, γ = γn,u, a = an,u,
b = bn,u, R = nn, and ε = 1/n. Fix n ∈ N and observe that for each u ∈ [δ, 1] the set

En,u =
{
v ∈ [δ, 1] : γn,u − 2dn/n < av − bF (v) < γn,u − dn/n

}
is open in [δ, 1] with its natural topology. Thus {En,u : u ∈ [δ, 1]} is an open cover of [δ, 1] and we
can find a finite subset Un ⊂ [δ, 1] such that

⋃
u∈Un En,u = [δ, 1]. Finally, we let Z′ be the space

obtained by applying Proposition 4.4.7 to the family {Wn,u : n ∈ N, u ∈ Un}. We will show that
Z′ satisfies the desired properties. Fix u0 ∈ [δ, 1] and observe that for each n ∈ N there exists
un ∈ Un such that u0 ∈ En,un . Therefore, in view of Lemma 4.4.8,

c(p, 1/u0, 1/F (u0),Z′) ≥ 1

C2
c(p, 1/u0, 1/F (u0),Wn,un) ≥ 1

C2C4
ndn,u .

Since n is arbitrary and dn,u ≥ 1, we conclude that c(p, 1/u0, 1/F (u0),Z′) =∞ and, as a result,
we obtain c(p, q, r,Z′) = ∞ if 1

q ≥ δ, 1
r ≥ F

(
1
q

)
or 1

q < δ. Now let us consider a pair (q, r)

satisfying 1
q ≥ δ,

1
r < F

(
1
q

)
. Then we have

d(q, r, F ) := min

{
de

((1

q
,
1

r

)
,
(
u, F (u)

))
: u ∈ [δ, 1]

}
> 0,

where de is the standard Euclidean metric on the plane. Observe that for each n ∈ N and u ∈ Un
we have the following implication

an,u/r − bn,u/q > γn,u − 3dn,u/n =⇒ d(q, r, F ) ≤ 2/n.

Hence if n > 2/d(q, r, F ), then for each u ∈ Un we have an,u/r − bn,u/q ≤ γn,u − 3dn,u/n, which
implies c(p, q, r,Wn,u) ≤ C4. Finally, since for each of the finitely many pairs (n, u) satisfying
n ≤ 2/d(q, r, F ) and u ∈ Un there is c(p, q, r,Wn,t) <∞, we conclude that c(p, q, r,Z′) <∞.

Case 2: F : [δ, 1] → [0, 1], F not continuous at δ. Fix p ∈ (1,∞) and δ ∈ (0, 1), and take
F : [δ, 1]→ [0, 1] concave, nondecreasing, satisfying F (δ) = ω < limu→δ F (u) for some ω ∈ [0, δ),
and such that F (u) ≤ u for each u ∈ [δ, 1]. Let F̃ be the continuous modification of F , that is,
F̃ (u) = F (u) for u ∈ (δ, 1) and F̃ (δ) = limu→δ F (u). Then F̃ satisfies the conditions specified in
Case 1. Let Z̃ and Z̃′ be the spaces obtained in Case 1 for F̃ . We also let W̃ be the composite
test space W≤ (respectively, W<) from Lemma 4.4.9 with p, δ, and ω as above. It is easy to
check that Z (respectively, Z′) may be chosen to be the space obtained by using Proposition 4.4.7
to Z̃ (respectively, Z̃′) and countably many copies of W̃.
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Case 3: F : (δ, 1] → [0, 1]. Fix p ∈ (1,∞) and δ ∈ [0, 1), and take F : (δ, 1] → [0, 1] concave,
nondecreasing and such that F (u) ≤ u for each u ∈ (δ, 1]. We extend F to F̃ : [δ, 1] → [0, 1],
setting F̃ (δ) = limu→δ F (u). Then F̃ satisfies the conditions specified in Case 1. Let Z̃ and Z̃′

be the spaces obtained in Case 1 for F̃ . We also let W̃ be the composite test space W< from
Lemma 4.4.9 with p and δ as above, and ω = 0. It is easy to check that Z (respectively, Z′)
may be chosen to be the space obtained by applying Proposition 4.4.7 to Z̃ (respectively, Z̃′) and
countably many copies of W̃.

Proof of Theorem 4.4.1

We are ready to prove the main result of this chapter.

Proof of Theorem 4.4.1. The first part of the theorem follows from Remarks 4.4.10 and 4.4.11,
and Theorem 4.4.12, and the second part follows from Theorem 4.4.2.

The last issue we would like to mention in this chapter is the boundary problem. Denote be
∂̄Ωp

HL(X) the upper part of the boundary of Ωp
HL(X), that is, the set {(u, F (u)) : u ∈ Dom(F)},

where Dom(F) is the domain of F . According to this, for each space constructed in Theorem 4.4.2
one of the following two possibilities holds

∂̄Ωp
HL(X) ⊂ Ωp

HL(X) or ∂̄Ωp
HL(X) ∩ Ωp

HL(X) = ∅.

In fact, Proposition 4.4.7 combined with Lemmas 4.4.8 and 4.4.9 can provide a wide range of
other cases. For example, if F is strictly concave, then for a given set E ⊂ Dom(F) such that
E is countable we can find X such that Mc

X is bounded from Lp,1/u(X) to Lp,1/F (u)(X) if and
only if u /∈ E. Nevertheless, it is probably very difficult to describe precisely all forms that the
intersections ∂̄Ωp

HL(X) ∩ Ωp
HL(X) can take.
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BMO spaces

BMO traditionally occurs in the literature as a function space associated with the space Rd,
d ∈ N, equipped with the Euclidean metric and Lebesgue measure. Roughly speaking, it contains
functions whose mean oscillation over a given cube Q ⊂ Rd is bounded uniformly with respect
to the choice of that cube. Although BMO was introduced by John and Nirenberg [23] in the
context of partial differential equations, it is also a very useful tool in harmonic analysis. One
reason is that many of the operators considered there turn out to be bounded from L∞ to BMO
even though they are not always bounded on L∞. This, in turn, can often be used to prove the
boundedness of such operators on Lp for some p ∈ (1,∞) by using the interpolation theorem
obtained by Fefferman and Stein [15]. Another interesting fact is that BMO is dual to the Hardy
space, H1, which is of great use in harmonic analysis. This result was shown by Fefferman
[14]. Finally, BMO functions are in close relation with other objects appearing in this field
such as Carleson measures, paraproducts or commutator operators (for further consideration see
[9, 10, 11, 18], for example).

It is well known that most of the theory mentioned above can be developed in a more
general context including all doubling metric measure spaces. However, the situation changes
significantly if the space we deal with is nondoubling. We have examples showing that some of
the classical theorems fail to occur in certain nondoubling situations (see [3, 46] for studying the
weak type (1, 1) boundedness of the Hardy–Littlewood maximal operator), while, in contrast,
some theorems can be proved for wider classes of spaces, usually requiring more complicated
methods (see [41, 52], where the boundedness of the Cauchy integral operator was considered).

BMO spaces for nondoubling spaces were quite successfully studied by Mateu, Mattila, Nico-
lau and Orobitg [38]. In particular, the authors have shown that for many Borel measures on Rd,
not necessarily doubling, it is possible to define BMO spaces in such a way as to be able to use
an interpolation argument analogous to that obtained in [15]. On the other hand, a somewhat
surprising fact shown in [38] is that there exist measures on R2 for which the associated spaces
BMO and BMOb defined with the aid of cubes and balls, respectively, do not coincide. Another
result, which will be described later on, is related to some untypical behavior of the family of
spaces {BMOp

b : p ∈ [1,∞)}, which occurs under certain conditions. In summary, there are
many examples in [38] which illustrate that in some specific situations BMO spaces may have
very unusual properties. This idea also accompanies the following chapter.

Our main motivation here is to study the spaces BMOp
b with p ∈ [1,∞) considered as sets of

functions, in order to describe whether the natural inclusions between them are proper or not.
Since we deal with arbitrary metric measure spaces, balls determined by metrics are used to
define BMOp

b. From now on we omit the subscript and write BMOp instead of BMOp
b.

83
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5.1 Preliminaries and results

Let X = (X, ρ, µ) be a given metric measure space. For a locally integrable function f : X → C
and an open ball B ⊂ X such that |B| ∈ (0,∞) we denote the average value of f on B by

fB :=
1

|B|

∫
B
f(x) dµ(x).

Then, given p ∈ [1,∞), we let BMOp(X) be the space consisting of all functions f for which

‖f‖∗,p := sup
B⊂X

( 1

|B|

∫
B
|f(x)− fB|p dµ(x)

)1/p

is finite (the supremum is taken over all balls B contained in X and such that |B| ∈ (0,∞)).
We keep to the rule that two functions are identified if they differ by a constant. With this
convention ‖ · ‖∗,p satisfies the norm properties and thus BMOp(X) can be viewed as a Banach
space (it is a mathematical folklore that BMOp(X) is complete in any setting). If p = 1, then
we will usually write shortly BMO(X) and ‖f‖∗ instead of BMO1(X) and ‖f‖∗,1, respectively.

Recall that if p1, p2 ∈ [1,∞) with p1 < p2, then by using Hölder’s inequality we always have
the inequality ‖f‖∗,p1 ≤ ‖f‖∗,p2 and, as a consequence, the inclusion BMOp2(X) ⊂ BMOp1(X).
Moreover, if BMOp1(X) and BMOp2(X) coincide as sets, then the corresponding norms are
equivalent. In fact, this is always the case if µ is doubling. Indeed, one can obtain that the
spaces BMOp(X) with p ∈ [1,∞) coincide by using the John–Nirenberg inequality which is true
for spaces satisfying the doubling condition (see [38, Theorem A, p. 563], for example). However,
the John–Nirenberg inequality fails to occur in general. Moreover, in [38] the authors construct
a nondoubling space X for which there exists f ∈ BMO(X) such that f /∈ BMOp(X) for all
p ∈ (1,∞). Here we go further and describe precisely which types of relations between the
spaces BMOp(X) with p ∈ [1,∞) actually can happen. Namely, we prove the following theorem.

Theorem 5.1.1. For a given space X we have one of the following three possibilities:

(A) The spaces BMOp(X) with p ∈ [1,∞) all coincide.

(B) There exists p0 ∈ (1,∞) such that for two distinct parameters p1, p2 ∈ [1,∞) the spaces
BMOp1(X) and BMOp2(X) coincide if and only if max{p1, p2} < p0.

(C) There exists p0 ∈ [1,∞) such that for two distinct parameters p1, p2 ∈ [1,∞) the spaces
BMOp1(X) and BMOp2(X) coincide if and only if max{p1, p2} ≤ p0.

Conversely, for each of the possibilities described above and for any permissible choice of p0 in the
cases (B) and (C) we can construct X for which the associated spaces BMOp(X) with p ∈ [1,∞)

realize the desired properties.

The rest of this chapter is organized as follows. In Section 5.2 we present a short proof of the
main theorem based on certain results of a rather technical nature which are proved later on.
Sections 5.3 and 5.4 are devoted to the study of these technical issues. Finally, in Section 5.5
some additional remarks concerning the John–Nirenberg inequality are given.
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5.2 Proof of the main result

In this section we prove Theorem 5.1.1. To do this we use two ingredients which we formulate
here and prove in Sections 5.3 and 5.4, respectively. The first one is the following.

Lemma 5.2.1. Let X be a given metric measure space. If BMOp1(X) ( BMOp2(X) for some
p1, p2 ∈ [1,∞) with p1 < p2, then for any α ∈ (1,∞) we also have BMOαp1(X) ( BMOαp2(X).

The second goal we need is to find a suitable family of spaces for which some specific relations
between the associated BMO spaces occur. The process of constructing such spaces is the most
technical part of this chapter. We will obtain two complementary results stated below.

Proposition 5.2.2. For each p0 ∈ (1,∞) there exists a space X such that BMOp(X) coincides
with BMO(X) if and only if p ∈ [1, p0).

Proposition 5.2.3. For each p0 ∈ [1,∞) there exists a space X such that BMOp(X) coincides
with BMO(X) if and only if p ∈ [1, p0].

Now we show that Theorem 5.1.1 follows easily from the results mentioned above.

Proof of Theorem 5.1.1. For a given space X define

p0 := p0(X) := sup
{
p ∈ [1,∞) : BMOp(X) = BMO(X)

}
.

The case p0 = ∞ corresponds to (A). On the other hand, if p0 ∈ [1,∞), then we have two
possibilities: BMOp0(X) coincides with BMO(X) or not. We analyze only the first option which
corresponds to (C), and the second one which corresponds to (B) can be treated similarly.
Obviously, we have that BMOp(X) coincides with BMO(X) for each p ∈ [1, p0]. Let us now
consider two distinct parameters p1, p2 ∈ [1,∞) with p2 > max{p0, p1}. If p1 ≤ p0, then by the
definition of p0 we have BMOp1(X) ( BMOp2(X). On the other hand, if p1 > p0, then there
exists α ∈ (1,∞) such that p1/α ≤ p0 < p2/α. Hence, we have BMOp1/α(X) ( BMOp2/α(X)

and by using Lemma 5.2.1 we conclude that BMOp1(X) ( BMOp2(X).
Finally, the last part of Theorem 5.1.1 can be deduced from Propositions 5.2.2 and 5.2.3.

Indeed, the spaces obtained there cover all specified cases corresponding to (B) and (C). Since
the scenario described in (A) can be realized by any doubling space, the proof is complete.

5.3 Proof of the key lemma

This section is entirely devoted to proving Lemma 5.2.1. It is worth mentioning here that it is
possible to formulate Lemma 5.2.1 in a more general form than the one presented before. Indeed,
the proof does not rely on the fact that balls were used to define the spaces BMOp(X). Thus,
the conclusion remains true if one considers the spaces BMOp(X) introduced with the aid of an
arbitrary base (that is, a fixed family of subsets of X) instead.
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Proof of Lemma 5.2.1. Suppose that BMOp1(X) ( BMOp2(X) for some p1, p2 ∈ [1,∞) with
p1 < p2 and fix α ∈ (1,∞). We begin with a simple observation that it suffices to find a sequence
(gN )∞N=1 satisfying ‖gN‖∗,αp1 ≤ C uniformly in N and limN→∞ ‖gN‖∗,αp2 =∞.

Take f ∈ BMOp1(X) \ BMOp2(X) and write f = f1 + if2, where both f1 and f2 are real-
valued. Observe that at least one of the functions f1, f2 also lies in BMOp1(X) \ BMOp2(X).
Therefore, we can assume f to be real-valued.

Fix N ∈ N and choose a ball BN ⊂ X such that

1

|BN |

∫
BN

|f − fBN |
p2 dµ ≥ N. (5.3.1)

Take fN := f − fBN and introduce gN defined by

gN (x) := sgn(fN (x)) · |fN (x)|1/α.

Our first goal is to show that ‖gN‖∗,αp1 ≤ C holds independently of N . Notice that

1

|B|

∫
B
|h− hB|p dµ ≤ 1

|B|2

∫
B

∫
B
|h(x)− h(y)|p dµ(x) dµ(y) ≤ 2p

|B|

∫
B
|h− hB|p dµ (5.3.2)

holds for any p ∈ [1,∞), B ⊂ X, and locally integrable h. In particular, (5.3.2) implies that

1

|B|2

∫
B

∫
B
|fN (x)− fN (y)|p1 dµ(x) dµ(y) ≤ 2p1‖fN‖p1∗,p1 = 2p1‖f‖p1∗,p1 (5.3.3)

holds for each ball B ⊂ X. We would like to obtain a similar estimate for gN and αp1 instead of
fN and p1. Take any two points x, y ∈ B. If gN (x) and gN (y) are of the same sign, then

|gN (x)− gN (y)|αp1 =
∣∣ |fN (x)|1/α − |fN (y)|1/α

∣∣αp1 ≤ |fN (x)− fN (y)|p1 .

On the other hand, if gN (x) > 0 and gN (y) ≤ 0, then we obtain

|gN (x)− gN (y)|αp1 ≤ 2αp1(gN (x)αp1 + (−gN (y))αp1) = 2αp1(fN (x)p1 + (−fN (y))p1)

≤ 2αp1 |fN (x)− fN (y)|p1 .

Combining (5.3.3) with the last two estimates gives

1

|B|2

∫
B

∫
B
|gN (x)− gN (y)|αp1 dµ(x) dµ(y) ≤ 2(1+α)p1‖f‖p1∗,p1

which, by using (5.3.2) again, results in the desired inequality ‖gN‖∗,αp1 ≤ 21+α‖f‖∗,p1 .
It remains to estimate ‖gN‖∗,αp2 from below. For M ∈ (0,∞) we take N ∈ N satisfying

2−αp2N − 2αp2(M + 1)αp2 ≥M (5.3.4)

and show that
1

|BN |

∫
BN

|gN − (gN )BN |
αp2 dµ ≥M. (5.3.5)
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We consider the following two cases: |(gN )BN | ≤ M + 1 and (gN )BN < −M − 1 (for the
remaining case (gN )BN > M + 1 one can replace fN and gN by −fN and −gN , respectively). If
|(gN )BN | ≤M+1, then we use the following estimates: for x ∈ BN such that |gN (x)| > 2(M+1),

|gN (x)− (gN )BN |
αp2 ≥ 2−αp2 |gN (x)|αp2 = 2−αp2 |fN (x)|p2 , (5.3.6)

and, for x ∈ BN such that |gN (x)| ≤ 2(M + 1),

|gN (x)− (gN )BN |
αp2 ≥ 0 ≥ |gN (x)|αp2 − 2αp2(M + 1)αp2 = |fN (x)|p2 − 2αp2(M + 1)αp2 . (5.3.7)

Applying first (5.3.6) and (5.3.7), and then (5.3.1) and (5.3.4), we obtain∫
BN

|gN − (gN )BN |
αp2 dµ ≥ 2−αp2

∫
BN

|fN |p2 dµ− 2αp2(M + 1)αp2 |BN |

≥
(

2−αp2N − 2αp2(M + 1)αp2
)
|BN | ≥M |BN |.

(5.3.8)

On the other hand, if (gN )BN < −M − 1, then∫
BN

(fN − gN ) dµ > (M + 1)|BN |.

Let UN := {x ∈ BN : gN (x) ≥ 1}. Observe that we have fN (y)− gN (y) ≤ 1 for any y ∈ BN \UN
(the definition of gN is involved here) and hence∫

UN

(fN − gN ) dµ > M |BN |. (5.3.9)

Therefore, by using the definition of UN , the fact that (gN )BN < 0, and (5.3.9) we obtain∫
BN

|gN − (gN )BN |
αp2 dµ ≥

∫
UN

gαp2N dµ =

∫
UN

fp2N dµ ≥
∫
UN

(fN − gN ) dµ > M |BN |. (5.3.10)

Finally, (5.3.5) follows from (5.3.8) and (5.3.10). Thus, the proof is complete.

5.4 Test spaces

In this section we present a simple method of constructing metric measure spaces X = (X, ρ, | · |)
with specific properties of the associated spaces BMOp(X) with p ∈ [1,∞). Here | · | is counting
measure on X, and this is the only measure that will be considered in Sections 5.4 and 5.5.

Throughout this chapter the term test space will be used for each space X built in the following
way. Let M = {mn,i : i ∈ [n], n ∈ N} be a fixed triangular matrix of positive integers with
m1,1 = 1. Define

X := XM :=
{
xn,i,j : j ∈ {0} ∪ [mn,i], i ∈ [n], n ∈ N

}
,
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where all elements xn,i,j are different. By Sn,i we denote the branch

Sn,i :=
{
xn,i,0, xn,i,1, . . . , xn,i,mn,i

}
.

Later on we also use auxiliary symbols Sn := ∪ni=1Sn,i and Tn := ∪nk=1Sk, and the function
∨ : X ×X → N defined by ∨(x, y) := min{n ∈ N : {x, y} ⊂ Tn} (in other words, if x ∈ Sn1 and
y ∈ Sn2 , then ∨(x, y) = max{n1, n2}). We introduce ρ determining the distance between two
different elements x, y ∈ X by the formula

ρ(x, y) :=


n+ 1

2 if {x, y} = {xn,n,0, xn+1,1,0} for some n ∈ N,
n− 1

2i+1 if xn,i,0 ∈ {x, y} ⊂ Sn,i for some 1 ≤ i ≤ n, n ∈ N,
n− 1

2i+2 if {x, y} = {xn,i,0, xn,i+1,0} for some 1 ≤ i ≤ n− 1, n ∈ N,
∨(x, y) otherwise.

At first glance, such a metric may look a bit strange. However, its main advantage lies in the
arrangement of balls containing exactly two points which we call pair of neighbors later on.
Moreover, any ball that cannot be covered by at least one of the sets

Nx := {x} ∪ {y ∈ X : y is a neighbor of x}, x ∈ X,

must be of the form Tn or Tn ∪ {xn+1,1,0} for some n ≥ 2. These two properties make the
associated BMOp(X) spaces easy to deal with. Figure 5.1 shows a model of the space (X, ρ)

(neighboring points are connected by a solid line).

x1,1,0

x1,1,1 x1,1,m1,1
...

x2,1,0

x2,1,1 x2,1,m2,1
...

x2,2,0

x2,2,1 x2,2,m2,2
...

x3,1,0

x3,1,1 x3,1,m3,1
...

...
3
2

7
4

5
2

2
3

5
3

9
5

9
5

8
3

8
3

Figure 5.1: The test space (X, ρ).

Fix p0 ∈ (1,∞). Our intention is to choose the matrix M in such a way as to obtain that
BMOp(X) = BMO(X) if and only if p ∈ [1, p0). We construct M inductively. Namely, for each
n ∈ N\{1}, supposing that the values mk,i with i ∈ [k] and k ∈ [n−1] have already been chosen,
we take

mn,i =
⌊ bn

(n− i+ 1)p0
− bn

(n− i+ 2)p0

⌋
(C1)
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for i ∈ [n], where bn is an even positive integer so large that

|Tn−1| ≤ min
{⌊ bn

(n+ 1)p0
− bn

(n+ 2)p0

⌋
,
bn
n2p0

}
. (C2)

We need a few auxiliary estimates. First, observe that from (C1), (C2), and the fact that bn is
even it follows that bn/2 ≤ |Tn| ≤ 2bn. Moreover, for each i ∈ [n] we have

|Sn,i|
|Tn|

≤ 4mn,i

bn
≤ 4

( 1

(n− i+ 1)p0
− 1

(n− i+ 2)p0

)
(5.4.1)

and
|Sn,i|
|Tn|

≥ mn,i

2bn
≥ 1

4

( 1

(n− i+ 1)p0
− 1

(n− i+ 2)p0

)
. (5.4.2)

We are now ready to prove Proposition 5.2.2.

Proof of Proposition 5.2.2. For fixed p0 ∈ (1,∞) let X = (X, ρ, | · |) be the test space with M
defined with the aid of (C1) and (C2).

First we show that for each p ∈ (1, p0) there exists Cp ∈ (0,∞) such that ‖f‖∗,p ≤ Cp‖f‖∗
holds for every f ∈ BMO(X). Without any loss of generality we can assume that ‖f‖∗ = 1.
Observe that then we have |f(x) − f(y)| ≤ 2 whenever x and y are neighbors. Hence, for each
B ⊂ X at least one of the following two possibilities holds:

(a) We have B ⊂ Nx for some x ∈ X and thus max{|f(y)− f(z)| : y, z ∈ B} ≤ 4.

(b) We have B = Tn or B = Tn ∪ {xn+1,1,0} for some n ∈ N \ {1}.

If (a) holds, then we obtain the trivial bound

1

|B|
∑
x∈B
|f(x)− fB|p ≤ 4p. (5.4.3)

To analyze the case (b), fix n ∈ N \ {1} and assume that B = Tn or B = Tn ∪ {xn+1,1,0}. For
each l ∈ N set E′l := {x ∈ B : |f(x) − f(xn,n,0)| > l} . In each of the two cases, {xn+1,1,0} ∈ B
or {xn+1,1,0} /∈ B, by using (C2) and (5.4.1) we obtain the following estimates: for l ∈ [n− 1],

|E′2l|
|B|

≤
|Tn−1 ∪

⋃n−l
i=1 Sn,i|

|Tn|
≤ 4

(l + 1)p0
, (5.4.4)

for l ∈ [n2] \ [n− 1],
|E′2l|
|B|

≤ |Tn−1|
|Tn|

≤ 2

n2p0
, (5.4.5)

and, finally, for l ∈ N \ [n2],
|E′2l| = 0. (5.4.6)

Moreover, recall the basic fact that for any a ∈ C we have∑
x∈B
|f(x)− fB|p ≤ 2p

∑
x∈B
|f(x)− a|p. (5.4.7)
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Thus, applying first (5.4.7) with a = f(xn,n,0), and then (5.4.4), (5.4.5), and (5.4.6), we obtain

1

|B|
∑
x∈B
|f(x)− fB|p ≤

2p

|B|
∑
x∈B
|f(x)− f(xn,n,0)|p

=
2p

|B|

∫ ∞
0

p λp−1
∣∣{x ∈ B : |f(x)− f(xn,n,0)| > λ

}∣∣ dλ
≤ p 2p+1

|B|

∞∑
l=0

(2l + 2)p−1|E′2l|

≤ p 4p
(

1 +
n−1∑
l=1

4 · (l + 1)p−1

(l + 1)p0
+ n2 · 2(2n2)p−1

n2p0

)
≤ p 4p

(
1 + 4

∞∑
l=1

lp−p0−1 + 2p
)
.

(5.4.8)

Combining (5.4.3) and (5.4.8) shows that for each f satisfying ‖f‖∗ = 1 and B ⊂ X we have
supB⊂X

1
|B|
∑

x∈B |f(x)− fB|p ≤ Cpp with Cp independent of B and f .

Now we prove that there exists g ∈ BMO(X) \ BMOp0(X). We begin with the following
simple remark. Given f such that |f(x) − f(y)| ≤ 2 for any neighboring points x, y, and B of
the form Tn or Tn ∪ {xn+1,1,0} for n ∈ N \ {1}, the average value of f over B does not differ too
much from f(xn,n,0). Indeed, by using (C2), the estimate |B| ≥ bn/2, and (5.4.1), we obtain

|fB − f(xn,n,0)| ≤ 2 +
2

|B|

∞∑
l=1

∣∣{x ∈ B : |f(x)− f(xn,n,0)| > 2l
}∣∣

≤ 2 +
2

|Tn|

( n−1∑
l=1

∣∣Tn−1 ∪
n−l⋃
i=1

Sn,i
∣∣+ (n− 1)2|Tn−1|

)
≤ 2 + 2

n−1∑
l=1

|
⋃n−l
i=1 Sn,i|
|Tn|

+ 2n2 |Tn−1|
|Tn|

≤ 6 + 2
n−1∑
l=1

4

(n− l)p0
≤ 6 + 8

∞∑
l=1

l−p0 ≤ N

(5.4.9)

for some fixed integer N = N(p0). Let us now take g defined by the formula

g(xn,i,j) := i+

n−1∑
k=1

k, j ∈ {0} ∪ [mn,i], i ∈ [n], n ∈ N.

It is easy to check that g ∈ BMO(X) since for each B ⊂ X at least one of the estimates (5.4.3) and
(5.4.8) holds with p and f replaced by 1 and g, respectively. Indeed, to obtain these inequalities
for f before we used only the information that |f(x) − f(y)| ≤ 2 for any neighboring points x
and y. Our function g satisfies this condition as well. In addition, (5.4.9) remains true if we put
g in place of f . Let n ∈ N \ {1} and take B = Tn. Observe that

|g(x)− gB| ≥ n− i−N, x ∈ Sn,i, i ∈ [n]. (5.4.10)
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Therefore, if n ≥ 4N , then by using (5.4.10) and (5.4.2) we obtain

1

|B|
∑
x∈B
|g(x)− gB|p0 ≥

1

|B|

∞∑
l=1

p0(l − 1)p0−1
∣∣{x ∈ B : |g(x)− gB| > l

}∣∣
≥ 1

|Tn|

n−N−1∑
l=2

p0(l − 1)p0−1
∣∣∣ n−N−l⋃

i=1

Sn,i

∣∣∣
≥ p0

4

n−N−1∑
l=2

(l − 1)p0−1
( 1

(N + l − 1)p0
− 1

(n+ 1)p0

)

≥ p0

8

bn/2+3/2−Nc∑
l=2

(l − 1)p0−1

(N + l − 1)p0

≥ p0

2p0+3

bn/2+3/2−Nc∑
l=N+1

(l − 1)−1,

(5.4.11)

since (N + l−1)−p0 ≥ 2(n+1)−p0 for l ≤ bn/2+3/2−Nc and N + l−1 ≤ 2(l−1) for l ≥ N +1.
Letting n→∞ we conclude that g /∈ BMOp0(X).

At the end of this section we will be interested in test spaces X for which BMOp(X) coincides
with BMO(X) if and only if p ∈ [1, p0], where p0 ∈ [1,∞) is fixed. We can easily get such spaces
slightly modifying the previous construction of M . Namely, instead of using (C1) and (C2), we
define mn,i for n ∈ N \ {1} and i ∈ [n] by

mn,i =
⌊ 1

log(n) + 1

( bn
(n− i+ 1)p0

− bn
(n− i+ 2)p0

)⌋
, (C1’)

where bn is an even integer so large that

|Tn−1| ≤ min
(⌊ 1

log(n) + 1

( bn
(n+ 1)p0

− bn
(n+ 2)p0

)⌋
,
bn
n2p0

)
. (C2’)

Now we present a sketch of the proof of Proposition 5.2.3.

Proof of Proposition 5.2.3. For fixed p0 ∈ [1,∞) let X = (X, ρ, | · |) be the test space with M
defined with the aid of (C1’) and (C2’). We show that for each p ∈ [1, p0] there exists Cp ∈ (0,∞)

such that ‖f‖∗,p ≤ Cp‖f‖∗ holds for every f ∈ BMO(X). To this end, observe that

p 4p
(

1 +
1

log(n) + 1

n−1∑
l=1

4 · (l + 1)p−1

(l + 1)p0
+ n2 · 2(2n2)p−1

n2p0

)
,

is bounded uniformly in n if p ∈ [1, p0]. This allows us to get a proper variant of the estimate
(5.4.8) for each such p.

Now we prove that for g ∈ BMO(X) defined as in the proof of Proposition 5.2.2 we have
g /∈ BMOp(X) for all p ∈ (p0,∞). To see this note that if p ∈ (p0,∞), then the estimates
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analogous to (5.4.9) and (5.4.11) remain true. Namely, for B = Tn one can obtain

|gB − g(xn,n,0)| ≤ N,

where N is some positive integer independent of n, and

1

|B|
∑
x∈B
|g(x)− gB|p ≥

p (log(n) + 1)−1

2p0+3

bn/2+3/2−Nc∑
l=N+1

(l − 1)p−p0−1.

Finally, the right-hand side of the inequality above tends to infinity with n.

5.5 Further constructions and comments

In the last part of this chapter we consider several variants of the construction process described
in Section 5.4, in order to obtain test spaces with another interesting properties.

Our first goal is to show that if the entries of the matrix M grow fast enough, then the
John–Nirenberg inequality holds for all f ∈ BMO(X). This result may be a little surprising at
first, since we know that the John–Nirenberg inequality holds for doubling spaces. Keeping that
in mind, one may suppose that X should have rather little chance of preserving this property if
we force the terms mn,i to grow rapidly. However, observe that in Section 5.4 the ratios between
the values mn,1, . . . ,mn,n played a crucial role in estimating the mean oscillation of the studied
functions and the estimates we obtained were stronger if the values mn,i/mn,n for i ∈ [n − 1]

were smaller.
To formulate our result in a more readable way it is convenient to identify the matrix M

with the sequence M ′ = (m′1,m
′
2, . . . ) formed by writing the entries of M row by row, that

is M ′ := (m1,1,m2,1,m2,2,m3,1, . . . ). In what follows, for simplicity, we use M based on the
geometric sequence (2k−1)∞k=1. Nevertheless, it will be clear that the presented proof also works
for any lacunary sequence (m′k)

∞
k=1, that is, a sequence satisfying m′k+1/m

′
k ≥ c for all k ∈ N,

where c is some fixed constant strictly greater than 1.

Proposition 5.5.1. Let X = (X, ρ, | · |) be the test space with M identified with the geometric
sequence (2k−1)∞k=1. Then for the space BMO(X) the John–Nirenberg inequality

|{x ∈ B : |f(x)− fB| > λ}|
|B|

≤ c1 exp(−c2λ/‖f‖∗), (5.5.2)

holds with constants c1, c2 ∈ (0,∞) independent of f ∈ BMO(X), B ⊂ X, and λ ∈ (0,∞).

Proof. Let f ∈ BMO(X) be such that ‖f‖∗ = 1. First, observe that the main difficulty in proving
(5.5.2) is related to the situation described in (b), where B is of the form Tn or Tn ∪ {xn+1,1,0}.
Indeed, if the case (a) happens instead, then we have max{|f(x)−f(y)| : x, y ∈ B} ≤ 4 and hence
(5.5.2) holds for any λ ∈ (0,∞) if we choose c1 and c2 such that c1 exp(−4c2) ≥ 1. Therefore,
fix n ∈ N \ {1} and consider B of the form specified in (b). Note that 2k ≤ |B| ≤ 2k+1, where
k = n(n+1)

2 . Once again we will take advantage of the useful property that |f(x) − f(y)| ≤ 2
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holds for neighboring points x and y. Proceeding just like we did before to get (5.4.9), we can
estimate the value |fB − f(xn,n,0)| by some even integer N which does not depend on f , n, and
the fact whether B includes {xn+1,1,0} or not. Then for any integer l ∈ N \ [N − 1] we have

|{x ∈ B : |f(x)− fB| > 2l}| ≤ |{x ∈ B : |f(x)− f(xn,n,0)| > 2(l −N/2)}| ≤ 2k−l+N/2+1

≤ 2N/2+12−l|B|,

and now it is routine to choose c1 and c2 (independent of significant parameters) such that (5.5.2)
holds for all λ ∈ (0,∞) and B ⊂ X of an arbitrary form.

For the presentation of the remaining two results we return to the matrix description of the
space X. The following construction ofM is very similar to the one described in Section 5.4, where
the conditions (C1) and (C2) were used, but this time we choose the parameter p0 separately in
each step of induction. Namely, let P = (p1, p2, . . . ) be a sequence of numbers strictly greater
than 1. We define mn,i for n ∈ N \ {1} and i ∈ [n] by

mn,i =
⌊ bn

(n− i+ 1)pn
− bn

(n− i+ 2)pn

⌋
, (C1*)

where bn is an even integer so large that

|Tn−1| ≤ min
(⌊ bn

(n+ 1)pn
− bn

(n+ 2)pn

⌋
,
bn
n2pn

,
bn
nn

)
. (C2*)

Our next purpose will be to show that by a suitable choice of P it is possible to obtain a space
X for which the associated spaces BMOp(X) are all different. Although this result can also be
deduced from Theorem 5.1.1, the advantage of the current approach lies in the fact that the
proof presented below, contrary to the proof of Theorem 5.1.1, is constructive. Namely, for each
p, p′ ∈ [1,∞) with p < p′ we explicitly construct f ∈ BMOp(X) \BMOp′(X). In what follows we
take P formed by writing the elements of some countable dense subset of (1,∞) in an arbitrary
order. We can use the set Q ∩ (1,∞), for example.

Proposition 5.5.3. Let P = (p1, p2, . . . ) be as above and consider the test space X = (X, ρ, | · |)
with M defined by using (C1*) and (C2*). Then for each p, p′ ∈ [1,∞) with p < p′ there exists
g ∈ BMOp(X) such that g /∈ BMOp′(X).

Proof. Fix p, p′ as above and let J := J(p, p′) := [p+p
′

2 , p′]. We take g defined by the formula

g(xn,i,j) := i · 1J(pn) +

n−1∑
k=2

k · 1J(pk), j ∈ {0} ∪ [mn,i], i ∈ [n], n ∈ N.

Note that g is similar to the analogous function considered in the proof of Proposition 5.2.2, but
this time it grows only in those Sn for which the corresponding values pn belong to J . It is now
a standard procedure to show that g ∈ BMOp(X) \ BMOp′(X) and most of the work consists of
proving the appropriate variants of the estimates (5.4.8), (5.4.9), and (5.4.11).
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We conclude our studies with an example of a test space X for which the associated spaces
BMOp(X) coincide for the full range of the parameter p, but the John–Nirenberg inequality does
not hold. Namely, we have the following.

Proposition 5.5.4. There exists a (test) space X with the following properties:

(i) For each p ∈ (1,∞) there exists Cp ∈ (0,∞) such that the inequality ‖f‖∗,p ≤ Cp‖f‖∗ holds
for all f ∈ BMO(X).

(ii) There exists g ∈ BMO(X) such that for each l ∈ N we can find Bl ⊂ X and λl ∈ (0,∞)

satisfying
|{x ∈ Bl : |g(x)− gBl | > λl}|

|Bl|
> l exp(−λl/l).

In particular, there is no inequality of the form (5.5.2) satisfied by all f ∈ BMO(X).

Proof. The space X will be built by using M constructed with the aid of (C1*) and (C2*) for
some suitable sequence P of positive integers. The key idea is to choose P such that pn tends to
infinity very slowly.

First, notice that the sole assumption limn→∞ pn =∞ implies (i). Indeed, let f be such that
‖f‖∗ = 1. Observe that for each p ∈ (1,∞) there exists N(p) ∈ N \ {1} such that pn ≥ p + 1

for all n ∈ N \ [N(p)]. Therefore, (5.4.8) holds with p+ 1 instead of p0 for each such n and B of
the form Tn or Tn ∪ {xn+1,1,0}. Since there exists a numerical constant K ∈ (0,∞) depending
only on p such that for any other choices of B the inequality max{|f(x)− f(y)| : x, y ∈ B} ≤ K
holds, we see that (i) is satisfied.

It remains to show that with additional assumptions imposed on P also (ii) holds true. To
be more specific, the slow growth of the elements of P will suffice. Suppose for convenience that
p2 = 2 and P is nondecreasing. We claim that there exists N ∈ N such that the inequality
|fB − f(xn,n,0)| ≤ N holds for B = Tn with n ∈ N \ {1} and any f such that ‖f‖∗ = 1. Indeed,
we see that now (5.4.9) holds with p0 replaced by 2. We are ready to define P inductively. Set
p2 := 2. Assuming that pn = k for some n, k ∈ N \ {1}, we define pn+1 by the formula

pn+1 :=

{
k if 1

4

(
n−k − (n+ 1)−k

)
≤ k exp(−(n−N − 1)/k),

k + 1 otherwise.
(5.5.5)

Clearly, we have limn→∞ pn =∞ and the sequence (pn)∞n=2 is nondecreasing as planned.
Finally, let g be as in the proof of Proposition 5.2.2. Of course, we have g ∈ BMO(X). Fix

l ∈ N \ {1} such that L := L(l) := max{k ∈ N \ {1} : pk = l} is strictly greater than N + 1. Then

|{x ∈ TL : |g(x)− gTL | ≥ L−N − 1}|
|TL|

≥
|{x ∈ TL : |g(x)− g(xL,L,0)| ≥ L− 1}|

|TL|
≥
|SL,1|
|TL|

and, by using (5.4.2) and (5.5.5),

|SL,1|
|TL|

≥ 1

4

(
L−l − (L+ 1)−l

)
≥ l exp(−(L−N − 1)/l).

Thus, if l ∈ N is large, then the inequality stated in (ii) holds with Bl = TL and λl = L−N−1.



Chapter 6

Dichotomy property

A dichotomy regarding the finiteness of the Hardy–Littlewood maximal functions was noticed
for the first time by Bennett, DeVore and Sharpley [5] in the context of functions of bounded
mean oscillation. Namely, the authors discovered the principle that for each f ∈ BMO(Rd) the
maximal functionMcf (orMf) either is finite almost everywhere or equals∞ on the whole Rd.
Later on, however, it turned out that this property is not directly related to the BMO concept.
Fiorenza and Krbec [16] proved that for any f ∈ L1

loc(Rd) the following holds: ifMcf(x0) <∞
for some x0 ∈ Rd, thenMcf is finite almost everywhere. Finally, Aalto and Kinnunen [1] have
shown in a very elegant way that this implication remains true if one replaces the Euclidean
space by any doubling space. On the other hand, some negative results in similar contexts also
appeared in the literature. For example, C.-C. Lin, Stempak and Y.-S. Wang [36] observed that
such a principle does not take place for local maximal operators. In the following chapter we
shed more light on the aforementioned issue by examining the occurrences of the dichotomy
property for maximal operators associated with metric measure spaces X for which the doubling
condition fails to hold. We focus on the two most common maximal operators, centeredMc and
noncenteredM.

Given a metric measure space X = (X, ρ, µ), we always have {x ∈ X :Mcf(x) =∞} ⊂ {x ∈
X : Mf(x) = ∞} for any f ∈ L1

loc(µ). Moreover, if X is doubling, then the reverse inclusion
follows as well. Thus, the sentences “Mc possesses the dichotomy property” and “M possesses the
dichotomy property” are equivalent as long as the doubling condition is satisfied. In nondoubling
setting the situation is different. First of all, we have no assurance that the dichotomy property
for Mc or M still occurs. Moreover, since Mcf and Mf may be incomparable, there are no
obvious indications that the existence or absence of the dichotomy property for one operator
implies its existence or absence for another one. Therefore, a natural problems arise:

Can each of the four possibilities actually take place for some (nondoubling) space?

The aim of this chapter is to answer this question in the affirmative.

In Section 6.1 we formulate the main problem. In Sections 6.2 and 6.3 the appropriate
examples of nondoubling spaces are provided. Finally, in Section 6.4 we characterize (in terms
of µ) all situations in which Mc possesses the dichotomy property in the case X = (Rd, ρ, µ),
d ∈ N, where ρ is the metric induced by any norm on Rd. Throughout this chapter we assume
that µ is such that |B| ∈ (0,∞) holds for each open ball B determined by ρ.

95
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6.1 Preliminaries and results

Consider a metric measure space X = (X, ρ, µ). Throughout this chapter Br(x) stands for the
open ball centered at x ∈ X with radius r ∈ (0,∞). By L1

loc(µ) we denote the space consisting
of functions f which are integrable (with respect to µ) on every ball B ⊂ X. Note that this
definition is slightly different from the standard one, where the integrability of f on every compact
subset of X is assumed. Nevertheless, if X is such that every ball has compact closure, then the
two definitions are equivalent (this is the case for the standard Euclidean space, for example).

We say that the associated noncentered maximal operatorM possesses the dichotomy prop-
erty if for any f ∈ L1

loc(µ) exactly one of the following cases holds: either |E∞(f)| = 0 or
E∞(f) = X, where E∞(f) := {x ∈ X : Mf(x) = ∞}. Similarly, the associated centered
maximal operator Mc possesses the dichotomy property if for any f ∈ L1

loc(µ) we have either
|Ec
∞(f)| = 0 or Ec

∞(f) = X, where Ec
∞(f) := {x ∈ X :Mcf(x) =∞}. Notice that, equivalently,

the dichotomy property can be formulated in the following way: ifMf(x0) < ∞ (respectively,
Mcf(x0) <∞) for some f ∈ L1

loc(µ) and x0 ∈ X, thenMf (respectively,Mcf) is finite µ-almost
everywhere.

The following theorem is the main result of this chapter.

Theorem 6.1.1. For each of the four possibilities regarding whetherM andMc possess the di-
chotomy property or not, there exists a nondoubling metric measure space for which the associated
maximal operators behave just the way we demand.

Proof. Examples A, B, C, and D in Sections 6.2 and 6.3 together constitute the proof of this
theorem, illustrating all the desired situations.

It is worth noting at this point that, in addition to indicating appropriate examples, our goal
is also to ensure that they are constructed as simply as possible. Thus, in all examples presented
later on X is either Rd or Zd, while ρ is the standard Euclidean metric de or the supremum
metric d∞. Finally, in the discrete setting µ is defined by letting µ({x}) ∈ (0,∞) for each point
x ∈ X, while in the continuous situation µ is determined by a suitable strictly positive and
locally integrable weight w.

For the convenience of the reader, the results obtained in Examples A, B, C, and D have
been summarized in Table 6.1 below.

Table 6.1: Occurrences of the dichotomy property (DP) forM andMc associated with spaces
described in Examples A, B, C, and D.

X ρ µ DP forM DP forMc

Ex. A R de dµ(x) = exp(x2)dx 3 7

Ex. B R de dµ(x) = exp(−x2)dx 3 3

Ex. C Z2 d∞ µ({(n,m)}) =

{
4|m| if n = 0,

1 otherwise.
7 3

Ex. D Z2 d∞ µ({(n,m)}) =


4|m| if n = 0,

2n
2 if n < 0 and m = 0,
1 otherwise.

7 7
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One more comment is in order. While the doubling condition for measures is often assumed
in the literature to provide that most of the classical theory works, some statements can be
verified under the less strict condition that the space is geometrically doubling or satisfies both
geometric doubling and upper doubling properties (see [21] for the details). In our case, although
the metric measure spaces appearing in Table 6.1 are nondoubling, the corresponding metric
spaces are geometrically doubling. This means that the general result for the class of doubling
spaces, concerning the existence of the dichotomy property for maximal operators, cannot be
repeated in the context of geometrically doubling spaces. Finally, Example 6.4.3 in Section 6.4
illustrates the situation where the space is geometrically doubling and upper doubling at the
same time, while the associated operatorM does not possess the dichotomy property.

6.2 Real line case

In this section we study the dichotomy property for M and Mc associated with the one-
dimensional space (R, de, µ) with arbitrary Borel measure µ. We consider spaces from this
class separately, since they share certain specific properties, mainly due to their linear order (for
example, in this contextM always satisfies the weak type (1, 1) inequality with constant 2). Our
first task is to prove the following result.

Proposition 6.2.1. Let X = (R, de, µ) with µ such that |B| ∈ (0,∞) for each B ⊂ R. ThenM
possesses the dichotomy property.

The proof of Proposition 6.2.1 is preceded by some additional considerations.
Let r(B) be the radius of a given ball B. For f ∈ L1

loc(µ) we denote

Lf := Lf (µ) :=
{
x ∈ R : lim

r→0
sup

B3x:r(B)=r

1

|B|

∫
B
|f(y)− f(x)|dµ(y) = 0

}
and

Lc
f := Lc

f (µ) :=
{
x ∈ R : lim

r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dµ(y) = 0
}
.

Notice that there is a small nuisance here, because f is actually an equivalence class of functions,
while Lf and Lc

f clearly depend on the choice of its representative. Nevertheless, for any two
representatives f1 and f2 of a fixed equivalence class we have |Lf14Lf2 | = 0 and |Lc

f1
4Lc

f2
| = 0

(where 4 denotes the symmetric difference) and this circumstance is sufficient for our purposes.
The conclusion of the following lemma is a simple modification of the well known fact about

the set of Lebesgue points of a given function. Although the proof is rather standard, we present
it for the sake of completeness (cf. [17, Theorem 3.20]).

Lemma 6.2.2. Let X = (R, de, µ) with µ such that |B| ∈ (0,∞) for each B ⊂ R. If f ∈ L1
loc(µ),

then |R \ Lf | = 0.

Proof. Let us introduce the sets Lf,N with N ∈ N by

Lf,N :=
{
x ∈ R : lim sup

r→0
sup

B3x:r(B)=r

1

|B|

∫
B
|f(y)− f(x)|dµ(y) ≤ 1

N

}
.
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Note that Lf =
⋂∞
N=1 Lf,N . Therefore, it suffices to prove that for each N ∈ N there exists

a Borel set AN such that (−N,N) \ Lf,N ⊂ AN and |AN | ≤ 1/N .
Fix N and consider fN := f ·1(−N−1,N+1). Thus, fN ∈ L1(µ) and LfN ,N coincides with Lf,N

on (−N,N). Take a continuous function gN satisfying ‖fN − gN‖L1(µ) ≤ 1/(9N2) (notice that
continuous functions are dense in L1(µ) by [17, Proposition 7.9]) and define two auxiliary sets

E1
N :=

{
x ∈ R : |(fN − gN )(x)| > 1/(3N)

}
, E2

N :=
{
x ∈ R :M(fN − gN )(x) > 1/(3N)

}
.

Observe that |E1
N | ≤ 1/(3N) and |E2

N | ≤ 2/(3N). Now we fix x0 ∈ (−N,N) \ (E1
N ∪ E2

N ) and
take ε ∈ (0, 1) such that |gN (y)− gN (x0)| ≤ 1/(3N) whenever |y− x0| < ε. If B contains x0 and
satisfies r(B) < ε/2, then by using the estimate

|f(y)− f(x0)| ≤ |fN (y)− gN (y)|+ |gN (y)− gN (x0)|+ |(gN (x0)− fN (x0)|,

which is valid for all y ∈ B, we obtain

1

|B|

∫
B
|f(y)− f(x0)|dµ(y) ≤M(fN − gN )(x0) +

1

3N
+ |fN (x0)− gN (x0)| ≤ 1

N
,

and therefore AN = E1
N ∪ E2

N satisfies the desired conditions.

Remark 6.2.3. The definitions of Lf and Lc
f can also be adapted to the case of arbitrary space

(X, ρ, µ). Then we have |X \ Lf | = 0 (respectively, |X \ Lc
f | = 0) for all f ∈ L1

loc(µ) if only the
associated maximal operatorM (respectively,Mc) is of weak type (1, 1) and continuous functions
are dense in L1(µ). This is the case, for example, when dealing with Lc

f and (Rd, ρ, µ) with d ∈ N,
where ρ is induced by a fixed norm (in particular, ρ = de and ρ = d∞ are included) and µ is
a Borel measure. We explain some details more precisely in Section 6.4.

We are now ready to prove Proposition 6.2.1.

Proof of Proposition 6.2.1. Assume that |E∞(f)| > 0. Then we can take x ∈ Lf such that
Mf(x) =∞. For each n ∈ N there exist a ball Bn containing x and satisfying

1

|Bn|

∫
Bn

|f(y)| dµ(y) > n.

Fix ε ∈ (0,∞) such that
1

|B|

∫
B
|f(y)− f(x)|dµ(y) < 1

holds whenever r(B) ≤ ε, and denote δ := min{µ((x − ε/2, x]), µ([x, x + ε/2))} ∈ (0,∞). We
obtain that Bn ( (x− ε/2, x+ ε/2) if n ≥ |f(x)|+ 1 and, as a result, |Bn| ≥ δ for each such n.

Next we fix an arbitrary point x′ ∈ R with x′ > x (the case x < x′ can be considered
analogously). We denote γ = |(x, x′ + 1)| and notice that γ < ∞. Moreover, let B′n := Bn ∪
(x, x′ + 1) for n ∈ N. If n ≥ |f(x)|+ 1, then the set B′n forms a ball containing x′ and therefore

Mf(x′) ≥ 1

|B′n|

∫
B′n

|f(y)| dµ(y) ≥ |Bn|
|B′n|

· 1

|Bn|

∫
Bn

|f(y)| dµ(y) ≥ δn

δ + γ
.
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This, in turn, implies thatMf(x′) =∞, since n can be arbitrarily large.

At the end of this section we give an example of a space of the form (R, de, w(x)dx), where
w is a suitable weight (and w(x)dx is nondoubling), for which the centered Hardy–Littlewood
maximal operator does not possess the dichotomy property.

Example 6.2.4 (Example A). Consider the space (R, de, µ) with dµ(x) := exp(x2)dx. ThenM
possesses the dichotomy property, whileMc does not.

Indeed, M possesses the dichotomy property by Proposition 6.2.1, and for the second part we
argue as follows. Let f(x) := x · 1(0,∞)(x). We shall show that Mcf(x) = ∞ if and only if
x ∈ [0,∞). For x ∈ R and r ∈ (0,∞) let us introduce the quantity

Arf(x) :=
1

|Br(x)|

∫
Br(x)

|f(y)| ey2dy.

First, observe that limr→∞Arf(0) =∞. Indeed, fix N ∈ N and take r0 ∈ (N,∞) such that∫
(N,r)

ex
2
dx ≥ 1

3

∫
(−r,r)

ex
2
dx

holds whenever r ≥ r0. Therefore, for each such r we obtain

Arf(0) =
1

|Br(0)|

∫
Br(0)

f(x) ex
2
dx ≥ N

|Br(0)|

∫
(N,r)

ex
2
dx ≥ N

3
,

and thus Mcf(0) = ∞. If x ∈ (0,∞), then Arf(x) ≥ Ar+xf(0) holds whenever r ≥ x. This
fact gives Mcf(x) = ∞ for each such x. It remains to show that Mcf(x) < ∞ if x is strictly
negative. Observe that it is possible to choose r0 ∈ (|x|,∞) such that e(x+r)2 ≤ 2|x|er2 holds
whenever r ≥ r0. If r < r0, then Arf(x) ≤ f(x+ r0). On the other hand, if r ≥ r0, then

Arf(x) ≤ 1

|Br(x)|

∫
Br(x)

f(x) ex
2
dx ≤ e(x+r)2

2|(x− r,−r)|
≤ e(x+r)2

2|x|er2
≤ 1.

Consequently, we obtainMcf(x) <∞.

6.3 Multidimensional case

Throughout this section we work with spaces that do not necessarily have a linear structure. In
the first place we would like to get that in certain circumstancesMc must possess the dichotomy
property. Of course, for our purpose, we should ensure that the introduced criterion is relatively
easy to apply and returns positive results also for some nondoubling spaces. Fortunately, it turns
out that it is possible to find a condition that successfully meets all these requirements.

The following result is embedded in the context of Euclidean spaces but it is worth keeping
in mind that, in fact, it concerns all spaces for which |X \ Lc

f | = 0 holds whenever f ∈ L1
loc(µ).
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Proposition 6.3.1. Let X = (Rd, de, µ) with d ∈ N and µ such that |B| ∈ (0,∞) for each
B ⊂ R. Assume that

C̃ := C̃(y0) := lim sup
r→∞

|Br+1(y0)|
|Br(y0)|

<∞ for some y0 ∈ Rd. (6.3.2)

Then the associated maximal operatorMc possesses the dichotomy property.

Observe that the condition (6.3.2) is related to certain global properties of a given metric
measure space X and thus its occurrence (or not) should be independent of the choice of y0.
Indeed, it can easily be shown that if the inequality in (6.3.2) holds for some y0, then it is also
true for any y ∈ X in place of y0 (possibly with another constant C̃ depending on y).

Secondly, as it turns out according to Theorem 6.4.1 in Section 6.4, the converse also holds
in the case X = (Rd, de, µ). Namely, we shall prove that ifMc possesses the dichotomy property,
then (6.3.2) holds for some y0 ∈ Rd. In Proposition 6.3.1 above we state only one of the
implications, since this is enough to prove Theorem 6.1.1. On the other hand, the opposite
implication allows us to say that the formulated condition is sufficient and necessary at the same
time and, since looking for such conditions is interesting itself, we discuss it in a separate section.

Proof. Let f ∈ L1
loc(µ) and assume that |Ec

∞(f)| > 0. We take x0 ∈ Lc
f such thatMcf(x0) =∞.

Hence for each n ∈ N we have a ball Bn centered at x0 and satisfying

1

|Bn|

∫
Bn

|f(y)| dµ(y) > n.

Fix ε ∈ (0,∞) such that

1

|Br(x0)|

∫
Br(x0)

|f(y)− f(x0)| dµ(y) ≤ 1

holds whenever r ≤ ε and denote δ := |Bε(x0)| ∈ (0,∞). If n ≥ |f(x0)| + 1, then Bn ( Bε(x0)

and, as a result, we have |Bn| ≥ δ. This fact easily implies that limn→∞ rn = ∞, since f is
locally integrable.

Let us now fix x ∈ Rd. There exists r0 ∈ (0,∞) such that

|Br+1(y0)| ≤ 2C̃|Br(y0)|

if r ≥ r0. We take n0 ≥ |f(x0)|+1 large enough to ensure that if n ≥ n0, then rn−|y0−x0| ≥ r0.
For each n ∈ N consider the ball B′n := Brn+|x0−x|(x). If n ≥ n0, then

|B′n| ≤ |Brn+|x0−x|+|y0−x|(y0)| ≤ (2C̃)m|Brn−|x0−y0|(x0)| ≤ (2C̃)m|Bn|,

where m is a positive integer independent of n and such that m > |x0− x|+ |y0− x|+ |x0− y0|.
Finally, by using the fact that Bn ⊂ B′n we obtain

Mcf(x) ≥ 1

|B′n|

∫
B′n

|f(y)|dµ(y) ≥ |Bn|
|B′n|

· 1

|Bn|

∫
Bn

|f(y)|dµ(y) ≥ n

(2C̃)m

which givesMcf(x) =∞, since n can be arbitrarily large.
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Remark 6.3.3. The conclusion of Proposition 6.3.1 remains true if we take d∞ instead of de

provided that this time the balls determined by d∞ are used in (6.3.2). There are also no obstacles
to getting discrete counterparts of these statements. Namely, one can replace Rd by Zd, and obtain
the desired result for the space (Zd, ρ, µ), where ρ = de or ρ = d∞ and µ is arbitrary.

Now, with Propositions 6.2.1 and 6.3.1 in hand, we can easily give an example of a nondou-
bling space, for which bothM andMc possess the dichotomy property.

Example 6.3.4 (Example B). Consider the space (R, de, µ) with dµ(x) := exp(−x2)dx. Then
bothM andMc possess the dichotomy property.

Indeed, M possesses the dichotomy property by Proposition 6.2.1, while Mc possesses the
dichotomy property by Proposition 6.3.1, since limr→∞ |Br+1(0)|/|Br(0)| = 1.

At this point a natural question arises: will we get the same result for Gaussian measures in
higher dimensions? The next proposition settles this in the affirmative.

Proposition 6.3.5. Let X = (Rd, de, µ) with d ∈ N and µ such that |Rd| < ∞. Assume that µ
is determined by a strictly positive weight w such that, for each n ∈ N,

w(x) ∈ [cn, Cn], x ∈ Bn(0), (6.3.6)

for some numerical constants cn, Cn ∈ (0,∞) with cn < Cn. Then the associated maximal
operators,M andMc, both possess the dichotomy property.

Proof. It suffices to prove thatM possesses the dichotomy property, since |Rd| <∞ implies that
(6.3.2) is satisfied with C̃ = 1 (regardless of which point y0 ∈ Rd we choose).

Take f ∈ L1
loc(µ). We shall show that |Rd \ Lf | = 0. For each n ∈ N consider µn determined

by the weight wn given by

wn(x) :=

{
w(x) if x ∈ Bn(0),

1 otherwise.

Observe that the condition (6.3.6) implies that µn is doubling. Let fn := f1Bn(0). We have

|Bn(0) \ Lf | = |Bn(0) \ Lfn(µn)| ≤ |Rd \ Lfn(µn)| = 0,

because fn ∈ L1
loc(µn). This gives |Rd \ Lf | = 0, since n can be arbitrarily large.

Assume that |E∞(f)| > 0 and take x0 ∈ Lf such thatMf(x0) = ∞. For each n ∈ N there
exists a ball Bn containing x0 and such that

1

|Bn|

∫
Bn

|f(y)| dµ(y) > n.

Fix ε ∈ (0,∞) such that
1

|B|

∫
B
|f(y)− f(x0)|dµ(y) ≤ 1

holds whenever B ⊂ Bε(x0). If n ≥ |f(x0)| + 1, then Bn ( Bε(x0). Thus, combining the
condition (6.3.6) with the fact that r(Bn) ≥ ε/2 for each n as before, we conclude that |Bn| ≥ δ
for some δ ∈ (0,∞) depending on x0 and ε but independent of n.
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Let us now fix x ∈ Rd and take n ∈ N such that n ≥ |f(x0)| + 1. Let B′n be any ball
containing x and Bn. Then we obtain

Mf(x) ≥ 1

|B′n|

∫
B′n

|f(y)| dµ(y) ≥ 1

|Rd|

∫
Bn

|f(y)|dµ(y) ≥ δn

|Rd|

which givesMf(x) =∞, since n can be arbitrarily large.

Until now we furnished examples illustrating two of the four possibilities related to our initial
problem. In both cases the specified space was R with the usual metric and a Borel measure
determined by a suitable weight. Unfortunately, as was indicated in Proposition 6.2.1, such
examples cannot be used to cover the remaining two cases, since this time we want M to not
possess the dichotomy property. Therefore, a natural step is to try to use R2 instead of R.
This idea turns out to be right. However, for simplicity, the other two examples will be initially
constructed in the discrete setting Z2. Also, for purely technical reasons, the metric de is replaced
by d∞. Nevertheless, after presenting Examples C and D, we include some additional comments
in order to convince the reader that it is also possible to obtain the desired examples using metric
measure spaces of the form (R2, de, µ).

While dealing with Z2, for the sake of brevity, we will write shortly Br(n,m), µ(n,m), |(n,m)|
instead of Br((n,m)), µ({(n,m)}), |{(n,m)}|, respectively.

Example 6.3.7 (Example C). Consider the space (Z2, d∞, µ), where µ is defined by

µ(n,m) :=

{
4|m| if n = 0,

1 otherwise.

ThenMc possesses the dichotomy property, whileM does not.

Indeed, observe that Mc possesses the dichotomy property by Proposition 6.3.1 (or, more pre-
cisely, by Remark 6.3.3), since

lim
r→∞

|Br+1(0, 0)|
|Br(0, 0)|

= 4.

To verify the second part of the conclusion consider the function f defined by

f(n,m) :=

{
2n if n > 0 and m = 0,

0 otherwise.

We will show thatMf(1, 0) =∞ andMf(−1, 0) <∞ (in fact, it should be clear to the reader
that (1, 0) and (−1, 0) may be replaced by any other points (n1,m1) and (n2,m2) such that n1 is
strictly positive and n2 is strictly negative). For each N ∈ N consider the ball BN := BN (N, 0).
Observe that

Mf(1, 0) ≥ 1

|BN |
∑

(n,m)∈BN

f(n,m) · |(n,m)| ≥ f(N, 0) · |(N, 0)|
(2N − 1)2

=
2N

(2N − 1)2

which implies thatMf(1, 0) =∞, since N can be arbitrarily large. On the other hand, consider
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any ball B containing (−1, 0) and denote

K := K(B) := max{n ∈ Z : (n, 0) ∈ B}.

If K ≤ 0, then clearly
∑

(n,m)∈B f(n,m) · |(n,m)| = 0. In turn, if K > 0, then B must contain
at least one of the points (0,−bK/2c) and (0, bK/2c). Consequently, we have

1

|B|
∑

(n,m)∈B

f(n,m) · |(n,m)| ≤ 2f(K, 0)

4bK/2c
≤ 4

which implies thatMf(−1, 0) <∞.

Example 6.3.8 (Example D). Consider the space (Z2, d∞, µ), where µ is defined by

µ(n,m) :=


4|m| if n = 0,

2n
2 if n < 0 and m = 0,

1 otherwise.

Then bothM andMc do not possess the dichotomy property.

Indeed, to verify thatM does not possess the dichotomy property we can use exactly the same
function f as in Example C. It is easy to see thatMf(1, 0) = ∞ andMf(−1, 0) < ∞ hold as
before. In order to show thatMc does not possess the dichotomy property consider g defined by

g(n,m) :=

{
2n

2 if n > 0 and m = 0,

0 otherwise.

For each N ∈ N consider the balls B+
N := BN (1, 0) and B−N := BN (−1, 0). If N is large, then

1

|B+
N |

∑
(n,m)∈B+

N

g(n,m) · |(n,m)| ≥ g(N, 0)

2|(−N + 2, 0)|
= 2N

2−(N−2)2−1

and
1

|B−N |
∑

(n,m)∈B−N

g(n,m) · |(n,m)| ≤ 2g(N − 2, 0)

|(−N, 0)|
= 2−N

2+(N−2)2+1.

This, in turn, easily leads to the conclusion thatMcg(1, 0) =∞ andMcg(−1, 0) <∞.

Finally, as we mentioned earlier, we outline a sketch of how to adapt Examples C and D to
the situation of R2 with the Euclidean metric. First, note that the key idea of Example C was
to construct a measure which creates a kind of barrier separating (in the proper meaning) the
points (n,m) with positive and negative values of n, respectively. Exactly the same effect can be
achieved if we define w so that it behaves like e|y| in the strip x ∈ (−1

2 ,
1
2) and like 1 outside of it.

However, because of some significant differences between the shapes of the balls determined by
de and d∞, respectively, one should be a bit more careful when looking for the proper function
f such that Mf(x, y) = ∞ if x > 1 and Mf(x, y) < ∞ if x < −1. Observe that any ball B
such that (−1, 0) ∈ B and (N, 0) ∈ B must contain at least one of the points (0,−

√
N) and
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(0,
√
N). Therefore, if BN is such that N is the largest positive integer n satisfying (n, 0) ∈ BN ,

then one should ensure that the integral
∫
BN

f(x, y)w(x, y) dx dy does not exceed Ce
√
N , where

C ∈ (0,∞) is some numerical constant. On the other hand, we want this quantity to tend to
infinity with N faster than N2. This two conditions are fulfilled simultaneously if, for example,
f(x, y) behaves like x2 in the region {(x, y) ∈ R2 : x > 0, |y| < 1

2}, and equals 0 outside of it.
Finally, to arrange the situation of Example D, it suffices to define w in such a way that it is

comparable to e|y| if |x| < 1
2 , to e

x2 if x < 0 and |y| < 1
2 , and to 1 elsewhere. Also, apart from

those described above, there are no further difficulties in finding the appropriate functions f and
g that break the dichotomy condition forM andMc, respectively.

6.4 Necessary and sufficient condition

The last section is mainly devoted to describing the exact characterization of situations in which
Mc possesses the dichotomy property, for metric measure spaces of the form (Rd, de, µ) with
d ∈ N and µ such that |B| ∈ (0,∞) for each B ⊂ R. Namely, we have the following theorem.

Theorem 6.4.1. Let X = (Rd, de, µ) with d ∈ N and µ such that |B| ∈ (0,∞) for each B ⊂ R.
ThenMc possesses the dichotomy property if and only if (6.3.2) holds.

We show the proof only for d = 2, since in this case all the significant difficulties are well
exposed and, at the same time, we omit a few additional technical details that arise when d ≥ 3.
In turn, the case d = 1 is much simpler than the others, so we do not focus on it. When dealing
with R2, we will write shortly Br(x, y) instead of Br((x, y)), just like we did in the previous
section in the context of Z2.

Proof. Let us first recall that one of the implications has already been proven in Proposition 6.3.1.
Thus, it is enough to show that (6.3.2) is necessary forMc to possess the dichotomy property.

Take (R2, de, µ) and assume that (6.3.2) fails to occur. Thus, for the point (0, 0) there exists
a strictly increasing sequence of positive numbers (ak)k∈N such that

|Bak+1(0, 0)| ≥ 22k|Bak(0, 0)|

holds for each k ∈ N. In addition, we can force that a1 ≥ 8 and ak+1 ≥ ak + 2. For each n ∈ N
and j ∈ [2n] we define

S
(n)
k+,j :=

{
(x, y) ∈ Bak+1(0, 0) : φ(x, y) ∈

[2π(j − 1)

2n
,
2πj

2n

)}
,

where φ(x, y) ∈ [0, 2π) is the angle that (x, y) takes in polar coordinates.
Take n = 1 and choose j1 ∈ [2] such that the set

Λ1 :=
{
k ∈ N : |S(1)

k+,j1
| ≥ |Bak(0, 0)|/2

}
is infinite. Next, take n = 2 and choose j2 ∈ [4] satisfying dj2/2e = j1 and such that

Λ2 :=
{
k ∈ Λ1 : |B(2)

k+,j2
| ≥ |Bak(0, 0)|/4

}
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is infinite. Continuing this process inductively we get a sequence (jn)n∈N satisfying djn+1/2e = jn
for each n ∈ N and, by invoking a suitable diagonal argument, a strictly increasing subsequence
(akn)n∈N such that for each n ∈ N we have

|S(n)
kn+,jn

| ≥ |Bakn (0, 0)|/2n, n ∈ N.

From now on, for simplicity, we will write Bn and Sn+,jn instead of Bakn (0, 0) and S(n)
kn+,jn

,
respectively. Observe that the obtained sequence (jn)n∈N determines a unique angle φ0 ∈ [0, 2π)

which indicates a ray around which, loosely speaking, a significant part of µ is concentrated. For
the sake of clarity we assume that φ0 = 0 (thus, (jn)n∈N equals either (1, 1, 1, . . . ) or (2, 4, 8, . . . )).

For each n ∈ N denote Bn− := B1/2(−akn + 2, 0) and consider the function f defined by

f :=
∞∑
n=1

2n|Bn|
|Bn−|

1Bn− .

Of course, f ∈ L1
loc(µ). We will show that Mcf(x, y) = ∞ for (x, y) ∈ B1/2(0, 0) and

Mcf(x, y) <∞ for (x, y) ∈ B1/2(3, 0).
Fix (x, y) ∈ B1/2(0, 0) and observe that Bn− ⊂ Bakn−1(x, y) ⊂ Bn and therefore

1

|Bakn−1(x, y)|

∫
Bakn−1(x,y)

f dµ ≥ 1

|Bn|

∫
Bn−

f dµ = 2n

which givesMcf(x, y) =∞.
In turn, fix (x, y) ∈ B1/2(3, 0) and consider r ∈ (0,∞) such that Br(x, y) intersects at least

one of the sets Bn−. Notice that this requirement forces r > 2. We denote

N := N(x, y, r) := max
{
n ∈ N : Br(x, y) ∩Bn− 6= ∅

}
.

One can easily see that r > akn and hence (akn , 0) ∈ Br−2(x, y). Also, it is possible to choose
N0 := N0(x, y) ∈ N\{1} such that if N ≥ N0 and (akN , 0) ∈ Br−2(x, y), then SN+,jN ⊂ Br(x, y).
Define

Ñ := Ñ(x, y) := max
{
r ∈ (2,∞) : N(x, y, r) < N0

}
∈ (2,∞).

If r ∈ (2, Ñ ], then

1

|Br(x, y)|

∫
Br(x,y)

f dµ ≤ 1

|B2(x, y)|

∫
B
Ñ+1

(x,y)
f dµ = C,

where C ∈ (0,∞) is a numerical constant depending on (x, y) but independent of r as above.
On the other hand, if r > Ñ , then

1

|Br(x, y)|

∫
Br(x,y)

f dµ ≤ 2N+1|BN |
|SN+,jN |

≤ 2.

Consequently, we haveMcf(x, y) <∞.

Remark 6.4.2. The proof presented above relies on certain Euclidean geometry properties and
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therefore it cannot be repeated in a more general context. However, one can replace de with ρ
induced by any norm on Rd and get the same result by using similar arguments with only minor
modifications. In this case, of course, the balls in (6.3.2) are taken with respect to ρ. Thus, among
other things, we must take into account how the shape of these balls is related to the direction
determined by the angle φ0 specified in the proof. Finally, the weak type (1, 1) inequality of Mc

associated with (Rd, ρ, µ), which is needed to provide |Rd \ Lc
f | = 0 in Proposition 6.3.1, can be

deduced from a stronger version of the Besicovitch covering lemma (see [13, Theorem 2.8.14]).

We conclude our studies with an example which indicates that a potential necessary and
sufficient condition for M must be significantly different from the one stated for Mc. Namely,
while (6.3.2) concerns only the growth at infinity of a given measure, the parallel condition for
M should deal with both global and local aspects of the considered spaces. Thus, this problem,
probably more difficult, is an interesting starting point for further investigation.

Example 6.4.3. Consider the space (R2, de, µ) with µ := λ1 + λ2, where λ1 is one-dimensional
Lebesgue measure on A := [0, 1]×{0} and λ2 is two-dimensional Lebesgue measure on the whole
plane. Then there exists f ∈ L1(µ) with compact support such that E∞(f) = A.

Indeed, for each n ∈ N denote Sn := [0, 1]× (2−n
2
, 2−n

2+1) and consider the function

f :=
∞∑
n=1

2n1Sn .

Observe that f equals 0 outside the square [0, 1] × [0, 1] and ‖f‖1 =
∑∞

n=1 2n · 2−n2 ≤ 2. Fix
x ∈ [0, 1] and for each n ∈ N consider the ball Bn := B

2−n2+εn (x, 2−n
2
), where εn ∈ (0,∞) is

such that |Bn| ≤ 2−2n2+2. Notice that (x, 0) ∈ Bn for each n. If n ≥ 2, then |Bn∩Sn| ≥ 2−2n2−1

which gives
1

|Bn|

∫
Bn

f dµ ≥ 2n · 2−2n2−1

2−2n2+2
= 2n−3.

Consequently, we haveMf(x, 0) =∞. On the other hand, consider (x, y) /∈ A. Now there exist
ε, L ∈ (0,∞) such that if de((x, y), (x′, y′)) < 2ε, then f(x′, y′) ≤ L. Consequently, we obtain
Mf(x, y) ≤ max{L, ‖f‖1/(πε2)} <∞.
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Here we give an elementary proof of Theorem 4.4.12 stated in Subsection 4.4.3. In what follows
the operator is specified to beMc

X, but one can also replace it with, for example, any operator
H satisfying the following assertions:

(A) 0 ≤ f1 ≤ f2 =⇒ 0 ≤ Hf1 ≤ Hf2,

(B) |Hf | ≤ H|f |,

(C) H(|f1|+ |f2|) ≤ CH(H|f1|+H|f2|).

Proof of Theorem 4.4.12. First, notice that we can assume that q0 < q1 and r0 < r1. Indeed, in
each of the remaining cases the thesis follows easily from Fact 4.1.3.

Fix θ ∈ (0, 1) and let C→ be such that

‖Mc
Xg‖p,ri ≤ C→‖g‖p,qi , g ∈ Lp,qi(X), i ∈ {0, 1}.

Our aim is to obtain the inequality

‖Mc
Xg‖p,rθ ≤ C‖g‖p,qθ , (A1)

for each g ∈ Lp,qθ(X) with some C independent of g. For any measurable function g : X → C we
introduce Sg, T g : Z→ [0,∞] by

Sg(n) := 2ndg(2
n)1/p, n ∈ Z,

and
T g(n) := SMc

Xg(n) = 2ndMc
Xg

(2n)1/p, n ∈ Z.

We observe that for each q ∈ [1,∞] there is a numerical constant C�(p, q) such that

1

C�(p, q)
‖Sg‖q ≤ ‖g‖p,q ≤ C�(p, q) ‖Sg‖q, g ∈ Lp,q(X),

where ‖ · ‖q denotes the standard norm on `q(Z). Let

C� := max{C�(p, q0),C�(p, qθ),C�(p, q1),C�(p, r0),C�(p, rθ),C�(p, r1)}.

Thus for each i ∈ {0, 1} we have

‖T g‖ri ≤ C2
�C→ ‖Sg‖qi (A2)

107
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and our aim is to obtain the inequality

‖T g‖rθ ≤ C̃‖Sg‖qθ , (A3)

which would imply (A1) with C = C̃C2
�.

In order to deduce (A3) from (A2) we follow the classical proof of the Marcinkiewicz inter-
polation theorem for operators acting on Lebesgue spaces (see [53, Theorem 1]). It turns out
that this strategy can be successfully applied but we must take into account certain additional
difficulties. Namely, our “map” is given by Sg 7→ T g and this operation cannot be understood
as a well defined operator, since there are usually many different functions with the same dis-
tribution function. Thus, we do not apply the Marcinkiewicz interpolation theorem directly but
rather repeat its proof in our context. We proceed with the details below.

Assume that r1 <∞ and fix f ∈ Lp,qθ(X) satisfying f ≥ 0. For each λ ∈ (0,∞) we introduce
the set Nλ := {n ∈ Z : Sf > λ}. Observe that either Nλ = ∅ or Nλ consists of finitely many
elements n1 > · · · > nm for some m ∈ N. For each j ∈ Z let Ej := {x ∈ X : f(x) ≥ 2j}. If
Nλ = ∅, then we let fλ0 := 0 and fλ1 := f . Otherwise, if Nλ 6= ∅, then we define

fλ0 := f ·
(
1En1 +

m∑
k=2

1Enk\Enk−1

)
, fλ1 := f ·

∑
j∈Z\Nλ

1Enj \Enj−1
.

Notice that f ≤ fλ0 + fλ1 and henceMc
Xf ≤Mc

Xf
λ
0 +Mc

Xf
λ
1 . Moreover, we have

Sfλ0 (n) = Sf(n) > λ, n ∈ Nλ,

and
Sfλ0 (n) ≤ min{λ,Sf(n)}, n ∈ Z.

Let (Sf)λ0 := Sf · 1Nλ and (Sf)λ1 := Sf · 1Z\Nλ . Then it is not hard to check that

‖Sfλi ‖qi ≤
(
1 + 2−qi/p + 4−qi/p + . . .

)1/qi ‖(Sf)λi ‖qi . (A4)

Next we study the distribution functions of (Sf)λi , i ∈ {0, 1}, more carefully. Observe that we
have d(Sf)λ0

(y) ≤ dSf (λ) for y ∈ (0, λ) and d(Sf)λ0
(y) ≤ dSf (y) for y ∈ [λ,∞). Hence, combining

these estimates, the fact that d(Sf)λ0
is nonincreasing, and the equality

2q0
∫ λ/2

0
yq0−1 dy =

∫ λ

0
yq0−1 dy,

we conclude that∫ ∞
0

yq0−1d(Sf)λ0
(y) dy ≤ 2q0

2q0 − 1

∫ ∞
λ/2

yq0−1dSf (y) dy ≤ 2q0
∫ ∞
λ/4

(y − λ/4)q0−1dSf (y) dy. (A5)

Similarly, since d(Sf)λ1
(y) ≤ dSf (y) for y ∈ (0, λ) and d(Sf)λ0

(y) = 0 for y ∈ [λ,∞), we have

∫ ∞
0

yq1−1d(Sf)λ1
(y) dy ≤

∫ λ

0
yq0−1dSf (y) dy ≤ 22q0

∫ λ/4

0
yq0−1dSf (y) dy. (A6)
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Now we turn our attention to T f . Fix y ∈ (0,∞) and λ = λ(y) ∈ (0,∞) (which will be
specified later on). SinceMc

Xf ≤Mc
Xf

λ
0 +Mc

Xf
λ
1 , we have T f(n) ≤ 21/p(T fλ0 (n−1)+T fλ1 (n−1))

for each n ∈ N. Hence
dT f (y) ≤ dT fλ0 (y/21/p) + dT fλ1

(y/21/p). (A7)

By the hypothesis we have

dT fλi
(y/21/p) ≤ 2ri/p

‖T fλi ‖riri
yri

≤
(
21/pC2

�C→
)ri ‖Sfλi ‖riqi

yri
. (A8)

Therefore, combining (A4), (A5), (A6), (A7), and (A8) gives

‖T f‖rθrθ = rθ

∫ ∞
0

yrθ−1dT f (y) dy ≤ C ′
(∫ ∞

0
yrθ−r0−1

(∫ ∞
λ(y)/4

(t− λ(y)/4)q0−1dSf (t) dt
)r0/q0

dy

+

∫ ∞
0

yrθ−r1−1
(∫ λ(y)/4

0
tq1−1dSf (t) dt

)r1/q1
dy
)

with some constant C ′ which may depend on p, q0, q1, r0, r1, θ, and C→ but is independent of f
and the choice of λ(y).

It is worth noting here that the inequality above reduces the problem to estimating the
expression of the form very similar to that appearing in [53, (3.7)] (here dSf , λ/4, q0, q1, r0, r1,
and rθ play the roles of m, z, a2, a1, b2, b1, and b, respectively). Thus, in order to obtain (A3),
we may repeat the remaining calculations without any further changes. We briefly sketch the
rest of the proof for the sake of completeness.

Denote by P and Q the two double integrals appearing in the last estimate. Then

P q0/r0 = sup
ω0

∫ ∞
0

yrθ−r0−1

∫ ∞
λ(y)/4

(t− λ(y)/4)q0−1 dSf (t) dt ω0(y) dy

and

Qq1/r1 = sup
ω1

∫ ∞
0

yrθ−r1−1

∫ λ(y)/4

0
tq1−1 dSf (t) dt ω1(y) dy,

where the functions ωi are nonnegative and satisfy∫ ∞
0

yrθ−ri−1ω
ri

ri−qi
i (y) dy ≤ 1

(note that ( riqi )
−1+( ri

ri−qi )
−1 = 1). We set λ(y) := 4‖Sf‖−τξqθ yξ, where τ, ξ ∈ R will be determined

later on (of course, we can assume that ‖Sf‖qθ > 0). Now, by using Hölder’s inequality, we obtain∫ ∞
0

yrθ−r0−1

∫ ∞
‖Sf‖−τξqθ

yξ
(t− ‖Sf‖−τξqθ

yξ)q0−1 dSf (t) dt ω0(y) dy

≤
∫ ∞

0
tq0−1 dSf (t)

∫ ‖Sf‖τqθ t1/ξ
0

yrθ−r0−1ω0(y) dy dt

≤
∫ ∞

0
tq0−1 dSf (t)

(∫ ‖Sf‖τqθ t1/ξ
0

yrθ−r0−1dy
) q0
r0

(∫ ‖Sf‖τqθ t1/ξ
0

yrθ−r0−1ω
r0

r0−q0
0 (y)dy

) r0−q0
r0 dt
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and the last expression does not exceed

(rθ − r0)
− q0
r0 ‖Sf‖

(rθ−r0)q0τ
r0

qθ

∫ ∞
0

t
q0−1+

(rθ−r0)q0
ξr0 dSf (t) dt.

Similarly, we obtain∫ ∞
0

yrθ−r1−1

∫ ‖Sf‖−τξqθ
yξ

0
tq1−1 dSf (t) dt ω1(y) dy

≤ (r1 − rθ)
− q1
r1 ‖Sf‖

(rθ−r1)q1τ
r1

qθ

∫ ∞
0

t
q1−1+

(rθ−r1)q1
ξr1 dSf (t) dt.

Collecting these estimates we conclude that

‖T f‖rθrθ ≤ C
′′

1∑
i=0

‖Sf‖(rθ−ri)τqθ

(∫ ∞
0

t
qi−1+

(rθ−ri)qi
riξ dSf (t) dt

)ri/qi
,

for some C ′′ independent of f . Choosing

τ :=
qθ(r1q

−1
1 − r0q

−1
0 )

r1 − r0
, ξ :=

q−1
θ (r−1

1 − r
−1
θ )

r−1
θ (q−1

1 − q
−1
θ )

, (A9)

gives that both terms in the sum above equal ‖Sf‖rθqθ . Thus (A3) holds with C̃ = (2C ′′)1/rθ ,
which completes the proof in the case r1 <∞.

Finally, let us assume that r1 = ∞. If q1 = ∞, then the formulas in (A9) reduce to τ = 0

and ξ = 1. We choose λ(y) := cy for some sufficiently small constant c ∈ (0,∞). In fact, if
c < C−1

→ C−2
� 2−1/p, then we have dT fλ1 (y/21/p) = 0, while dT fλ0 (y/21/p) may be estimated in the

same way as it was done before. On the other hand, if q1 <∞, then the formulas in (A9) reduce to
τ = qθ/q1 and ξ = q1/(q1−qθ). Again, it can be shown that if λ(y) := c′‖f‖−qθ/(q1−qθ)

qθ yq1/(q1−qθ),
where c′ ∈ (0,∞) is sufficiently small (but independent of f and y), then dT fλ1 (y/21/p) = 0 and
dT fλ0

(y/21/p) may be estimated as before. This completes the proof in the case r1 =∞.
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