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Streszczenie

Operatory maksymalne sg obiektami o duzym znaczeniu w matematyce na czele z analizg har-
moniczna. Méwiac zwiezle, ich gtéwna rolg jest szacowanie z gory wartosci innych rozwazanych
operatorow. Standardowy sposdb ich uzycia powinien zatem bazowaé¢ na ich ograniczono$ci
pomiedzy pewnymi dwiema przestrzeniami funkcji. W rzeczy samej istniejg dziesiatki prac,
w ktorych uzywane sg rézne typy ograniczonosci operatoréw maksymalnych.

Sposrod calej rodziny wspomnianych obiektéw ktadziemy szczegdlny nacisk na klasyczne
operatory maksymalne Hardy’ego—Littlewooda, ktére mozna wprowadzi¢ w kontekscie dowolnej
przestrzeni metryczno-miarowej X w dwoch wersjach, scentrowanej M€ oraz niescentrowanej
M. Podstawowa wlasnoscia tych operatorow jest ich ograniczono$¢ na przestrzeni L>(X) ze
stala 1. Aby mo6c wskazaé inne interesujace wtasnosci, powinnismy wiedzie¢ wiecej o strukturze
przestrzeni X.

Na wstepie poswie¢my kilka stow sytuacji, w ktorej ¥ to przestrzen R?, d € N, wyposazona
w miare Lebesgue’a i metryke euklidesowa. Jednym z najwazniejszych wynikéw otrzymanych
w tym konkretnym przypadku jest, ze oba operatory, M oraz M, sa stabego typu (1,1), co
oznacza, ze sa one ograniczone z L'(X) do LV*°(X). Ten fakt ma kilka istotnych konsekwencji
wlacznie z twierdzeniem Lebesgue’a o rézniczkowaniu, stynnym rezultatem z analizy rzeczywiste;j.
Poza tym, majac na uwadze, ze nasze operatory sa podliniowe, mozemy zastosowaé¢ twierdzenie
interpolacyjne Marcinkiewicza w celu wykazania ich ograniczonosci na przestrzeni LP(X) dla
kazdego p € (1, 00).

Dalsze badania w tym obszarze sa skupione miedzy innymi na wyznaczaniu optymalnych
stalych w nieréwnosciach zawierajacych funkcje maksymalne, z nieréwnoscia stabego typu (1, 1)
na pierwszym miejscu [2, 39, 40]. Sa réowniez artykuly poswiecone wlasnosciom M€ oraz M
w kontekscie pewnych przestrzeni, w ktorych mierzona jest regularnosé funkeji [8, 19, 24, 32, 50].
Wreszcie, wazny kierunek badan wyznaczaja prace, przyjmujace za cel analizowanie, co dzieje si¢
7 poszczegblnymi wilasnosciami operatoréw maksymalnych, gdy przestrzen metryczno-miarowa
przyjmuje roznorakie formy:.

Standardowymi narzedziami, ktérych uzywa si¢ do pokazania oszacowan stabego typu (1, 1),
sa lematy pokryciowe. Na pierwszy rzut oka wydaje sie, ze mozliwosé ich uzycia zalezy gtownie od
wlasnosci metrycznych danej przestrzeni. Aby to zilustrowaé, wspomnijmy, ze dla R¢ z metryka
euklidesowa odpowiedni lemat pokryciowy zapewnia, ze M€ jest stabego typu (1, 1) w przypadku
dowolnej ,sensownej” miary (mozna tu na przyktad pomysle¢ o dowolnej mierze Radona). Jed-
nakze, jesli tylko podstawimy M w miejsce M€, to sytuacja zmieni si¢ diametralnie. Mianowicie,
mozliwe jest znalezienie miary na R?, d € N\ {1}, dla ktorej stowarzyszony niescentrowany opera-
tor M nie jest stabego typu (1,1). W istocie, Sjogren [46] pokazal, ze ma to miejsce w przypadku
du(z,y) = exp(—(2? + y?)/2) dz dy, czyli miary zwiazanej ze standardowym dwuwymiarowym
rozktadem Gaussa (warto zapoznaé sie rowniez z przyktadem Aldaza [3]).

Ostatnia uwaga sugeruje, ze warunek narzucony na X, ktéry zapewnitby, ze wiekszos¢ klasy-
cznej teorii dziata, powinien uwzgledniaé¢ oba aspekty: metryke i miare. Rzeczywiscie, w kon-
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tekscie réznych przestrzeni metryczno-miarowych tak zwany warunek dublowania jest w lite-
raturze bardzo intensywnie eksploatowany. Pokrotce, zaktada on, ze miara dowolnej kuli B
jest w sposodb jednostajny poréwnywalna z miara 2B, kuli o tym samym $rodku i dwukrotnie
wiekszym promieniu. Oprocz wielu innych rezultatéw otrzymujemy, ze dla dowolnej przestrzeni
dublujacej X stowarzyszone operatory M€ oraz M sa poréwnywalne i oba spetniaja oszacowanie
stabego typu (1,1). W literaturze rozwijane byto rowniez kilka koncepcji, majacych na celu
zastapienie warunku dublowania pewnymi stabszymi warunkami (jak na przyktad w [21]) badz
catkowite z niego zrezygnowanie.

Nazarov, Treil i Volberg mieli znaczacy wktad w rozwijanie analizy harmonicznej na dowol-
nych przestrzeniach metryczno-miarowych. W ich przelomowej pracy [42] zawarte sa niezwykle
cenne obserwacje, ktore wskazuja, jak mierzy¢ sie z waznymi w tej dziedzinie problemami w sytu-
acji, w ktorej positkowanie sie warunkiem dublowania nie jest mozliwe. Dla nas szczegélnie
interesujace jest, ze przy tej okazji zostal wprowadzony zmodyfikowany scentrowany operator
maksymalny M. Udcislajac, modyfikacja polega na tym, ze w Srednich miara B jest zastapiona
przez miare 3B. Kluczowy jest tutaj fakt, ze M§ z jednej strony moze czesto zastepowacé M
w zastosowaniach, a z drugiej ma znacznie lepsze wlasnosci w ogélnym kontekscie.

W pozniejszych artykutach [43, 48, 51| badana byta nierownosé stabego typu (1, 1) dla rodzin
zmodyfikowanych operatorow maksymalnych, {M¢ : k € [1,00)} oraz {M, : k € [1,00)}.
W rezultacie okazalo sie, ze w przypadku dowolnej przestrzeni X, takiej ze miara kazdej kuli jest
skorniczona, stowarzyszone operatory M¢ oraz M, sa stabego typu (1,1) odpowiednio dla k €
[2,00) oraz k € [3,00). Ponadto, otrzymane zakresy sa ostre, jako ze zostalo rowniez pokazane,
ze istnieja przestrzenie metryczno-miarowe, takie ze M (odpowiednio, M,) nie jest stabego
typu (1,1) dla kazdego « € [1,2) (odpowiednio, dla kazdego « € [1,3)). Odpowiednie przyklady
mozna znalez¢ w pracach [43, 49| (warto zapoznaé sie rowniez z artykutem [44], w ktorym zostaly
zawarte pewne detale uzasadniajace poprawnosé konstrukeji opisanej w [43]).

Nieco inng galaz w badaniu operatoréw maksymalnych wytyczyt wczesniej wspomniany
artykut Aldaza [3]. Mianowicie, zainicjowal on program szukania przestrzeni, ktore sa specyficzne
z punktu widzenia wtasnosci stowarzyszonych operatorow maksymalnych. H.-Q. Li napisal serie
prac |33, 34, 35|, w ktorych w tym wtasnie celu wprowadzone i badane byty tak zwane przestrzenie
kolczaste. Przyktadowo, w [34] pokazane zostalo, ze przy dowolnym ustalonym py € (1, 00) ist-
nieje przestrzen X, dla ktorej stowarzyszony operator M€ jest mocnego typu (p, p) wtedy i tylko
wtedy, gdy p € (po, oc]. Mimo ze H.-Q. Li badal gléwnie nieréwnosci mocnego typu (p, p), nie sa
to jedyne interesujace w tym kontekscie. Miedzy innymi, jako ze znajduje to uzasadnienie w teorii
interpolacji, nieréwnosci stabego lub restrykeyjnie stabego typu (p,p) (to znaczy, ograniczonosé
z LP(X) do LP°°(X) lub 7z LPY(X) do LP*°(X), odpowiednio) dla operatoréow maksymalnych
moglyby réwniez byé¢ przedmiotem dyskus;ji.

Przypomnijmy, ze wczesniej wymienione przestrzenie LP(X), LP>°(X) oraz LP'(X) mozna
ulokowaé na skali przestrzeni Lorentza LP9(X). Zatem naturalny kierunek, w ktérym mozna
by rozszerzy¢ teorie, wyznaczaja pytania o ograniczono$é¢ operatoréw maksymalnych pomiedzy
roznymi przestrzeniami Lorentza. W przypadku R? i klasycznych przestrzeni Lorentza pewne
wyniki, pozwalajace opisa¢ dziatanie operatoréw w sposob ilosciowy, mozna znalez¢ w pracach [4,
45]. Mimo to, uwzgledniajac obecny stan wiedzy autora, najprawdopodobniej nie ma jak dotad
w literaturze przyktadow, ktore ukazywalyby rézne szczegdlne rodzaje zachowan operatoréw
maksymalnych w obrebie tego zagadnienia.

Celem niniejszej rozprawy jest badanie wtasnosci operatoréw maksymalnych stowarzyszonych
z przestrzeniami bez warunku dublowania, miedzy innymi z uwzglednieniem niektorych z aspek-
tow wspomnianych powyzej. W szczegdlnodci zauwazamy brak wielu istotnych wtasnosci dobrze
znanych z przypadku dublujacego, a takze demonstrujemy roézne fenomeny, ktore maja szanse



Streszczenie (Summary in Polish) vii

zaistnie¢ jedynie w pewnych bardzo szczegblnych niedublujacych warunkach. Aby to zrobié,
wprowadzamy odpowiednie klasy przestrzeni, ktére pozwolyg wygenerowaé¢ wiele interesujacych
przykladow.

Pierwszy rozdzial pracy stanowi wstep. Zawarto$¢ kolejnych rozdzialdéw przedstawiamy
pokroétce ponizej.

W rozdziale drugim badamy nieréwnosci mocnego, stabego oraz restrykcyjnie stabego typu
(p,p) dla operatoréw maksymalnych scentrowanego i niescentrowanego jednoczesnie. Naszym
celem jest odniesienie si¢ do pytania

Dla jakich zakresow p operatory M oraz M zachowujq wyzej wspomniane typy nierdwnodci?

poprzez podanie pelnej charakteryzacji mozliwych sytuacji. Innymi stowy, rozwazamy szesé
zbioréw wartoéci parametru, odpowiadajacych konkretnemu typowi nieréwnosci dla konkret-
nego operatora, a nastepnie opisujemy wszystkie mozliwe ich konfiguracje. Kazda dopuszczalna
sytuacja jest zilustrowana odpowiednim przyktadem przestrzeni. W ten sposéb uzupetliamy
i wzmacniamy tutaj rezultaty otrzymane przez H.-Q. Li w [33, 34, 35].

Rozdzial trzeci jest poswiecony badaniu nier6wnosci mocnego oraz stabego typu (p,p) dla
zmodyfikowanych operatorow M¢ oraz M,,. Tym razem, przy zadanym « € [1,00), mamy cztery
zbiory wartosci parametru p oraz, podobnie jak poprzednio, analizowane sa wszystkie wystepu-
jace miedzy nimi relacje. Jak mozna sie spodziewaé, analiza rozbija sie na nastepujace trzy
przypadki: k € [1,2), k € [2,3) oraz k € [3,00). W kazdym z nich prezentujemy pelne spektrum
dopuszczalnych konfiguracji. Nastepnie podejmujemy sie analizy bardziej ztozonego problemu,
dotyczacego opisu sytuacji, w ktérych parametr k jest zmienny. Nie podajemy tu wprawdzie
twierdzenia, charakteryzujacego wszystkie mozliwe relacje miedzy czterema rodzinami zbioréow,
ale dajemy odpowiedZ na pokrewne, nieco prostsze pytanie. Przedstawiamy przyktady ilustru-
jace wiele roznych sytuacji, wskazujemy pewne nieoczywiste fenomeny, a w koricu wyjasniamy,
gdzie lezy trudnosé, stojaca na drodze do rozwiagzania problemu w ogoélniejszej formie.

Rozdzial czwarty jest punktem kulminacyjnym rozprawy. W tym miejscu badane sg wlas-
nosci operatorow maksymalnych w kontekscie ich dzialania na przestrzeniach Lorentza LP9(X).
Wprowadzamy odpowiednia klase przestrzeni metryczno-miarowych w celu pokazania, ze nad-
mienione wtasnosci moga by¢ bardzo specyficzne. To z kolei wymaga istotnego ulepszenia
metod wypracowanych w rozdziatach drugim i trzecim. W rezultacie dostajemy szeroka game
przyktadoéw ilustrujacych wiele bardzo nietypowych sytuacji, dotyczacych zachowania operatoréw
maksymalnych w opisanym kontekscie. Analiza przebiega w trzech etapach, w ktérych rozwazane
sa rézne zagadnienia o rosngcym stopniu trudnosci. Dla przejrzystosci skupiamy sie wylacznie
na operatorze scentrowanym.

Rozdzial piaty jest pierwszym z dwoch rozdziatéow uzupetniajacych, ktérych celem jest wzbo-
gacenie uzyskanej wiedzy o pewne dodatkowe obserwacje. Zbadamy tutaj rodzine przestrzeni
{BMOP(X) : p € [1,00)}, wprowadzona w kontekscie niedublujacych przestrzeni metryczno-
miarowych. Scharakteryzujemy wszystkie dopuszczalne relacje pomiedzy tymi przestrzeniami
rozumianymi jako zbiory funkcji. Ponownie, odpowiednio dobrana klasa przestrzeni metryczno-
miarowych pozwoli na zilustrowanie wyszczegélnionych mozliwosci. Pokusimy sie réwniez
o poczynienie kilku dalej idacych uwag, ktore beda zwiazane z nieré6wnoscia Johna—Nirenberga.
Zaznaczmy w tym miejscu, ze operatory MC® oraz M ani razu nie beda uzyte w niniejszym
rozdziale. Mimo to nasze rozwazania sa na miejscu, jako ze koncepcja przestrzeni BMO sama
w sobie jest bliska zagadnieniom, ktére w naturalny sposoéb pojawiaja sie przy operatorach maksy-
malnych.

W rozdziale szdstym badamy wlasnosci dychotomii dla M€ oraz M, ktéra zostata zauwazona
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przez Bennetta, DeVore’a i Sharpleya [5] w kontekscie przestrzeni euklidesowych, a nastepnie
badana w bardziej ogdlnych kontekstach w pracach [1, 16]. Uscislajac, zostalo pokazane, ze
dla dowolnej przestrzeni dublujacej X oraz f € Llloc(.’{) zachodzi nastepujaca implikacja: jesli
M f(z) < oo dla pewnego = € X, to funkcja M f jest skonczona prawie wszedzie. Okazuje sie,
ze jest to kolejny aspekt zwiazany z operatorami maksymalnymi, ktéry zmienia sie diametralnie,
gdy przechodzimy do analizy przestrzeni niedublujacych. W rzeczy samej podajemy przyktady
przestrzeni, dla ktérych wspomniana dychotomia nie zachodzi dla jednego wybranego badZz obu
operatorow. Przez wickszo$¢ tego rozdzialu ograniczamy nasza uwage do przestrzeni R¢ oraz
74 wyposazonych w standardows metryke euklidesowa de lub metryke supremum d, oraz rézne
specyficzne miary niedublujace.

Wreszcie, w dodatku zamieszczonym po rozdziale széstym prezentujemy elementarny dowod
twierdzenia interpolacyjnego, ktére pojawia sie w rozdziale czwartym w kontekscie przestrzeni
Lorentza LP?(X). Mimo ze nie jest to nowy rezultat, kazdy z dotychczas znanych jego dowodow,
uwzgledniajac obecny stan wiedzy autora, wymaga glebokiej znajomosci teorii interpolacji.
Metoda opisana tutaj w zasadzie nie wykracza daleko poza zastosowanie techniki dobrze znanej
ze standardowego dowodu twierdzenia interpolacyjnego Marcinkiewicza.

Wszystkie nowe wyniki przedstawione w rozdziatach od drugiego do szdstego mozna znalezé
w artykulach autora [25, 26, 27, 28, 29, 30, 31]. Opisane tu metody oraz konstrukcje w wiekszosci
sa zaczerpniete stamtad i nie zawieraja zadnych istotnych zmian. Mimo to jest kilka czesci,
w szczegdlnoéci w rozdziatach drugim i trzecim, ktére prezentujemy inaczej, niz byto to robione
uprzednio. ZdecydowaliSmy sie na to, poniewaz z obecnego punktu widzenia nowe podejscie
wyglada bardziej naturalnie, a przy tym pozwala uniknaé¢ wielu technicznych uciazliwodci.



Chapter 1

Introduction

Maximal operators are objects of great importance in mathematics, especially in harmonic anal-
ysis. In short, their main role is to estimate from above values of many other intensively studied
operators. This means that the standard way of using them should be somehow related to the
property that they are bounded from one function space to another. In fact, there are hundreds
of works that use various types of boundedness of maximal operators.

Among the whole family of the aforementioned objects, particular attention is focused on
the classical Hardy—Littlewood maximal operators which are introduced in the context of an
arbitrary metric measure space X and usually appear in the literature in two versions, centered
ME and noncentered M. The first remark about these operators is that they are bounded on
L>°(X) with constant 1. To indicate any other properties, one should know more about the
structure of X.

At the beginning, let us say a few words about the classical situation in which X is simply R,
d € N, equipped with Lebesgue measure and the Euclidean metric. One of the most important
results obtained in this particular case is that both operators, M¢ and M, are of weak type (1, 1)
which means that they are bounded from L'(X) to L}*°(X). This fact has several significant
consequences including the Lebesgue differentiation theorem, a famous result in real analysis.
Besides, keeping in mind that the operators are sublinear one can use the Marcinkiewicz inter-
polation theorem to prove their strong type (p,p) estimate (that is, the boundedness on LP(X))
for each p € (1, 00).

Further studies in this field are focused, among other things, on determining the best con-
stants in certain inequalities with the maximal function, including the weak type (1,1) inequality
in the first place (see [2, 39, 40]). Also some articles have been devoted to the boundedness prop-
erties of M and M in the context of some function spaces in which the regularity of functions
is measured (see [8, 19, 24, 32, 50]). Finally, an important direction of research is to analyze
what happens with each particular property of maximal operators when the underlying metric
measure space changes.

The standard tools used to show the weak type (1,1) estimate for maximal operators are
covering lemmas. At first glance, the possibility of using them depends mainly on the metric
properties of a given space. To illustrate this let us mention that in the case of R? with the
Euclidean metric a suitable covering argument provides that M€ is of weak type (1,1) in the
case of any “sensible” measure (one can choose here an arbitrary Radon measure, for example).
However, the situation changes significantly if only M¢€ is replaced by M. Namely, it is possible
to find a measure on R%, d € N\ {1}, for which the associated noncentered operator M is not
of weak type (1,1). In fact, Sjogren [46] showed that this is the case for the two-dimensional
Gaussian measure du(x,y) = exp(—(22 +y?)/2) do dy (see also an example given by Aldaz [3]).

1



2 Chapter 1. Introduction

The last fact suggests that a potential condition on X ensuring that most of the classical
theory works should rather take into account both the associated metric and measure. In fact,
in the context of arbitrary metric measure spaces, the so-called doubling condition has been
extensively used. Roughly speaking, it says that the measure of a given ball B is comparable to
the measure of 2B, the ball concentric with B and of radius two times that of B. In addition to
many other results, it turned out that for any doubling space X the associated operators M® and
M are comparable and both satisfy the weak type (1, 1) estimate. There were also a few concepts
regarding the possibility of replacing the doubling condition with some weaker conditions (see
[21], for example) or even eliminating it at all.

Nazarov, Treil, and Volberg made a great contribution to developing harmonic analysis on
arbitrary metric measure spaces. Their famous work [42] contains valuable observations on how
to deal with various important problems in this field without having the doubling condition in
hand. It is particularly interesting for us that the modified centered maximal operator M5 has
been introduced there. To be precise, the modification is that the measure of the ball 3B instead
of B occurs in the averages in the definition. The key observation here is that Mg can often be
successfully used in place of M€, while it has much better mapping properties in general.

In the following years, several articles treating the weak type (1, 1) inequality appeared in the
context of the families of modified maximal operators, {M¢ : k € [1,00)} and {M, : k € [1,00)}
(see [43, 48, 51]). As a result, it turned out that for any X such that the measure of each ball is
finite the associated operators M¢ and M, are of weak type (1, 1) for x € [2,00) and & € [3, 00),
respectively. Moreover, these ranges are sharp as it has also been shown that there exist metric
measure spaces such that M¢ (respectively, M,) is not of weak type (1,1) for each k € [1,2)
(respectively, for each k € [1,3)). The examples we mention are given in [43, 49| (see also [44],
where certain details justifying the correctness of the construction described in [43] are given).

A slightly different branch in the study of maximal operators was indicated by the previously
mentioned work [3]. Namely, this article initiated the program of searching spaces for which
the mapping properties of the associated maximal operators are very specific. H.-Q. Li wrote
a series of papers (see [33, 34, 35]) in which the so-called cusp spaces have been introduced
for this purpose. For example, in [34] it is shown that for each fixed py € (1,00) there exists
a space X for which the associated operator M€ is of strong type (p,p) if and only if p € (pg, 00].
Although H.-Q. Li studied mostly strong type (p,p) inequalities, they are not the only ones
worth exploring here. For example, as it is justified by the possibility of interpolating, weak and
restricted weak type (p,p) inequalities (that is, the boundedness from LP(X) to LP*°(X) or from
LP(X) to LP°°(X), respectively) for maximal operators could also be taken under consideration.

Recall that the aforementioned spaces LP(X), LP°°(X), and LP!(X) are located on the scale
of Lorentz spaces LP?(X). Thus, the natural way to extend the area of research described in the
last paragraph is to study boundedness of maximal operators acting on Lorentz spaces. In the
case of R? and the classical Lorentz spaces some results that allow one to describe the mapping
properties of maximal operators in a more quantitative way has already been given (see [4, 45]).
However, to the author’s best knowledge, there are no specific examples in the literature showing
explicitly various peculiar behaviors of these operators in this context.

The aim of this dissertation is to investigate mapping properties of maximal operators asso-
ciated with nondoubling spaces including, among others, most of the aspects mentioned above.
In particular, we indicate the absence of many important properties which are well known in the
doubling case and demonstrate various phenomena that arise only in very specific nondoubling
settings. In order to do that we introduce some classes of spaces which provide the opportunity
to generate a lot of interesting examples.

The organization of the dissertation is as follows.
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In Chapter 2 we study the strong, weak and restricted weak type (p,p) inequalities for
maximal operators, centered and noncentered, simultaneously. Our aim is to address the question

For what ranges of p the operators M® and M satisfy the three studied types of inequalities?

by characterizing all cases that actually can happen. In other words, we consider six sets of
parameters, each of them corresponding to the particular operator and type of inequality, and
describe all possible configurations of them. Each admissible case is illustrated with a suitable
example of a nondoubling space. Thus, we complement and strengthen the results obtained by
H.-Q. Li in [33, 34, 35].

Chapter 3 is devoted to the study of strong and weak type (p,p) inequalities for modified
maximal operators M¢ and M. Now, given k € [1,00), we have four sets of parameters and,
just as before, the interrelations between them are investigated. As expected, the analysis breaks
into three cases: k € [1,2), k € [2,3), and k € [3,00). In each case, we present the full spectrum
of possibilities. Next we deal with a much more complex issue regarding the situation of x
varying. Although we do not characterize all possible configurations related to the whole family
of sets taken into account, we give an answer to a slightly easier question. We provide examples
illustrating many different situations, indicate some not obvious phenomena, and explain, more
or less, what is the main obstacle making the problem in its most general form not resolved here.

Chapter 4 is the culmination of the dissertation. Here some mapping properties of maximal
operators acting on Lorentz spaces LP9(X) are studied. We introduce an appropriate class of
metric measure spaces in order to show that these properties can be very peculiar. This, in turn,
requires a significant improvement of the tools developed in Chapters 2 and 3. As a result, we
get a wide range of examples illustrating many highly nontrivial situations regarding possible
behaviors of maximal operators in this context. The analysis proceeds in three stages, in which
certain increasingly difficult issues are considered. For clarity, we focus our attention only on the
centered operator M°.

Chapter 5 is the first of two chapters that enrich the research described in previous para-
graphs with some complementary observations. Here we study the family of spaces {BMOP(X) :
p € [1,00)}, introduced in the context of nondoubling metric measure spaces X. We characterize
all possible relations between these spaces considered as sets of functions. Again, we introduce
an appropriate class of metric measure spaces which allows us to illustrate each of the admissi-
ble cases with a suitable example. Some further considerations related to the John—Nirenberg
inequality are also included. It is worth noting that M and M do not appear in this chapter.
However, the BMO concept itself is close to the issues concerning maximal operators.

In Chapter 6 we investigate a dichotomy property for M¢ and M that was noticed by
Bennett, DeVore, and Sharpley [5] in the context of Euclidean spaces, and then was studied
more generally in [1, 16]. Precisely, it was shown that for any doubling space X and f € Llloc(%)
the following holds: if M€f(z) < oo for some x € X, then M f is finite almost everywhere. It
turns out that this is another aspect related to the maximal functions which changes significantly
if nondoubling spaces are considered instead. Indeed, we provide some examples where the
dichotomy described above does not occur for each of the two operators. For most of this
chapter we restrict our attention to the spaces R% and Z? equipped with the standard Euclidean

metric de or the supremum metric do, and several specific nondoubling measures.

Finally, in Appendix we present an elementary proof of certain interpolation theorem that
appears in Chapter 4 in the context of Lorentz spaces LP4(X). Although this result is not new,
each of its proofs known so far, to the author’s best knowledge, requires a deep understanding
of the interpolation theory. The method described here does not go beyond the technique which
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is used in the standard proof of the Marcinkiewicz interpolation theorem.

All the results stated in the following chapters can be found in the author’s articles [25, 26,
27, 28, 29, 30, 31]. Most of the methods and constructions are taken from there without making
any significant changes. However, there are some parts, especially in Chapters 2 and 3, that we
present in a different way than it was originally made. This is because the new approach seems
much more natural and allows us to avoid tedious calculations in several places.

Basic notation

Throughout the thesis we consistently use the notation introduced here. First of all, by a metric
measure space X we mean a triple (X, p, ), where X is a nonempty set, p is a metric on X,
and p is a nonnegative Borel measure on X. Further, B(z,s) == {y € X : p(z,y) < s} denotes
the open ball in X centered at x € X and of radius s € (0,00). As long as it is clear from the
context which measure is considered, for measurable subsets £ C X we prefer to write shortly
|E| instead of u(E). In a few places, usually at the beginning of each chapter, some additional
assumptions on X are specified.

While writing estimates, we use the notation A1 < Ay (equivalently, As = Ap) to indicate
that A; < C'Ay with a positive constant C' independent of significant quantities (in particular,
A; = oo implies that Ay = oo). We shall write 47 ~ Az if A} < Ay and Ay < A; hold

simultaneously.
For each n € N we use the symbol [n] to denote the set of all positive integers which are not
larger than n (that is, [n] :== {1,...,n}). Occasionally, we also write [0] for the empty set.

Finally, we present a short list of other symbols that appear frequently in the dissertation:

N — the set of positive integers (we use the convection N := {1,2,...}),
Q — the set of rational numbers,
R — the set of real numbers,
C — the set of complex numbers,
| - | — the absolute value function,
| - | — the floor function,
[ -] — the ceiling function,

1z — the indicator function of a measurable set £ C X,

LP(X) — the Lebesgue space with a parameter p € [1, 00],
LP9(%X) — the Lorentz space with parameters p, q € [1, o],
LL (%) — the space of functions integrable on every ball B C X,
BMO(X) — the space of functions of bounded mean oscillation,
BMOP(X) — the space of functions of bounded mean p-oscillation with p € [1, c0),

M€ — the centered Hardy—Litllewood maximal operator,
M — the noncentered Hardy—Litllewood maximal operator,
M — the modified centered Hardy-Litllewood maximal operator,

M, — the modified noncentered Hardy-Litllewood maximal operator.



Chapter 2

Strong, weak, and restricted weak type

When dealing with some metric measure space it is usually an important issue to study mapping
properties of the associated maximal operators. We know that M and M are always trivially
bounded on L*°(X). In addition, if the measure is doubling, then they are both of weak type
(1,1). The next very important fact is that the Marcinkiewicz interpolation theorem can be
applied to these objects. Consequently, if M (equivalently, M) is of weak or strong type
(po, po) for some py € [1,00), then it is bounded on LP(X) for every p € (pg,o0]. Thus, for
example, through the interpolation we can deduce that M¢ and M are bounded on LP(X) for
every p € (1,00] as long as the doubling condition is satisfied.

On the other hand, there are examples of spaces for which maximal operators are bounded on
LP(X) for every p € (1, 00] while they are not of weak type (1, 1). It is even possible to find a space
for which the associated operators M and M are not of weak type (p,p) for every p € [1, 00).
All these observations prompt us to study the general question of existence of the weak or strong
type (p,p) inequalities for M® and M and of interrelations between these properties.

The search for spaces with specific mapping properties of maximal operators was greatly
advanced by H.-Q. Li. In this context, in [33, 34, 35] he considered a class of the cusp spaces. In
[33] H.-Q. Li showed that for any fixed py € (1, 00) there exists a space for which the associated
operator M€ is of strong type (p,p) if and only if p € (pg, 00]. Then, in [34] examples of spaces
were furnished for which M is of strong type (p, p) if and only if p € (pg, oc]. Moreover, for every
7 € (1,2] there are examples of spaces for which M€ is of weak type (1,1), and M is of strong
type (p,p) if and only if p € (7,00]. Finally, in [35] H.-Q. Li showed that there are spaces with
exponential volume growth for which M€ is of weak type (1, 1), while M is of strong type (p, p)
for every p € (1, 00].

Let us note that all previous works focused only on the estimates of weak or strong type.
It is well known that the Marcinkiewicz interpolation theorem has a stronger version and to
use interpolation one only needs to know that the maximal operator is of restricted weak type
(po, po) for some pg € [1,00) (see [47, Theorem 3.15, p. 197|, for example). Therefore, a natural
way to go a step further is to take into account the three mentioned types of inequalities in order

to relate them to each other. This is what we do in this chapter.
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2.1 Preliminaries and results

By a metric measure space X we mean a triple (X, p, 1), where X is a nonempty set, p is a metric
and p is a nonnegative Borel measure. Unless otherwise stated, we additionally assume that the
measure of each ball is finite and strictly positive. In this context we define the Hardy—Littlewood

maximal operators, centered M® and noncentered M, by

MEf(z) = M5 f(z) = sup o | f] d, xe X,

s€(0,00) ’B(x S)’ B(z,s)

and

Mf(z) = Mz () -—wpwh/vmm veX.

respectively. Here B refers to any open ball in (X, p), while B(z,s) stands for the open ball
loc (:{)
which means that [5|f|du < oo for every B C X. Finally, let us make it clear that in the case
of arbitrary X the balls B such that |B| = 0 or |B| = oo are omitted in the definitions of M®

and M (in the extreme case we use the convention that the supremum of the empty set is 0).

We introduce the notation A; < As (equivalently, Ay = Aj) which means that A; < C'As

~ ~

centered at # € X with radius s € (0,00). We also require f to belong to the space L}

with a positive constant C' independent of significant quantities (in particular, A; = oo implies
that Ay = 00). We write Ay ~ Ay if A1 < Ay and As < A; hold simultaneously.

For each p € [1,00) the space LP(X) consists of all measurable functions f: X — C such that

o= ([ 197 a)”

is finite. Similarly, we use the quantity
[fllp,oc = sup {A [ExCHIMP}
A€(0,00

to introduce the space LP**°(X) for p € [1,00). Here E\(f) = {z € X : |f(z)| > A} is the level
set of f. Finally, the space L*°(X) is defined analogously by using

I flloo :=inf{C € [0,00) : | f| < C almost everywhere}.

Accordingly, we say that an operator H is of strong type (p,p) for some p € [1,00], if it is
bounded on LP(X), that is, the inequality | H f]|, < || f||p holds uniformly in f € LP(X). Similarly,
H is of weak type (p,p) for some p € [1, o0] if it is bounded from LP(X) to LP*°(X) which, in the
case p € [1,00), means that the inequality

A-IEXNIMP S 1 £l (2.1.1)

holds uniformly in f € LP(X) and A € (0,00). For p = 0o we use the convention L°>°(X) =
L*°(X) and thus being of weak type (00, 00) is equivalent to being of strong type (0o, o0). Finally,
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H is of restricted weak type (p,p) for some p € [1,00) if it is bounded from LP1(X) to LP>°(X).
Since LY (X) = LY(X), being of restricted weak type (1,1) is the same as being of weak type
(1,1). In turn, if p € (1,00) and H is sublinear and nonnegative (this is always the case for
M and M), then being of restricted weak type (p, p) is equivalent to the statement that (2.1.1)
holds uniformly in f = 1g, |E| < oo, and A € (0,00), where E C X is measurable and 1 is its
indicator function (see, for example, |6, Theorem 5.3, p. 231]). For p = oo we use the convention
that being of restricted weak type (0o, 00) is equivalent to the boundedness on L>°(X) (it would
be very strange to consider operators acting on L>!(X), because the only element of L' (%) is
the zero function). It is easy to check that being of strong type (p, p) implies being of weak type
(p, p) which in turn implies being of restricted weak type (p,p). We do not give the definition of
the space LP1(X) in this chapter since it is not needed at this moment.

For a fixed metric measure space X we denote by P¢(X), PS(X), and PS(X) the sets consisting
of all parameters p € [1,00] for which M$ is of strong, weak, or restricted weak type (p,p),
respectively. Similarly, let Ps(X), Py (%), and P,(X) consist of all parameters p € [1, 00| for which
My is of strong, weak, or restricted weak type (p,p), respectively. Clearly, the six introduced
sets depend on the underlying space X. However, it is easy to see that there are some relations
that must be satisfied by them no matter what the structure of X is. Motivated by this, we drop
the dependence on X in the conditions listed below and write PY, PS5, PP, P, Py, and P; instead
of PS(X), PS(X), PA(X), Ps(X), Py(X), and P;(X), respectively.

Observation 2.1.2. The following assertions hold for arbitrary metric measure space X:

(i) Each of the sets PS, PS, PS, Ps, Py, and P; is of the form {oo}, [po, 0], or (po, 0] for
some pg € [1,00).

(ii) We have the following inclusions:
P,CP, P,CP,, P.CP PSCP,CP‘CP: P,CP,CP CP;

where E denotes the closure of E in the usual topology of R U {oc}.

(i) We have the following implications:
Pr=[l00] = P =100, P =][l00] = Py=][l,00]

Indeed, the condition (i) follows from the Marcinkiewicz interpolation theorem, while the condi-
tion (ii) is a consequence of both the Marcinkiewicz interpolation theorem and the implications
between different types of inequalities mentioned above. Finally, the condition (iii) must be
satisfied in view of the identity L1'1(X) = L}(X).

Our goal is to show that (i)—(iii) are the only conditions that the six sets considered above

satisfy in general. Namely, we will prove the following theorem.

Theorem 2.1.3. Let PS, P, PS, Ps, Py, and P, be arbitrary sets satisfying (1)—(iii). Then
there exists a (nondoubling) metric measure space 3 for which the associated Hardy—Littlewood

mazimal operators, centered MS and noncentered M3, satisfy the following properties:
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is of strong type (p,p) if and only if p € PS,

[ ]
(SN

is of weak type (p,p) if and only if p € Py,

[ ]
W

o MS§ is of restricted weak type (p,p) if and only if p € Py,
o M3 is of strong type (p,p) if and only if p € Ps,
o M3 is of weak type (p,p) if and only if p € Py,
o M3 is of restricted weak type (p,p) if and only if p € P;.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the space combin-
ing technique. This is the main tool used to provide the desired examples of spaces. Section 2.3 is
devoted to the study of some simple structures, the so-called first and second generation spaces.
Finally, the proof of Theorem 2.1.3 is located in Section 2.4. Since MS.f = M%|f], Mf = M|f],

and || f|l, = ||| f||lp hold, from now on we shall deal mostly with nonnegative functions.

2.2 Space combining technique

As a starting point of our considerations we explain a specific technique of combining different
metric measure spaces which will often be used later on. Let A # () be a (finite or not) set of
positive integers and for each n € A consider a metric measure space 9, = (Yn, pn, i) such that
tn(Yy) < oo and

diam(Y},) = diam,, (Y,) = sup{pn(z,y) : z,y € Yy}

is finite. We introduce p/, and p!, by rescaling (if necessary) p, and pu,, respectively, in such
a way that diam, (Y,) < 1 and pu,(Y,) < 27". Then, assuming that Y, NY,, = @ for any
ny1 # ng, we construct ) = (Y, p, p) as follows. Set Y =, .5 Yn. Define the metric p on Y by

(2.2.1)

p :

pn(z,y) if {z,y} C Y, for some n € A,

ple,y) =4 " -
2 otherwise,

and the measure p on Y by

WE) =Y p(ENY,), ECY.
neA

Next, for a given space X and p € [1, 00| let us denote by c$(p, X) the norm of M¢; considered

as an operator on LP(X). Thus, in other words, cS(p, X) is the smallest constant C' such that

IM&fllp < Cllfllps f e LP(X),

holds. If M is not of strong type (p,p), then we write cg(p, X) = oo. Similarly, let ¢, (p, X) and
cS(p, X) be the best constants C' in the inequalities

(Mg fllpoo < Cllfllp,  f € LP(X),
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and

[M&1Ee

poo < Cllglp,  ECX, |E]<oo,

respectively (with the aforementioned modifications for p € {1, 00}). Finally, we define cs(p, X),
cw(p, X), and ¢ (p, X) as before replacing M$ with Mx.
In the following proposition we describe some relations between mapping properties of the

maximal operators associated with 2) and 2),,, n € A, in terms of the quantities defined above.

Proposition 2.2.2. Fiz A C N, A # 0, and for each n € A let D, = (Y, pn, in) be a given
metric measure space satisfying p,(Yy) < oo and diam(Y,) < co. Define Q) as before. Then for

each p € [1,00] we have the following estimates:

cS(p, ) ~ Sup ¢ s(0:Dn),  cu(p,) =supcy(p,Vn), ci(p,Y) ~ Sup ; 10, D),

neA neA neA

cs(p, ) ~supcs(p, Vn),  cw(®Y) ~supcy(p,Dn), c(p,Y) =~ sup c:(p, Yn).

neA neA neA

Proof. First, notice that the process of rescaling metrics and measures used in the construction
of Q) does not affect the studied mapping properties of the associated maximal operators M%n
and My, , n € A. Thus, without any loss of generality, we may simply assume that the spaces
2, are the rescaled ones, that is, diam,,, (Y;,) <1 and p,(Y,) <27

Fix p € [1,00) (we omit the trivial case p = o0). For clarity, we shall prove only the first
equivalence and the remaining ones may be verified similarly. Let n € A and take f € LP(2),).
We extend f to F' € LP(Q)) such that F(y) = 0 for y € Y'\Y,,. Notice that ||F||, = || f||, (here the
symbol || - [, refers to function spaces over different measure spaces) and Mg, F(y) = Mg, f(y)
for any y € Yy,. Hence, [|Mg) fllp/|fllp < [MGF|p/||F[lp and we conclude that

cs(p,9) > sup ¢ s(0:Dn).

neA

Now we take f € LP(2) and define f, € LP(),), n € A, by restricting f to Y,. Then

9/ (y) = max{My fu(y), [l fll1/n(Y)}

holds for each y € Y,,. Thus, applying Holder’s inequality, we estimate || Mg, f b by

DM, Fallp +UFIT - w77 <D ello, Da)P I fulll + [I£117 < (SERCE(%%)” + I

neA neA

Moreover, by taking g := 1y, one can easily show that c¢(p, 9, )P > 1 for each n € A. Hence,

cS(p,Y) < (Supc (p,Da)? +1)7 < 21/Psu;A>c (P, V) < 2SUlloc (P, D)
neA ne

and, consequently, we get that c(p,Q)) =~ sup,ca cS(p, Dn). O

Remark 2.2.3. If at least one space from the family {, : n € A} is nondoubling or A is
infinite, then Q) is nondoubling.
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2.3 Test spaces

In the following section we introduce and analyze auxiliary structures called first and second
generation spaces. We emphasize here that each of these spaces can be viewed as the space )
from Section 2.2 constructed with the aid of some family of spaces {Q), : n € N}. Moreover,
since 9) satisfies |Y| < oo and diam(Y) < oo, any first or second generation space may also be

used as a component space in Proposition 2.2.2.

2.3.1 First generation spaces

We begin with a description of the first generation spaces which will be denoted by &. The
common property of these spaces is that the associated operators Mg and Mg behave very
similarly to each other. Namely, for each such space the identities PS(&) = Pi(6), PS(6) =
Py (6), and PS(6) = P,(6) hold. There will be three subtypes of spaces specified in this section.
Now we present a construction which will be applied to the first two of them.

Let 7 be a fixed positive integer. Set S := S(7) := {xo,x1,...,2;}, where all elements
are different (and located on the plane, say). We define the metric p determining the distance

between two different elements x and y by the formula

1 if xp € {z,y},
2 otherwise.

p(a,y) = pr(z,y) = {

Figure 2.1 shows a model of the space (S, p). The solid line between two points indicates that

the distance between them equals 1. Otherwise the distance equals 2.

T1 T2 Tr_1 T
°

To

Figure 2.1: The first generation space (.5, p).

Note that we can explicitly describe any ball:

{zo} for0<s <1,
S for 1< s,

B(xg,s) = {

and, for i € [7],
{z;} for0<s<1,
B(zi,s) = {wo,zi} forl<s<2,
S for 2 <s.
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Next we define the measure p on S by letting

1 ifi=0,

/L({l'z}) = MT,F({xi}) = { F(Z) ifi e [T]

where F' > 0 is a given function.
Given f > 0and E C S, E # (), we denote the average value of f on F by

1
Ap(f) = 7] > f@)Ha}]

zel

(for arbitrary X and |E| € (0, 00) we denote similarly Ag(f) = ﬁ [z fdp). Tt is instructive to
notice that the process of averaging does not increase the Lebesgue norm. For p = oo this is ob-
vious, while for p = [1, 00) we use Hélder’s inequality to see that Ag(f)P|E| < > o5 f(z)P{z}].

We are ready to describe the first two subtypes of the first generation spaces.

First subtype. Now we construct and investigate a subclass of the first generation spaces &

for which the identities PS(S) = Pi(6), PS(6) = Py (6), and PS(6) = P(6) hold, and, in

S

addition, there are no differences between the incidences of strong, weak, or restricted weak type

inequalities, by what we mean that PS(6) = PS(6) = PS(6) and Ps(6) = Py (6) = P(6). Of
course, combining all these identities, we obtain that for each such space all the six sets coincide.

In the first step, for any fixed py € [1, 00| we construct a space denoted by &, for which
Pi(G1py) = P(G1py) = P (G1p) = Ps(G1,p) = Puu(S1py) = Pe(S1py) = [po, ]

(here by [00, 00] we mean {oo}). Then, after slight modifications, for any fixed py € [1,00) we

get a space &', for which

Psc( ll,po) = P\fr( Il,po) = Prc(Gll,po) = Pb( ll,po) = PW( /1,p0) = Pr<6/1,p0) = (pQ,OO].

Fix pp € [1,00] and for any n € N consider &,, = (Sy, pn, tin), Where Sy, p,, and u, are
defined as before with the aid of 7, = [(n + 1)P°/n] in the case py € [1,00), or 7, = 2" in the
case pp = 00, and F), (i) = n for each i € [r,]. We denote by &1, the space g obtained by using
Proposition 2.2.2 for A = N with 9),, = &,, for each n € N.

In the following lemma we describe the properties of the associated maximal operators. The

key point here is that we have: in the case py € (1, o0,

. NTy o
A ey % PEL)
and, in the case pg € [1, 00),
Ny
M g eN.
(n+41)po — "

Lemma 2.3.1. Fiz py € [1,00] and let &1, be the first generation space defined above. Then

the associated mazimal operators, centered Mg, and noncentered Mg, v Q7€ NOL of restricted
sPQ ’
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weak type (p,p) for p € [1,po), but are of strong type (p,p) for p € [po, c].

Proof. It suffices to prove that Mg, v fails to be of restricted weak type (p, p) for p € [1,py) and
Me, ,, is of strong type (po, po). First we show that Mg, " is not of restricted weak type (p, p)
for p € [1,po). Fix po € (1,00] (for pg = 1 the condition to check is empty) and let p € [1, po).
We take n € N and restrict our attention to &,. Let g = 1,y € L’(&,). Then [|g|l; = 1 and
Mg, g(xi) > n%rl for each i € [7,]. Thus, |E/(2(n41)) (MG, 9)| = n7,, which implies

MC D

lgllp @ +1)P
Consequently, we obtain
1/p
C > : C > : (nTn) —
Cr(p7 61,]’0) ~ 117131—>Sol<1;p Cr(p7 Gn) - nh—>Igo 2(7’L 4 1) o0

which means that MC@l,po is not of restricted weak type (p,p).

In the next step we show that Mg, , is of strong type (po, po)- Fix po € [1,00) (for pg = o0
the condition to check is trivial). Again, we take n € N and restrict our attention to &,. Let
f € LP°(&,). As mentioned at the end of Subsection 2.1, in view of ||f|,, = |[|f]llp, and
Mse, [ = Mg, |f| we may assume that f > 0 (this assumption will often be made later on
without any further explanation). Denote D := {{xzg,z;} : i € [1,]}. We use the estimate

IMe, FllDs < D > As(HPHa}l = Y As(f)™|Bl.

BCSy, xzeB BCSh

Note that each z € 5, belongs to exactly two different balls which are not elements of D, namely

{z} and S,,. Combining this observation with Holder’s inequality, we obtain

Yo A(HPIBI< YD fa){z}] < 20 fI

B¢D B¢D z€B

Therefore,

M, 13 < 21712 Z (LRI, iy, (23.2)

By Holder’s inequality (f(zo)+nf(zi))P° < 2P0~ ( f(m0)P° + (nf(2;))P°) and combining this with
H{xo,zi}| < 2{zi}| = 2n|{xo}| we see that the sum in (2.3.2) is controlled by

nty

2P0 (m f(xo)pOHxO}’ + Zz:; (n +1

)7 Famledl) < 20 £l

Thus, we obtain cs(pg, &,)P° < 24 2P and, as a result, cs(po, S1,p,) S Sup,en Cs(Po, Spn) < 00
which means that Mg, , is of strong type (o, Po)- O

A modification of the arguments from the proof of Lemma 2.3.1 shows that for py € [1, 00),
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replacing the former 7, by 7, = [(log(n) + 1)(n + 1)P°/n| leads to the space &} , for which

Psc( ll,po) = P\SI( ll,po) = Prc(Gll,po) = PS( /17p0) = PW( ll,po) = PF(GILpO) = (p(),OO].

nr,
= 00 and sup,,ey oy < 00

Moreover, it may be noted that only the properties lim;,_, 0 Ty iy

n+1)Po
for p € (po, 00) are essential.

Second subtype. In contrast to the former case, for the spaces & we now construct and study,
the identities PS(6) = Py(6), PL(6) = Py(6) and PS(6) = P,(6) still hold, but there are
differences between the incidences of weak and strong type inequalities. Namely, for any fixed
po € [1,00) we construct a space denoted by &s )y, for which PS(Ss),) = Ps(S2p,) = (po, ]
and Pg(Ss2,p,) = Pw(S2,p,) = [po, o0]. Notice that this implies P (Sap,) = P (S2p,) = [Po, 00].
We begin with the case pg = 1 which is discussed separately because it is relatively simple and
may be helpful to outline the core idea behind the more difficult case py € (1, 00).

For any n € N consider &,, = (Sy, pn, tin), Where Sy, pp, and u, are defined as before with
the aid of 7, = n and F,(i) = 2! for each i € [7n]. We denote by Gg; the space ) obtained by
using Proposition 2.2.2 for A = N with ¥),, = &,, for each n € N. In the following lemma we

describe the properties of the associated maximal operators.

Lemma 2.3.3. Let Ga 1 be the first generation space defined above. Then the associated mazimal

operators, centered Mg, —and noncentered Mg, ,, are not of strong type (1,1), but are of weak
type (1,1).

Proof. First, let us note that Mg, = fails to be of strong type (1,1). Indeed, fix n € N and let
g =1y} € L'(S,). Then ||g||; = 1 and for each i € [n] we have Mg g(z;) > ﬁ > 91

Therefore,

. MG, 9l g~ 280 n
€51, 6n) 2 =y 2 ; 5 =
and, as a consequence, cg(1,821) 2 lim, ;0 5 = 00.

In the next step we show that Mg, , is of weak type (1,1). Fix n € N and estimate cy (1, &y)
from above. Let f € L(&,,), f > 0, and consider A € (0,00) such that Ey = E\(Msg, f) # 0. If
A < Ag, (f), then A-|E\| < Ag, (f)|Sn| = || f]|1 follows. Assume that A > Ag, (f). If Ex = {z0},
then f(xzo) > X and A - |Ey\| < ||f|l1 again follows. Otherwise, if E) C {x¢}, then we denote

j=max{i € [n]: Mg, f(z;) > A}.

We have f(x;) > A or %227(%) > A. In both cases the inequality f(zo) + 27 f(z;) > 29X

holds. Combining this with the fact that |E,| < 2|{z;}| = 27T, we arrive at the estimate

A-1Ex _ PXARDY

I =~ o)+ 27 (@) =

Consequently, we have ¢y (1,8,,) < 2 for any n € N which implies that ¢y (1,S621) $2 < oco. O
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Now fix pp € (1,00) and for any n € N consider &,, = (Sy, pn, tin), Where Sy, pp, and py,
are introduced as before with the aid of 7, = 7, p, and F,,(i) = F}, p, (i) defined as follows. Let

¢y en € N be auxiliary parameters satisfying ¢, = [(n + 1)P°/n| and
en = max{k eN: 21 < ¢, and 2k—1+po < (1+ n)po}.

Observe that lim,_, e, = 0o. We also introduce (mmj)iil, (Sn,j)§i1 satisfying
) - ()
1+ Mp, 5 14+n ’

Spj = min {k: € N:kmy,; > 22*jncn}.

and

Since 267~ 1P0 < (14 n)P0 and my, ; < 227 Iney,, for each j € [e,] we have
1<mp; <n and 227Ine, < Sp,jMnj < 23" Ine,,.

Finally, we put 7, = Ej 1 8n,j and F (i) = my, j(n 4 for each i € [,] with j(n,i) € N satisfying
i€ [sna+Fsnjma) \ 14+ 80 1]

We denote by &z, the space ) obtained by using Proposition 2.2.2 for A = N with 9, = &,,
for each n € N. In the following lemma we describe the properties of Mg, no and Me, , -

Lemma 2.3.4. Fiz pg € (1,00) and let Sy, be the metric measure space defined above. Then

the associated mazximal operators, centered MS and noncentered M are not of stron
’ S2,p S2,pg

type (po,po), but are of weak type (po,po)-

Proof. First we note that Mg, n is not of strong type (po,po). Indeed, fix n € N and let

g = lgzy € LP°(S,,). Then ||g]lpg = 1 and for each i € [r,] we have Mg g(x;) > #()
n n,j(n,:

which implies

Sn,j €n €n

€n 2—4
Po Sp,jMnpj 27 Inc, 2ncey,
(1 + mn,]) " = (1+ an)pO B J=1 (1+ an)pO j=1 (1 +mn)po

€n
IME, glls > >

]:1 k=1

Thus, we get that cS(pg, G,)P° > e, 22— Since lim, o0 €, = 00 and lim, oo ( Nen_— — 1, we

(14n)Po 1+773p0

obtain ¢ (po, G24,) = 00.
In the next step we show that ./\/16271)0 is of weak type (po,po). Fix n € N and estimate
cw(po, Sy) from above. Let f € LP0(S,,), f > 0, and take A € (0,00). We write f = f1 + fo,

where f1 = f-1g,\(s) and f2 = f - 1,y. By the sublinearity of Mg, we have
Me, [ < Ms, [1 + Msg, f2

which gives
Eox(Msg,, f) C Ex(Meg, f1) U Ex(Me, f2) = Ex1+ Ep.
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By using Hélder’s inequality we get

NO|Ex| < IMe, fillps < D Ap(f) 1Bl < Y0 D file)™ e} < 3[lAlS.

BCSn BCSn reB

where in the last inequality we use the fact that each x € S, \ {zo} belongs to at most three
different balls B C S,,. Next, let fa(xg) = a € (0,00) and assume that Ey o # (. Thus, we have
a> X If By = {zo}, then N°|E) 5| < || f2|ps follows. Otherwise, denote

. . «
= min {] S [en] : H—im > )\}
n?]

Then we have

N 2P0 jir SnjMn; PO Z;gr 24=ine, _ 25T aPonc,, 16aP9nc,, <16 o[
A2 = (1+ mmr)po - (1+ mn,r)po -1+ mn,r)po ~ (1+mn)po — 2llpo -
Consequently,

(AP |Ean(Ms,, f) < 27 - 19([ f1[50-

Since ¢y (po, Syn) < 2-19Y/70 for any n € N, we conclude that ¢, (po, Saopy) S2- 19Y/P0 < 0. [

Now we present a construction which will be applied to the third subtype of the first gen-

eration spaces. Fix ng € N and let 7 = 7, = (7ng,i);2; be a given system of positive integers
Tng,i
22’91
be helpful to include this parameter in notation. Set

satisfying € N. We shall introduce several objects which clearly depend on ng € N. It will

Sno = Sng(7) 1= {ig, @l 17 € 0], j € 277, k€ [rugl |,
where all elements z; j, «} , are different. We use auxiliary symbols for certain subsets of Sno:

7/’LO = {l’;,k i1 c [no], k S [Tno,i]}v

for i € [no],
._ e oinl N GV
Snosi = {%a 1j €2 ]}7 oy = {Jﬂzk k€ [Tnoﬂ']}v

and, for 4,1’ € [ng], i <4', and j € [2¢71],

J—1 J
S;’Lo,i/,i,j = {:L‘;/,k ke < 9i—1 Tno,i’ 21-_17—n0,i’:| }

Observe that the family {S’

2i—1 . PR P
mo.itij j=1 consists of disjoint set, each of them containing exactly

T’ﬂoy’i/ 2i*1 / o / . . . . ./

sior elements. Moreover, we have szl Sno,z",z‘,j = Sno’i,. Finally, if 1 < iy < iy <4’ < ng and
; i—1 : ! ! ! ! _

ji€ [247 ] for I € {1,2}, then either noi’ia.ja Sno,i’,ihh or Sn07i’7i17j1 n Sno,i’,i27j2 = 0.

We define the metric p,,, on Sno determining the distance between two different elements
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and y by the formula

!
nO’i,’i7j7

1 if {z,y} = {25, 2}, } and 2, €

ﬁno (‘7:7 y) = ﬁno,r(‘r7 y) = {

2 otherwise.

Figure 2.2 shows a model of the space (Sy,, pp,) With ng = 2. As before, the solid line between

two points indicates that the distance between them equals 1. Otherwise the distance equals 2.

/ / / / / /
L1 1m0 Lo 1 x2,72,2/2 x2772,2/2+1 L2722

1,1 21 2,2

Figure 2.2: The first generation space (Sy,, pp,,) With ng = 2.

Note that we can explicitly describe any ball: for i € [ng], j € [2°7}],

{xi,j} for0<s< 1,
B(wij,s) = q {zij} UUPL; Snp,irij for 1 <s <2,

Spe for 2 <s,
and for i’ € [ng)], k € [T,

{z}, .} for0<s<1,
B(x} y,5) = {2l 1} ULzij e @y, € Sngiriyt for1<s <2,
Sy for 2 <s.

Finally, we define the measure 1z, on Sne by letting

F(i) if x =, for some i € [ng], j € [2071],

Eno({m}) = ﬁng,T,F,m({x}) = {

mi if x = 2}, for some i € [ng], k € [Tng,il,

where 0 < F' < 1 is a given function and m is a positive number satisfying m > 270,

We are ready to describe the third subtype of the first generation spaces.

Third subtype. Now for any fixed py € (1,00) we construct a space denoted by &3, for
which P$(63,,) = Pw(S3,,) = (po,00] and P(S3,,) = Pr(S3p,) = [po,o0]. Note that these
conditions imply PS(S3p,) = Ps(S3.p,) = (po, 00].
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Fix po € (1,00). For any n € N we choose ng = n and consider &,, = (Sy, p,,, i), Where
Sns Pp, and i, are introduced as before with the aid of 7, = (7,;)" 1, Fn, and m,, defined as
follows. Let (a;)ien satisfy > . a; = nP for each n € N. For i € [n] set

F,(i) = 2(i—n)/(po—1)’ Tni = |ai] 22anan!/Z‘, m, = Q(QTLL:DOJ—")/(po—l)(n!)l/(po—l)'

Observe that 7=+ € N and 7,14/ mbo~ = 2" q;|. Moreover, for any z € S/ we have |{z}| >
my, > 2" >[5, \ S,|. We denote by &3, the space ) obtained by using Proposition 2.2.2 for
A =N with 9, = &, for each n € N. The following lemma describes the properties of Mg, no

and Mg, , -

Lemma 2.3.5. Fiz pg € (1,00) and let &3, be the metric measure space defined above. Then
the associated mazimal operators, centered Me, , ~and noncentered Mg, by 0T€ not of weak type

(po, o), but are of restricted weak type (po, po).

Proof. First we show that Mg, "o is not of weak type (po,po). Indeed, fix n € N and let
n .
g = ZQ(”—l)/(Po—l)lsn’i € LM (S,).
i=1
Then [|gl[py = Y5y 271 2" = 2" 'n and

-/
, 1 1
M, 9(Ti 1) = Apa,  3/2)(9) = a7~ 2

mpy

for any 7, , € S, which implies that |Ey /4m,,) (Mg g)| > |S},|. Therefore,

P . .
| ME ng”ngOO Z?:l Tn,itMp 91—2po Z?:l Tnil _ 91—2po Z?:l lai) — 91-2po,,po—1
lgllpe  — n2n1(4my,)Po nmh? " 2n n ‘

Thus, we obtain c$ (pg, &, )P0 > 2172PopPo—1 and, consequently,

. 1-1
(P, S3.p0) 2 lim 1 /P = oo,
In the next step we show that Me, , is of restricted weak type (po,po). Fix n € N and
estimate ¢, (po, &,)P° from above. Let U C S, U # 0, and A € (0,00). Our goal is to estimate

AP|EX /U], (2.3.6)

where E) = E)(Msg,1y). Clearly, if A > 1, then E) = 0, so we can assume that A < 1. We
write 1y = 1p7 + 32, cnpr 1z, where U' = U N Sy, Note that for fixed i € [n] any ball B
with radius s < 2 contains at most one of the points z;1,...,2; 9i-1. Thus, for any x € Sy, the
inequality

Mg, 1y(z) < 2max {MenlU/(l”)a C- A, {MGnl{y}(!E)}}
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is satisfied with C = "2, 271 Moreover, if A < Az (1y), then
NO|Ex| < MEA| < Ag (10)[Sn] = [U].

Consequently, we are reduced to finding a suitable bound for (2.3.6) in the case Az (1y) <A <1
and U C S, or U = {z} C S, \ S,,.

First, assume that U C S/, U # (. Then E\ NS/, # § and we have |E)| < 2|E,\ N S.|.
Consider two different balls, By and B, and denote B; = B; N S], for | € [2]. Then one of
the three possibilities occurs: By C Bj, By C Bj, or B} N B) = (). Combining this with the
assumption U C Sj,, we obtain A < Ap,ng: (17). Consequently,

A BN < AEN| < 24g,ns, (10)|ExN Sy | = 2|U].

Finally, assume that U = {z;;} C S, \ S}, and Ag (1y) < A < 1. If ExN S, = (), then
E\ = U and M°|E,| < |U| holds. On the other hand, if E) N S), # 0, then |Ey\| < 2|E\ N S|
For x € S’ , .., i > 1, we see that

n,i' 1,57
Me, 10(x) = Az (1y) < 207/ 00D /(i)

while for x € S], \ U5 we have Mg, 1y(z) = Ag (1y) < A. Since

’—z n,i’ 1,5

2(1 n)po/(po—1) 9(i—n)po/(po—1) |’ /|

n,
Z‘ n,l,,j (mn Z‘/)po Z 2i—1
I=i
o/ I
- (i,)po mgo 1 2 -1

=

9(i—=n)po/(po—1) _Z.
SIS

l=1i
< olli=m)/o-1)+1 Z=L% _ o1y
: o~ A0
we conclude that AP0|Ey| < 4|U| holds.
Since for each n € N we have a bound of the form c,(pg, S,) < C(po) with the implicit

constant independent of n, we conclude that c.(po, &3 p,) < 0. ]

2.3.2 Second generation spaces

Now we construct and study metric measure spaces ¥ called by us the second generation spaces.
The common attribute of these spaces is that the associated operators Mg and Mg behave
significantly different, by what we mean that PS(T) = PS(%¥) = PS(%T) = [1,00] holds, while
Py(T) (and possibly Py (%) and P,(¥)) is a proper subset of [1,00]. As before, we specify three
subtypes here. The following construction will be applied to the first two of them.

Let 7 be a fixed positive integer. Set T = T(7) = {y0,Y1,---,Yr Yi,---, Y.}, where all
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elements are different. We define the metric p determining the distance between two different

elements = and y by the formula

1 ifyo € {x,y} C T\ T or {x,y} =T for some i € [7],

2 otherwise,

p(z,y) = pr(x,y) = {

where 7" := {y},...,y,} and T% := {y;,y.}. Figure 2.3 shows a model of the space (T, p).

Y Y Y.

Yo

Figure 2.3: The second generation space (T, p).

Note that we can explicitly describe any ball:

{yo} for0<s<1,
B(yo,s) =<« T\T' forl<s<2,
T for2 < s,

and, for i € [7],
{yi} for 0 <s <1,

B(yi,s) =1 {yo}UT’ forl<s<2,
T for 2 < s,
and
{y} for0<s<1,
B(y.,s) = T" forl<s<2,
T for 2 <s.

We define the measure p by letting

1 ity = yo,
p{y}) = prr{y}) = 7 ify =y; for some i € [7],
F(i) ify =y, for some i € [7],

where F' > 0 is a given function.
We are ready to describe the first two subtypes of the second generation spaces.
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First subtype. Now we construct a subclass of the second generation spaces ¥ for which, apart
from the basic property PS(¥) = PS(T) = PS(T) = [1, 00], we also have Py(T) = Py (%) = P(%).
In the first step, for any fixed py € (1,00] we construct a space denoted by % ,, for which

Py(%1 ) = Pu(ZT1py) = Pr(Ti1p,) = [po,00]. Then, after slight modifications, for any fixed
po € [1,00) we get a space T}, for which P(T} ) = Py(T7,,) = B (T} ,,) = (o, o).

Fix pp € (1,00] and for any n € N consider %,, = (T}, pn, ttn), where T}, pn, and p, are
defined as before with the aid of 7, = [(n + 1)P°/n| in the case pg € (1,00), or 7, = 2™ in the
case pp = 00, and F,(i) = n for each i € [1,]. We denote by T ;,, the space ) obtained by using
Proposition 2.2.2 for A = N with 2),, = %, for each n € N. In the following lemma we describe
the properties of M%Lpo and /\/lgl,po.

Lemma 2.3.7. Fiz py € (1,00] and let Ty p, be the metric measure space defined above. Then

the associated centered mazximal operator M%l,po is of strong type (1,1), while the noncentered

mazimal operator Mg, - is not of weak type (p,p) for p € [1,po), but is of strong type (p,p) for

p € [po, 0]

Proof. First we show that M%l,po is of strong type (1,1). We fix n € N and restrict our attention

to T,. Let f € LY(T,), f > 0. Denote G == {{yo} UT:: i € [r,]} and, for each y € T,
= {B(y, %),B(y, %),B(y, g)} We have the estimate

IME Fll < Y D As(HIHy-

yeTn BEBy

Note that each y € T,, belongs to at most four different balls which are not elements of G. Thus,

SN A < 30 FHyY < 4lf I

y€Tn BEBY\G B¢GyeB

which implies
IME, Fll < 4lLFll+ D Aps) (DL
i=1

and the sum above is estimated by

7 (o)} +Z (£t + FEDHH) = 17

Consequently, c{(1,%,,) < 5 holds for each n € N which implies that cS(p, %1 p,) < oo.

In the next step we show that Mgl’po is not of restricted weak type (p,p) for p € [1,pp).
Indeed, fix p € [1,pp) and n € N, and consider g := 1,4 € LP(%,). We have [|g|[, = 1 and
Mz, g(y;) =

> m > n+2 for each i € [7,] which gives |E} /(a(n+2)) (Mg, fn)| = n7,. Thus,

”Mi 9||poo ( )Up
c(p, %) > . — >
N TS
(mn)l/p

and, as a consequence, ¢;(p, 1 p,) 2 limy, 00 = 00.

2(n+2)
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To complete the proof it suffices to show that MTl,po is of strong type (po,po). Assume that
po € (1,00) (for pg = oo the condition to check is trivial). Fix n € N and estimate cs(po, %,)
from above. Let f € LP9(T,,), f > 0. We have the inequality

Mz, fllBs < D > As(f)™ = Y As(H)™|BI.

BCT, yeB BCT,

As before, note that each y € T, belongs to at most four different balls which are not elements

of G. Combining this observation with Holder’s inequality, we obtain

Do Ap(HIBI< Y Y fw) Ky < 4IFI5

B¢G B¢GycB
Therefore,
+ /7 f (yi) +nf (yi)\P /
< E t i Ui £ .0.

By Holder’s inequality

(o) + 1/ f i) + nf )™ < 3771 (£ (o)™ + (Flwa) /7)™ + (nf (D)™

and combining this with
{yo, vi, vi} < 31{wi} = 3nl{yo}|

we see that the sum in (2.3.8) is controlled by

3”(”(%(?{0% Hy }|+Z ‘%1/-7:1/7 in];ffjl)) i) <11

Thus, cs(po, Tpn)P° < 4+ 3P0 for each n € N which clearly implies ¢cg(po, T1p,) < 00. O

Finally, let us note that, as in the previous subsection, replacing the former 7, by
7, = [(log(n) + 1)(n + 1)P°/n|, po € [1,00), results in obtaining the space for which

n

B /17p0) = Py( ,17p0) = Pi( ,17P0) = (po, o).

!
1,po

Second subtype. In contrast to the former case the spaces ¥ we now construct, apart from
the basic property PS(%) = PS(T) = PS(T) = [1, 00|, satisfy Ps(T) & Py (%). More precisely, for
any fixed py € [1,00) we construct a space Ta,, for which Ps(Tsap,) = (po, 0] and Py (T2 p,) =
[po, 00]. As previously, we consider the cases pg = 1 and pg € (1, 00) separately.

For any n € N consider T,, = (T}, pn, tin), where T,,, p,, and p, are defined as before with
the aid of 7, = n and F,(i) = 2 for each i € [r,,]. We denote by To1 the space ) obtained by
using Proposition 2.2.2 for A = N with 2),, = T, for each n € N. In the following lemma we
describe the properties of M%m and Mg, .

Lemma 2.3.9. Let T3 be the metric measure space defined above. Then the associated centered
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operator Mg, | is of strong type (1,1), while the noncentered operator Ms, , is not of strong type
(1,1), but is of weak type (1,1).

Proof. First, note that it is easy to verify that M%m is of strong type (1,1), by using exactly
the same argument as in the proof of Lemma 2.3.7.

In the next step we show that Mg, is not of strong type (1,1). Indeed, fix n € N and let
g =1y, € L'(T,). Then ||g|[; =1 and we have Mg, g(y;) > m > 27" for each i € [n].
Thus, we obtain [|[Mg,gl1 > >0, 2t.9—i=1 — 5 and, consequently, cs(1,%T2,1) 2 limy, 400 § = 00.

To complete the proof it suffices to show that Mg, is of weak type (1,1). Fix n € N
and estimate cy(1,%,) from above. Let f € L'(T,), f > 0, and take A € (0,00) such that
E\x = Ex(M<g, f) # 0. Tt X < Ap,(f), then X - |Ey] < ||f||1 follows. Thus, assume that
A > Ap, (f). First, consider the case E\ NT, = 0. If yg € E), then we obtain

Y F@Hy > A H{wodl

yETR\T},

and, since |Ey| < 2|{yo}|, we deduce that \-|Ey| < 2|/ f]]1. Otherwise, if yo ¢ E), then f(y) > A
necessarily holds for every y € E\ N1, which implies that X - |[Ex| < || f]|:. Finally, in the case
E\xNT, # 0, we denote

j=max{i € [n] : Mg, f(y;) > A}.

We have
> F@HuY > A Ky

y€Ty

and combining this with the estimate |Ex| < 2|{y}}|, we conclude that A - [E| < 2[|f[l1 again
follows. Hence, we have cy(1,%;,) < 2 for any n € N which implies that ¢ (1,%21) S 2 <oo. O

Now fix pg € (1,00). For any n € N consider ¥,, = (Ty, pn, fin), where T, pn, and p, are
introduced as before with the aid of 7,, = 7,,, and F,(i) = F}, p,(¢) defined as in the case of
S2.p, by using the auxiliary numbers ¢, e, and sequences (mnd);’;l, (sn,j)i’;l. We denote by
%o po the space ) obtained by using Proposition 2.2.2 for A = N with 9),, = %, for each n € N.
In the following lemma we describe the properties of M%MO and MTz,po-

Lemma 2.3.10. Fiz pg € (1,00) and let Ty p, be the metric measure space defined above. Then

the associated centered mazimal operator Mg, . is of strong type (1,1), while the noncentered

Mes, . is not of strong type (po,po), but is of weak type (po,po)-

Proof. First, note that it is easy to verify that Mg, o is of strong type (1,1), by using the same
argument as in the proof of Lemma 2.3.7. Now we show that Mgz,po is not of strong type (po, po).
Indeed, fix n € N and let g := 1y,,3. Then [|g||,, = 1 and for each i € [r,] we have

1 1
Mz, g(y;) > =z
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and hence
sn,j €en 2Q—j— €n 1—
27Pom, Pog, .my, 24717 Pone, 2-"Pone,
M e STy N2 D T N2 T
| Tng‘ y 1; —|-an )Po Z: 1+mnj JLY —;(1+mn7j)po ;(14_”)120

— P . . .
Thus, cs(po, Tn)P° > en2—2nen  Since limy,_se €n, = 00 and limy,_seo i =1, we are done.

(1+n)p0 o
To complete the proof it suffices to show that Mg, , is of weak type (po,po). Fixn € N
and estimate cy(po, Tp) from above. Let f € LP(T,,), f > 0, and consider A € (0, 00) such that

Eox(Ms, f) # 0. We write f = f1 + fa, where f1 = f - 1p,\(y,) and fo := f - 1g,}. Note that
Eon(Mg,, f) € Ex(Mg, f1) U Ex(Msg, f2) = Exi1+ Ex2.
Applying Holder’s inequality we deduce that

NOEx| < [Ms, fills < D Ap(f)™ 1Bl < Y > AP Hyd < 5lA15.

BCT, BCT, yeB

where in the last inequality we use the fact that each y € T, \ {yo} belongs to at most five
different balls B C T;,. Next, let fa(yo) = a € (0,00) and assume that E) o # (). Thus, we have
a> A If ExoNT), =0, then \P0|E) 5| < 2| fa|[pg follows. Otherwise, denote

Ny «
r::mln{je[en]:1+1/T e ‘>)\}.
n n,J

Then we have

e e 4—3 —
200 ) 5 Sp M, j < aPo Zjn:TQ Ine, 25 TaPopg, 16aPonc,

APO| By o] <
1Bzl < I+ L +mue)re = (Ltmpe)o = (T+mpg)P = (1+n)r

< 16| 215
Consequently,
(AP0 |Ean(Ms,, f) < 27 - 21 f(I7

Since ¢y (po, Tpn) < 2- 21%/P0 for any n € N, we conclude that Cw(Po, Tapy) S2- 211/P0 < 0. O

Now we present a construction which will be applied to the third subtype of the second

generation spaces. Fix ng € N and let 7 = 7,, = (7,,i)1°; be a given system of positive integers

"O z

satisfying 572+ € N. As previously, we include the dependence on ng € N in notation. Set

Try = Tno(T) = {ym" y;k’ yg,k S [no], J € [Qi_l]’ ke [Tnoﬂ']}a

where all elements y; j, ¥, y; . are different. We use auxiliary symbols for some subsets of Thy:

e = {y;k Li € [no), k e [TW}},

TTIZO = {y;,k S [’I’Lo], ke [Tno,i}},



24 Chapter 2. Strong, weak, and restricted weak type

for i € [no],

T3ys = {3k k € [Tanal |,

Troi = {uis 5 € il

and, for i,7’ € [ngl, 1 < i, and j € [2071],

Jj—1 J
ol = {yf’k S ( 9i—1 "nosi" 21'717'”07’0"} }’

J—1 J
Tﬁo,z",z',j = {Z/é',k ke ( i1 Tno, i 9i—1 Tno,i’j| }

We define the metric p,,, on T, determining the distance between two different elements z

and y by the formula

if {z,y} = {yz’m yf/,k} and l’f’,k € T;Zo,i’,i,j’
if {,y} C Tg \ (Try UT},),

if {z,y} = {45 o vir i 1

otherwise.

P (,Y) = P 7 (2, y) =

N = = =

Figure 2.4 shows a model of the space (T, p,,,) With ng = 2.

/ / / / /
yl 1 yl,Tg’l y2,1 y2,7'2,2/2 y2772’2/2+1 y2,7'2,2

)

Figure 2.4: The second generation space (1'n,, py,,) With ng = 2.

Note that we can explicitly describe any ball: for i € [ng], j € [2¢71],

{yi;} for0<s<1,
B(yij,8) =8 (Tug \ (T, UT,)) UURL Ty iy for 1 <s<2,

Ty, for2<s,
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and, for ¢’ € [ng] and k € 75,4,

{yg )} for0<s<1,

Byt s) = 4 Avi o vi i UYig: vi g € Top v} for1<s <2,
Ty, for2<s,

and
{yi,} for0<s<1,

B(yg’,lw S) = {yZ‘O”]myg”k} fOI‘ 1 <s S 27
Ty, for2<s.

Finally, we define the measure 1z, on Ty, by letting

F(i) ify= Y;,; for some i € [nol, j € [21‘—1]7
Fo (WWH) = P rrm({91) = G if y = y; for some i € [ng], k € [Tny,il,
mi if y =y, for some i € [ng], k € [Tni],

where 0 < F < 1 is a given function and G,m are positive numbers satisfying G < 1/ 1% 7y
and m > 20,

We are ready to describe the third subtype of the second generation spaces.

Third subtype. Now for any fixed py € (1,00) we construct a space denoted by T3 ,, for which
Psc(z?npo) = Pv?r(z&po) = Prc(z&po) = [1, 00], PW(‘I&PD) = (po, o] and Pr(‘z?)mO) = [po, o0]. Note
that the last two conditions imply Ps(%T3,,) = (po, o0].

Fix pg € (1,00). For any n € N we choose ng = n and consider T,, = (T, p,,, i, ), where Ty,
Pn, and fi,, are introduced as before with the aid of my,, 7, = (7)1, F5 defined as in the case
of &3, and G,, = 207/l /5™ 7 . Observe that we have [{y}| > m,, > 2" > [T, \ T/,
for any y € T), and |{y}| > |T5| for any y € T}, \ T)2. We denote by T3, the space obtained by
using Proposition 2.2.2 for A = N with 9),, = %, for each n € N. The following lemma describes
the properties of ./\/l%?w0 and Mg, .

Lemma 2.3.11. Fiz py € (1,00) and let T3, be the metric measure space defined above. Then
the associated centered maximal operator Mg, - is of strong type (1,1) while the noncentered

operator Mgs’po is not of weak type (po,po), but is of restricted weak type (po,po)-

Proof. First we show that Mg, no is of strong type (1,1). We fix n € N and restrict our attention
to Tp. Let f € LY(T,), f > 0. The following estimates hold: for i € [n] and j € [2071],

T S Wig) < fyig) + 247 1 (f) + Ag (),
and, for ¢ € [n] and k € [1,],
. f Wi ) < flypge) + sap f(y) + Az (f),

ye?n\Tﬁ
%nf(yg’,k) < f(yf/i’,k) + A{y;’,’k,y;,}k}(f) + ATn (f)
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Observe that

247\, (f) - To \ (T U T, < 2| fllx

and

n Tn,

SN Ay o Mo S Dl

i'=1k=1

Moreover, since [{y}| > |T¢| for any y € T,, \ T, we have

SN sup f) - Hupadl < osup o f) -yl < 11
i'=1k=1YETn\T} y€eT,\T2

and hence [ Mg fl1 < 6| f[l1. Thus, cg(1,%,) < 6 for each n € N which gives ¢g(1, T3 ,) < o0.

In the next step we show that M{;&po is not of weak type (po,po). Indeed, fix n € N and take

n 21'—1

g = Z Z 2(n7i)/(p071)1{yi,j} € LM (%,).

i=1 j=1
Then gl = 2°~"n and Me, 9(5) 1) > Aps,, 3/2)(9) > g = 7 holds for cach g, € T
which implies that |E}(4m,,)(Msz,9)| > |T}|. Therefore,

||MTn9||§8,oo Z?:l Tnyi tMn 1—2po Z?:l Tn,i b — 91-2po Z?=1 La;] — 91=2po,po—1

ezl — n2n1(4m,,)po nmPo~lon "

Thus, we obtain ¢y (pg, T,)P0 > 2172PopPo—1 which gives cy (po, T3.po) 2 limy, 00 nl=1/P0 = oo,

In the last step we show that MTs,pO is of restricted weak type (po,po). Fix n € N and
estimate c¢;(po, T,,) from above. Let U C T, U # (), and X € (0,00). Our goal is to estimate

NI (23.12)
where E) = E\(Msg, 1y). Denote U° = U NTS and U' = U NT),. For any y € T,, we have

Mg, 1y (y) < 3max { Mg, 1y (y), Mg, 1y (y), Mz, 1y @weurn (y) }-

Thus, it suffices to find a bound for (2.3.12) with U being a subset of T, T7,, or T, \ (T2 UTY).

Moreover, in each case we may assume that Az (1p) <A < 1.

First, consider U C T}, and assume that Ey # (). Thus, we have |E\| < 2|E) NT,|. Observe
that there is no ball B C T, containing two different points from T).. Therefore, if y € E) NTY,
then y € U and hence AP0 |Ey| < A|[Ey| < 2A\|E\NT)| < 2|U]| follows.

Now take U C Ty. First, assume that Ex N7, # 0. If y}, ., € ExNT), then y5, € U and
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A < w2,/ Hul - Consequently,
NO|Ey| < A Ex| < 20| By N T7| < 2U]

again follows. Next, assume that Ex C T, \ T, and E) ¢ Ty. In this case we have |E,| <
2|ExX\ (T2 UT))|. Moreover, the volume of any ball B such that B\ (T°UT)) # () and BNT,; # )
is greater than [T}, \ (T UT),)|. Therefore, if there exists y € Ey \ (T2 UT}), then

A< Mg, 1u(y) < |U/ITn \ (T3 UT,)]

which gives AP0 |Ey\| < MT,, \T),| < 2|U|. Assume the last case E\ C T). Since there are no balls
B C T containing two different points from 7},, we have E\ = U which gives \°|E,| < |U]|.

Finally, take U C T, \ (T2 UT},) and assume that E) # ). First, consider the case ExNT}, = ().
Then we have |Ex| < 2|Ex\ (T UT))|. If A < Az \ poign)(L10), then

AP|EN S AEA| < 2ATn\(TﬁUTT’L)<1U)‘E>\ \ (T U T/z)’ <2|U].

Otherwise, assume that A > ATn\(TOUT’)(lU)' Suppose that there exists y € Ex \ (T, UT)).
Since the volume of each ball B 3 y with radius s > 1 is greater than |1, \ (T UT}.)|, we deduce
that Ap(1y) < A. This means that y € U. Consequently,

NO|EN| < AEA| < 2|Ex\ (T, UT,)| = 2|U|.

Now consider the case Ex N1, # 0. We have |E)\| < 2|E\ N T,|. Moreover, if B C T,
satisfies BN T, # 0, then for each fixed i € [n] the ball B contains at most one of the points

Yily s Yigi-1- Consequently, for each yo € T}, we have Mg, 1¢7(yo) < C-maxyey{Ms, 111 (y0)}
with C = 320,270~ Thus,

Eyn T;L C U E,\/C(Mrznl{y}) N T,/1
yeU

and hence it suffices to estimate properly the quantity A°|Ey N T} |/|U| assuming U = {y; ;} C
Ty \ (T UT}) and XA > Az (1y). In this case, for each y € T} ;, ; 5, i’ > i, we obtain

Ms, 1u(y) = Apys/2)(1r) < 207/@07D /(m, ),

while for y € ) \ U» we have Mz, 1y(y) = A7 (1y) < A. Since

=1 nz KN

Q(Z n)po/(po—1) (i=n)po/(po—1) 7,
Z| n,l,z,]‘ Z iT1
(mnz )Po p 2
gli=mpo/(po—1) I 7]

(if)po = pbot o
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9(i=n)po/(po—1)

= 2l

=1
< olli=)/(po=1))+1 Zl=1 % _ o7
: oy~ A0
we conclude that AP°|Ey NT)| < 2|U| holds.
We thus have ¢;(po, Tn) < C(po) independently of n € N which gives ¢, (po, T3 p,) < co. O

2.4 Proof of the main result

Proof of Theorem 2.1.3. Let PS, PS, PS¢, Ps, Py, and P, be such that the conditions (i)—(iii)
hold. We consider three cases. If PS¢ = P, PS = Py, and PS = P, hold, then 3 may be chosen
to be a first generation space. If, in turn, we have P¢ = PS = PS = [1,00], but Py # [1, o0], then
3 may be chosen to be a second generation space. Finally, if none of these cases occurs, then we

can find spaces © and ¥ of the first and second generations, respectively, for which

o PS(8) = B(S) = PX, PS(&) = Py(&) = PX

W)

and P°(&) = P,(&) = P¢,

T

o PYT) = Pi(%) = PST) =[1,00], Ps(T) = Py, Py(T) = Py, and P,(T) = P.

r

We let 3 to be the space obtained by using Proposition 2.2.2 for A = {1,2} with ; = & and
2o = T. One can easily see that 3 has the following properties:

o PS(3) = P£(®) N PE(T) = PE O [100] = P

s

FR(3) = Fi(6) N PR(T) = Py N[l o0] = Ky,

o PX(3)=P{(6) N PXT) = PN [1,00] = F,

T

Ps(3) = P(&) N Py(T) = PN P, = P,
o Py(3) = Py(6) N Py(T) = PN Py = Py,
o P.(3)=P(6)NP(T)=PNP. =P,

and therefore it may be chosen to be the expected space.

Finally, in view of Remark 2.2.3 each space 3 specified above is nondoubling. O



Chapter 3
Modified maximal operators

In the following chapter we investigate the strong and weak type (p,p) inequalities for the mod-
ified maximal operators, centered M¢ and noncentered M,. Here k € [1,00) is a modification
parameter and the difference between these operators and the classical ones is that the measure
of the ball kB instead of B occurs in the averages. Roughly speaking, for larger « the operators
are smaller which makes them easier to be bounded between certain function spaces. On the
other hand, the modification is so small that M, and M, can successfully play the role of M*
and M in many situations. This idea is due to Nazarov, Treil and Volberg [42], who introduced
and analyzed the centered operator M5 in the context of arbitrary metric measure spaces.

The major part of the research concerning the strong and weak type (p,p) inequalities for
M¢E and M, was devoted to the case p = 1, especially to the weak type (1,1) boundedness.
In addition to the aforementioned paper [42], there were several articles focused on the general
description of all situations in which the weak type (1, 1) inequality must occur (see, for example,
[43, 51]). Finally, it was proven in [48] that M¢ and M, are of weak type (1,1) for xk € [2,00)
and k € [3,00), respectively, in case of any metric measure space with a measure that is finite
on bounded sets. Moreover, it is known that these ranges of the parameter x are sharp in the
sense that for any x € [1,2) (or k € [1,3)) one can find a metric measure space such that M¢
(or M) is not of weak type (1,1). The examples we mention are given in [43, 49] (see also [44],
where certain details justifying the correctness of the construction described in [43] are given).

Our intention is to broaden the scope of research by taking into account both mentioned
types of inequalities for the full range of the parameter p. More precisely, for a given space
X and each k € [1,00) we introduce P (X), P¢(X), Pss(X), and P, (X), the sets of all
parameters p € [1,00] for which the associated operators, centered sz or noncentered M, x,
are of strong or weak type (p, p), respectively. Among others, we study the interrelations between
Pg (X)), PSy(X), Pis(X), and Py (X), and illustrate many possible configurations of them by
using structures similar to those occurring in Chapter 2. It is worth noting at this point that
our constructions are largely inspired by the examples given in [49].

The organization of this chapter is as follows. In Section 3.1 we collect basic information
about modified maximal operators. We also explain how to adapt the space combining technique
described in Section 2.2 to the current situation. Section 3.2 is devoted to studying the case of
fixed k. We formulate the main result and prove it by using some variants of the spaces introduced
in Chapter 2 and some new structures, the so-called segment-type spaces. In Section 3.3 we
investigate the case of varying « which turns out to be much more complex. In particular, the
space combining technique is very extensively used here. Finally, in Section 3.4 some further
remarks and additional examples are given.

29
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3.1 Preliminaries

Let k € [1,00). For a given metric measure space X = (X, p, u) we define the associated modified

Hardy-Littlewood mazximal operators, centered M, and noncentered M, by

1
Mf(w) = Miaf(a) = swp /| e e,

s€(0,00)

and

M (@) i= Moz (o) = sup o [istan wex

Box

respectively. Here kB refers to the ball concentric with B and of radius s times that of B. Note
that, in general, neither the center nor the radius of a ball as a set are uniquely determined.
Moreover, in the case k € (1,00) it is possible that for some x,y € X and s, s2 € (0,00) we have
B(z,s1) = B(y, s2), while B(z, ks1) # B(y, ks2). If K =1, then the modified operators coincide
with the standard Hardy—Littlewood maximal operators, noncentered and centered, and hence
we will write shortly M¢ or M instead of M{ or M. As usual, the balls B such that |B| =0
or |kB| = oo are omitted in the definitions of M¢ and M,. However, unless otherwise stated,
in this chapter we assume that the measure of each ball is finite and strictly positive.

Denote by c{ y(x,p) the best constant in the strong type (p,p) inequality for the operator
ME (i M is not of strong type (p,p), then we write ¢ y(x,p) = 00). Analogously, we define
cgvyx(/i,p), cs x(K,p), and ¢y x(k,p) (the meaning of each of these symbols should be clear to
the reader). Below we present a variant of Proposition 2.2.2 which allows us to use the space
combining technique in an effective way when dealing with the modified operators.

Proposition 3.1.1. Let kg € [1,00). Fiz 0 # A C N and for each n € A let Dy, = (Yo, pn, tin)
be a given metric measure space satisfying pn(Yn) < oo and diam(Y,) < co. Denote by ) the
space constructed as in Section 2.2 with the only modification that ko + 1 instead of 2 is used in
(2.2.1). Then for each k € [1, ko] and p € [1,00] we have the following estimates:

Cg’@(ﬁ,p) = Slelg C(SJ,Q»)n (’%7]))7 CSV@(K,p) = Sgﬁ Cgv,g_]n (K’ap)v
n n

Csm(’%p) =~ Sup Cs 9y, (H7p)7 CW,QJ(H7P) = Sup Cw,9, (’%?p)'
neA neA

Proof. The proof is identical to the proof of Proposition 2.2.2 and hence it is omitted. O

Two comments are in order. First, whenever we want to apply Proposition 3.1.1 later on, we
omit the details related to the proper indexing of the component spaces. We do not even specify
A. The only important thing is that we always use at most countably many spaces. Second, we
have the following analogue of Remark 2.2.3.

Remark 3.1.2. If at least one space from the family {, : n € A} is nondoubling or A is
infinite, then Q) is nondoubling.
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3.2 Results for fixed modification parameter

In this section we assume that the parameter x € [1, 00) is fixed. For a given space X we introduce
Pgo(X) and Pg  (X), the sets consisting of all parameters p € [1,00] for which the associated
centered operator My, » is of strong or weak type (p,p), respectively. Similarly, let Py ¢(X) and
P, (%) consist of all parameters p € [1, 00| for which the associated noncentered operator M, x
is of strong or weak type (p,p), respectively. If kK = 1, then we write shortly PS(X) instead of
Pf (%) and so on.

Below we list the conditions that the four sets must satisfy in general. As in Chapter 2, we
drop the dependence on X for a moment and replace Pg (X), P, (X), Pss(X), and Py v (X) with
P, Pg,, Pes, and Py y, respectively.

K, L R,W)

Observation 3.2.1. The following assertions hold for each metric measure space X such that

the associated measure is finite on bounded sets:

(i) Each of the sets PS, PS ., Pas, and Py y is of the form {oo}, [po, 0o] or (po, 0o], for some

K, L KW

Po € [1,00).

(ii) We have the following inclusions:

Pis C Pis, Pow C Py Pes C Poy, CPE P.s C Pyw C P,

where E denotes the closure of E in the usual topology of R U {oo}.
(iii) If k € [2,00), then P, = [1,00].
(iv) If k € [3,00), then Py w = [1,00].

Indeed, the condition (i) is a natural consequence of the L*°-boundedness of the considered op-
erators and the Marcinkiewicz interpolation theorem, while the condition (ii) is a consequence of
both the Marcinkiewicz interpolation theorem and several obvious implications between different
types of inequalities for different operators. Finally, the conditions (iii) and (iv) must be satisfied
in view of the results obtained in the literature (see |42, 43, 48, 51]).

Our goal is to show that (i)—(iv) are the only conditions that the four sets considered above
satisfy in general. Thus, the following theorem can be viewed as an analogue of Theorem 2.1.3

stated for the modified operators.

Theorem 3.2.2. Fiz k € [1,00). Let PS¢, PS ., Pis, and Py, be arbitrary sets satisfying (i)

K,S? * K,W
(iv). Then there exists a (nondoubling) metric measure space 3 for which the associated modified
Hardy-Littlewood mazimal operators, centered My, 5 and noncentered M., 3, satisfy the following
properties:

e M; 5 is of strong type (p,p) if and only if p € Pg,
o M 5 is of weak type (p,p) if and only if p € P{,,

e M, 3 is of strong type (p,p) if and only if p € Py,
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o M, 3 is of weak type (p,p) if and only if p € Py .

We will prove Theorem 3.2.2 in Subsection 3.2.3. To do that we need a few auxiliary lemmas
which will be formulated in Subsections 3.2.1 and 3.2.2. The analysis will be made separately
for each of the following three cases: x € [1,2), k € [2,3), and K € [3,00). We also emphasize
that the first two cases are the most interesting ones. Indeed, if xk € [3,00), then we have only
three possibilities depending on whether M¢ and M, are of strong type (1,1) or not.

3.2.1 First and second generation spaces

To prove Theorem 3.2.2 we use some of the results obtained in Chapter 2. Recall that the four
types of structures have been introduced there, namely & = (S, p, 1), & = (5,5, 1), T = (T, p, ),
and T = (T, p, 1). Since the restricted weak type inequalities are not considered in this chapter,
we may focus only on the spaces & and ¥ here.

Note that for any space of type & the associated metric p takes only two nonzero values,
namely 1 and 2. Hence, in this case, for any s € [1,2) the operators M, ¢ and M, s coincide
with Mg and Mg, respectively. The key point here is that if x € [1,2), then we can find s > 1
such that ks < 2. Moreover, the same is true if an arbitrary space of type ¥ is considered instead.
Thus, in Proposition 2.2.2 one can consider the modified operators M¢. and M, instead of M*
and M, and the conclusion does not change. Namely, we have C;@ (K,p) > sup,cp cg@n (k,p) and
so on. Consequently, one clearly gets that for each space 3 obtained in Chapter 2 by applying
Proposition 2.2.2 to a certain family of spaces of types & or T, the following identities hold:

Pes(B)=FQ),  FPusB)=F03), Pw@B)=F3),  Puw3)=P(3)

In the case k € [2,3) the situation is a bit different. The first change is that this time we
should use Proposition 3.1.1 with kg = & instead of Proposition 2.2.2 in order to combine spaces
in an effective way. The second change is more crucial. Namely, if x € [2,3), then for any
ball B C S (or B C T') containing at least two points the ball kKB coincides with the whole
space. This fact makes both modified maximal operators trivially bounded on L!(&) (or L!(%))
with their norms not larger than 2. However, a slight modification of the metric used in the
construction of ¥ will allow us to obtain more subtle results.

Let (T, p, ) be a given space of type T. We define the metric p’ determining the distance

between two different elements x,y € T by the formula

1 if p(z,y) =1,
P (z,y) =14 2 if there exists z € T such that p(z, z) = p(y,2) = 1,
3 otherwise.

We emphasize that p’ is well-defined. Indeed, it can easily be shown that there is no set {x,y, 2} C
T satisfying
p(x,y) = p(z,z) = py,z) =1,

and thus the first two conditions in the definition of p’ cannot happen at the same time. We
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denote by T’ the space (T, o, 1). In the following lemma we describe what happens if one uses
%’ instead of T to obtain the corresponding variant of the second generation spaces.

Lemma 3.2.3. Fiz k € [2,3) and consider a second generation space of either first or second
subtype %o. Let {Z, = (Ty, pn, in) : 1 € N} be the family of component spaces used to define
. We denote by T[, the space obtained by using Proposition 3.1.1 with ko = k for the family
{Z), = (T, pl,, in) = n € N}, where pl, is the modification of p, described above. Then we have
Pg (%h) = Pg (%) = [1,00], while Py s(Ty) = Pes(To) and Py (%)) = Pew(%0)-

Proof. Fix n € N and notice that L'(T,,) and L'(%/)) are equal as Banach spaces. Moreover, we
claim that for any f € L'(%,) we have Mo f < Mg f and My 5 (f) < Mg, (f). Indeed,
regarding the centered operators suppose that 7} >0 and fix yg € Tp,. If s <2, then we have the
inclusion B, (yo, xs) O By (yo,s) = B,(yo,s), which implies that

1
| By (Yo, 1:5))|

St Hu <

yEB,/(y0,5)

> FW)-Hyd < Mg, fwo).

1
B
[Bowo: )l e

On the other hand, if s > 2, then we have B, (yo, £s) = T},, which implies that

! DS f(y)-l{y}|§|T1n|Zf(y%l{y}lé/\/lcnf(yo)-

B, KS
| P (y07 yEBp/ (y075) yGTn

This gives M{ ¢, f < Mg f and the second claimed estimate may be verified analogously.
Consequently, we obtain the following identities and inclusions:

Ppo(To) = P w(T) = [L,00],  Pes(To) D Ps(To),  Prw(Tp) D Pu(To).

Now it remains to show that if Mg, is not of strong (or weak) type (p, p) for some p € [1, c0),
then M, </ fails to be of strong (or weak) type (p,p) for the same p. To this end, we recall
briefly the argument that was used in Chapter 2 to obtain a certain property of Mg, and then
convince the reader that the situation is very similar in the context of M, / instead. For the
sake of brevity we describe only the case related to the strong type (p,p) inequalities.

Notice that each time when it was shown that the noncentered operator associated with the
second generation space T is not of strong type (p, p), the functions g, = 1) € Lr(%,),n €N,

were considered. Then, the maximal functions Mg g, were estimated from below by:

e the average value of g, on the ball B centered at y; with s = %

(denoted by Ag, (yi%)(gn))
for the points y} with i € [7,],

e (O for all other points,
and finally it turned out that

Yo (ABpn(y,“%)(gn))p H{yi} -

= OQ.

. [Msx,(gn)

P
lim le > lim

n=00 |lgnllp n—00 lgnllp
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Let us assume that the estimate stated above holds for some p € [1,00). Take s > 1 such
that ks < 3 and observe that By (yi,s) = B, (v, 3) and

| By, (4 k5)| = [{yi} U (T \ T;)| < 2|B,, (i, 3/2)].
This implies that M, < (9n)(y}) > %ABP (y,2)(9n) and hence
n n \Yis 3
1i HM'@,T;L(gn)Hp .
im —— " =
n=oo  ||gnllp

as well. In view of Proposition 3.1.1, we obtain that Mn,i’o is not of strong type (p,p). ]

3.2.2 Segment-type spaces

Now we turn our attention to certain specific situations in which M¢. or M, are not of strong
type (1,1) for some k € [2,00) or k € [3,00), respectively. We present a construction which
allows us to introduce the segment-type spaces mentioned before. Then, we specify two subtypes
of these spaces and prove auxiliary lemmas related to them.

Fix ng € N and let d = dy, = (dny,i);2; be a given system of strictly positive numbers. Set

Ing = {x0, ..., Zn,}, where all elements are different. We define the metric py, on J,, by
k
Pno (T, Tk) = prg.a(Tj, Tg) = Z dng iy
i=j+1

where j, k € {0} U [no] with j < k. Figure 3.1 shows a model of the space (Jy,, pn,) With ng = 4.

dgn  dap ds3 dsy
o o "o ° °

i) I xI9 I3 Xq

Figure 3.1: The segment-type space (Jn,, pn,) With ng = 4.

We define the measure p,, on Jp, by letting

fing({2:}) = ping,a,r({xi}) = F (i),

where F' > 0 is a given function.

We are ready to describe two subtypes of segment-type spaces.

First subtype. Now for any fixed x € [2,00) we construct a space denoted by Ji . for which
P (J1s) = Pus(J1k) = (1,00] and Pg ((J1.x) = Pew(J1,6) = [1,00].

Fix k € [2,00). For each n € N we choose ng = n and consider J,, = (Jy,, pn, tin), where Jy,,
pn, and py, are introduced as before with the aid of d,,; = (k+ 1) for each i € [n] and F,(i) = 1
for each i € {0} U [n].
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We denote by Ji . the space %) obtained by Proposition 3.1.1 with k9 = & for the family

{Jn : n € N}. In the following lemma we describe the properties of My 7 —and M, 7 .

1,~

Lemma 3.2.4. Fiz k € [2,00) and let Ji, be the metric measure space defined above. Then
the associated modified maximal operators, centered M, i and noncentered My, 7, ., are not
of strong type (1,1), but are of weak type (1,1).

Proof. First we show that M{ 7 is not of strong type (1,1). Fixn € Nand let g == 1,, €
LY(J,). Then ||g|l1 = 1 holds. Observe that for each j € [n — 1] we have

J
K E dnJ' < dn7]’+1.
=1

Consequently, there exists s] (0,00) such that B(zj,s;) = B(xj,ks;) = {zo,...,x;}, which

implies that My, ; g(z;) > holds. Therefore, for each n € N we obtain

J+1
”M,‘Q Jng”l

Sl )= T,

AV
M
.
+ e
—_

and, consequently, cg Tin (k,1) = 0.

It remains to show that M, 7, . is of weak type (1,1). We fix n € N and estimate cy, 7, (,1)
from above. Let f € LY(J,), f > 0, and consider \ € (0,00) such that Ey == E\(M, 7, f) # 0.
Observe that, because of the linear structure of .J,, any ball B C J, is of the form {xz;,...,z;}
for some 4,5 € {0} U [n] with ¢ < j. Define B :={B C J, : >_,cp f(x)/|«B| > A} and observe
that the elements of B form a cover of E). By using the fact that each element of B has the
form described above, we can find a subcover B’ such that each z € F) belongs to at most two
elements of B’. Therefore,

VB Y A B Y (Y S ) <23 f@) <2 f|h

Bep’ BeB’ xz€B zeE)y

Consequently, for each n € N we have ¢y, 7,(k, 1) < 2, which implies that ¢y, 7, (x,1) < co. [

Second subtype. Now for any fixed k € [3,00) we construct a space denoted by Ja ,, for which
Prs(Jor) = (1,00] and P{ (Jax) = Pg o (Jow) = Prw(T2m) = [1,00].

Fix k € [3,00). For each n € N we choose ng = n and consider J,, = (Jy, pn, tin), where J,,
Pn, and i, are introduced as before with the aid of d,,; = (k — %) for each i € [n] and F, (i)
chosen (uniquely) in such a way that F,(0) = 1 and F,(i + 1) = 271 F, (i) for each i € [n].

We denote by J> . the space ) obtained by Proposition 3.1.1 with k9 = & for the family
{Jn : n € N}. In the following lemma we describe the properties of M, o, and My 7, .

Lemma 3.2.5. Fiz k € [3,00) and let Ja ,, be the metric measure space defined above. Then the
associated modified centered mazimal operator M, o 18 of strong type (1,1), while the modified
noncentered operator My, 7, . is not of strong type (1,1), but is of weak type (1,1).
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Proof. Since k € [3,00), the operator M, 7, . is of weak type (1,1). Hence, it suffices to show
that M, 7, . is not of strong type (1,1), while My 7 s of strong type (1,1). Moreover, we
notice that for each n € N and j € {0} U [n — 1] we have the inequalities 22:1 dp;i < dpj+1 and
S Fuli) < Faj+ 1),

First we show that M, g,  is not of strong type (1,1). Fix n € N and let g := 15, € L*(7})).
Then ||g||1 = 1 holds. Observe that for each j € [n — 1] we have

j_

T dn ji1
dnd <:dnJ < —.

— k—1

Consequently, there exists s; € (0,00) such that B(z;_1,s;) = B(zj_1,ks;) = {zo,...,2;},
which implies that M, 7, g(2;) > 1|{z;}|~* holds. Therefore, for each n € N we obtain

IME ol 01
a2 g 2

and, consequently, ¢ 7, (k,1) = co.

It remains to show that My ; is of strong type (1,1). Fix n € N and estimate c{ ; (x,1)
from above. Let f € L'(J,), f > 0. Observe that for each j € [n — 1] we have Kl j > dp 41
Thus, if B is centered at x; and z;_1 € B, then xj41 € kB. From this for each j € {0} U [n — 1]
we deduce the following estimate

c ) fol (z:) {i}]
Muan ) = =500 00 *Zf

while for j = n we obtain My, ; f(zn) < | fll1/|{#n}| Therefore,

" n n—1 j—1
jZoM“’j”f( = jZ()f( M ]H<2+MZH Ty 2 T )) < A

=0

Since cg 7 (x,1) < 4 holds for each n € N, we conclude that c{ 7 (k,1) < co. O

3.2.3 Proof of the main result

Proof of Theorem 3.2.2. First we note that if PS¢ = P, s = Pg, = Pgw = [1,00], then one can
find a first generation space 3 for which PS¢(3) = Ps(3) = PS(3) = Pw(3) = [1, 00|, and hence
we also have P¢ ((3) = Pss(3) = Pg(3) = Pew(3) = [1,00] for every k € [1,00). Therefore,
from now on, assume that P ¢ (and possibly some other sets) is a proper subset of [1,00]. We
shall consider the following cases: k € [1,2), k € [2,3) and k € [3, 00).

Suppose that x € [1,2). Then the sets Pg, Pys, P, and Py y satisfy (i) and (i), while the
remaining two conditions are empty. We can find two spaces & and ¥ of the first and second
generations, respectively, for which

o PX(&) = P(6) = P, and PY(6) = Py(&) = P

S K,W7
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e PS(T) = PL(T) =[1,00], Ps(T) = Py s and Py (%) = P w,

S

and, in view of the observation made in Section 3.2.1, the same identities hold with P¢ (&) in
place of PS(6) and so on. Now we let 3 be the space obtained by using Proposition 3.1.1 with
ko = k for & and T. One can easily see that 3 has the following properties:

o Pis(3) = Pis(6) N PL(%) = Pig Nl o0] = P

K,

o Prw(3) = PiW(6)NPLy (%) = PiyNl,o0] = Py

R,W)
o Pis(3) = Pes(6) N Ps(T) = PLyN Pes = P,
¢ Pew(3) = Pew(©) N Pew(T) = PLy N Pow = Paw,

and therefore it may be chosen to be the expected space.
Next, suppose that x € [2,3). Then the sets P, P, PS

s o ws and Py satisfy (i)—(iii), while
the condition (iv) is empty. We can find a second generation space T for which PS(¥) = PS(T) =
[1,00] = Pgy, P(T) = Pygs, and Py(T) = P, and therefore we obtain the same identities
with PS(T), Ps(T), Pg(%), and Py (%) replaced by Pt (T'), Pes(T'), PS(T'), and Py (%),
respectively, where ¥ is the modification of T considered in Lemma 3.2.3. If Pg ¢ = [1,00], then
the expected space may be chosen to be just . Otherwise (that is, if PS, = (1,00]) we use
Proposition 3.1.1 with kg = x for ¥ and the space J;  considered in Lemma 3.2.4. Then the
obtained space 9) satisfies P¢ () = Pig, Pes(Y) = Pes, Piw(D) = Py, and Pew(Y) = Paw-

Finally, suppose that k € [3,00) and the sets Pt , P, PSy, and Py satisfy (i)-(iv). If

K,S? KW
Pgs = Pqs = (1,00], then the expected space may be chosen to be the space Jp, considered
in Lemma 3.2.4. Otherwise, if P¢¢ = [1,00] and P;s = (1, 00], then the expected space may be
chosen to be the space Js . considered in Lemma 3.2.5.
Finally, in view of Remark 3.1.2 each space 3 specified above is nondoubling. ]

3.3 Results for varying modification parameter

This section is devoted to studying the case of varying parameter x € [1,00). For the sake of
clarity, we focus only on the weak type (p,p) inequalities. For a given metric measure space X
let us define two auxiliary functions

h% (k) = inf{p € [1,00] : c{ x(K,p) < oo} and hx(k) = inf{p € [1,00] : ey (K, p) < oc}.

Since MS  and M3 x are of weak type (1,1), we can assume that the domains of h$ and hy are
[1,2] and [1, 3], respectively. The following assertions hold:

(i) We have h%: [1,2] — [1,00] and hy: [1,3] — [1,00].
(ii) Both h§ and hx are nonincreasing.
(iii) For for x € [1,2] we have h(k) > h% (k).

(iv) We have h%(2) = hx(3) = 1.
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(v) For each k € [1,2], if h%(k)

= o0, then P¢ (X) = {oo}, and if h% (k) < oo, then either
Pgw(X) = (h%(k),00] or P (X) =

5. (). 0c).

(vi) For each k € [1,3], if hx(k) = oo, then P, (X) = {oo}, and if hx(k) < oo, then either
Prew(X) = (hx(k), 00] or Pew(X) = [hx(k), 0]

Our principal motivation is to take arbitrary functions hA® and h such that (i)—(iv) hold with
h¢ and h in place of hS and hy, respectively, and to ask whether it is possible to find a metric
measure space 3 such that (v) and (vi) hold with Pg (X), P w(X), h%, and hx replaced by
Py (3), Pew(3), k¢, and h, respectively. It turns out that the answer is always positive. Namely,
we have the following theorem.

Theorem 3.3.1. Let h® and h be such that (i)—(iv) hold with h° and h in place of h$ and
hx, respectively. Then there exists a metric measure space 3 such that for each k € [1,2) the
associated modified centered mazimal operator M, 5 is of weak type (p,p) if and only if p > h¢(k)

or p = oo, while for each k € [1,3) the modified noncentered mazimal operator M, 3 is of weak

type (p,p) if and only if p > h(k) or p = cc.

One comment is in order. Observe that the conditions (i)—(vi) usually do not cover complete
information about the finiteness of C$V7x(l<é,p) and cy x(k,p). Namely, having only the values
of h% and hy available, one is often unable to determine whether the values c{, y(r, h%(k)) for

€ [1,2) and cy x(k, hx(k)) for £ € [1,3), are finite or not. Sometimes, there can be many
possible cases depending on X and the characterization of them is a difficult problem which will
not be treated here. Nevertheless, the obtained results may be helpful to find a general principle
related to this issue.

We prove Theorem 3.3.1 in Subsection 3.3.3. Before that, in Subsections 3.3.1 and 3.3.2 some
auxiliary structures are considered. From now on we write shortly c$(x,p) and cx(k,p) instead

of ¢, x(k,p) and cy x(k,p), respectively.

3.3.1 Basic spaces

In this subsection we introduce and analyze certain simple structures which we call the basic
spaces later on. Studying this class of structures allows us to produce many examples of spaces
for which the associated modified maximal operators have very specific properties. We consider
two types of basic spaces which are denoted by & and ¥ in order to indicate their similarity to

the components of the first and second generation spaces, respectively.

First type. Fix 7 € N, d € (1,2], and m € [1,00). We introduce the basic space of the first
type & = &, 4m = (S, p, 1) as follows. Set S := {xo,...,2,}. Define p by letting

1 if xg € {z,y},
d otherwise,

p(x,y) = pa(z,y) = {
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where x and y are two different elements of S. Finally, take p defined by

1 ifi=0,
m if i € [7].

p{zi}) = pm({zi}) = {

Figure 3.2 shows a model of the basic space .

1 ) Tr—1 Tr
Zo

Figure 3.2: The basic space of the first type.

We can explicitly describe any ball:

{zo} for0<s<1,
S for 1< s,

B(l‘o, S) = {

and, for i € [7],
{z;} for0<s<1,
B(zi,s) =< {zo,x;} for 1< s <d,
S ford<s.

In the following lemma we describe the properties of M;G and M, g for all k € [1,00).

Lemma 3.3.2. Let G be the basic space of the first type defined above. Then

max{1, 7/PmYP~1Y if k € [1,d) and p € [1,00),

CG(va):CG(K7p):{ 1 ifl{E[d,OO) or p = 0.

Proof. First we notice that, in view of the inequality cg(x,p) > cg(~,p), it suffices to estimate
cg (K, p) from above and c§(k,p) from below by the appropriate terms.

Let f: S — [0,00). Clearly, we have M sf = [ and hence c&(k,p) > 1 holds for any
k € [1,00) and p € [1,00]. Next, if k € [d,00) and p € [1,00), then for any ball B containing at
least two points, the ball kB coincides with S. Therefore, for each x € S we have

M e f(@) < fz) + As(f).

Applying Holder’s inequality we obtain [ M & fl[p < 27| f[[; which implies that cg(k,p) <
2(p=1)/P < 1 holds. Obviously, we also have cg(k,00) < 1 for each x € [1,00). Thus, it remains
to analyze the case k € [1,d) and p € [1,00).

Write f = f1 + fa with f1 == f -1,y and fa == f - 1g\ (4.} Since M, g is sublinear, we have
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Mesf < Myesfi + Mg fz. Observe that M, s fi(z0) = fi(zo) and My e fi(zi) < L fi(wo)
for each i € [r]. Thus, [Mysfillb < (1 4+ 7m!P) | fi][5. For f2, in turn, we have the estimate
Mysfa < fo+ As(fa), which gives || M, e fallh < 2P~ f2||h. Therefore, | M, s f|[h < 2P71(1 +
mm7P 4+ 2P~71)| |5 holds and, consequently, we obtain

cs (K p) < (22711 + rm' P + 22N P < max{1, 7P /Py,

Finally, let g :== 1¢,.. Then [|gll, = 1 and M & f(z:) = #ﬂ > 5L for each i € [r]. Thus,

2m
c > i E 1/p > 1/p,,1/p—1

and, combining this with the inequality cg(x,p) > 1, we obtain the desired estimate. O

Second type. Fix 7 € N, d € (1, 3], and m € [1,00). We introduce the basic space of the second
type T = Tram = (T, p, ) as follows. Set T' = {yo,¥y7,.--, Y3, Y},---,y-}. We use auxiliary
symbols for certain subsets of T: T° := {y7,...,y2}, T" = {y},...,y.}, and, for each i € [7],
T; :={y;,y;}. Define p by the formula

1 ifyp € {x,y} CT\T or {x,y} =T; for some i € [7],
p(z,y) = pa(z,y) =< L if {x,y} C T° or {a,y} C T\ T°,
d otherwise,

where x and y are two different elements of T'. Finally, take v defined by

1 if y = yo,
p{y}) = mm({y}) = 7 ify =y for some i € [7],
m if y =y, for some i € [7].

Figure 3.3 shows a model of the space ¥. Adding an imaginary point at the top makes p easily

readable as a minor modification of the geodesic distance on the graph.

Yo

Figure 3.3: The basic space of the second type.
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Once again we explicitly describe any ball:

{yo} for0<s<1,
B(yo,s) =4 T\T' forl<s<
T for%<s,

and, for i € [7],
( {y7} for 0 < s <1,
{w}UT; f01r1<s§%7
{yo,y;} UT° for % < s<d,
\ T fOI‘d<$7

B(y;,s) =

and
( {y;} for0<s<1,

T; for1<s§%7
o d+1
{yo, ¥y uT’ for%<s§d,
T ford<s.

B(y;,s) =

In the following lemma we describe the properties of M ¢ and My z, K € [1,00).

Lemma 3.3.3. Let T be the basic space of the second type defined above. Then c%(k,p) ~ 1 for
all k € [1,00) and p € [1,00], while

max{1, 7/PmYP=1} if ke [1,d) and p € [1,0),
Cz(ﬁ’p)g{ { }if ke [Ld) andp € [1,00)

1 ifk €[d,00) orp=oc.

Proof. First, note that c%(x,p) > 1 and cg(k,p) > 1 for all k € [1,00) and p € [1, 00]. Moreover,
both ¢ (k, p) and cz(k, p) are nonincreasing as functions of . Therefore, to prove that c%(x,p) ~

1, it remains to show that c%(1,p) < 1.

Let f: T'— [0,00). Observe that max{Mgf(y) : y € T} = max{f(y) : y € T} which implies
that c%(1,00) = 1. Now assume that p € [1,00). We have

Mg f(yo) < max{f(vo), Ar\7/(f), Ar(f)}-

Moreover, since the estimate [{yo,y} UT’| > |T| > |T'|/3 holds for each ¢ € [r], we obtain
A{yg,yf}uT’(f) < 3Ar(f) and, consequently,

M f(yi) < max{f(y;), Ar,(f), 3A7r(f)}.
Finally, observe that
Agyoyur; (f) < max{f(yo), Ar, ()} < max{M&f(yo), M&f(v;)}

and

Agyoyryure (f) < max{Ap\p (f), f(y:)} < max{Mgf(yo), M5 f(y:)}-
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Consequently,
M f(y7) < max{f(y;), M3 f(yo), M f(y;), Ar(f)}.

Therefore, since [{yf}| < [{y/}| and >°7_; {y9} = [{vo}|, we can estimate [|MSf|[p b
2 (" F@PHu + 37 Ar(FIT| + Apyrr (£ o} + ZAT Py}
yeT
Applying Holder’s inequality we obtain [|MSf|[p < 2(37 + 3)||f||p and hence c£(1,p) < 12.

From now on we discuss only the noncentered case. It is easy to verify that cg(k,p) ~ 1 if
k € [d,00) or p = oo, arguing as in the proof of Lemma 3.3.2. In the next step we prove that
cz(k,p) < max{1,7/Pm!/P=1} holds for x € [1,d) and p € [1,00). In fact, it suffices to consider
the case k = 1. Take f > 0 and observe that we have

Mz f(yo) < max{f(yo), Ap\pv (f), Mxf(y1), -, Msf(y;)},

since {yo} and T'\ T" are the only balls containing yo and disjoint with 7”. Furthermore,

Ms f(y7) < max{f(y;), Mz f(yo), Msf(1), ..., Msf(y,)}

holds for each i € [r]. Notice that if y; € B C T, then either B C {yo,y}} UT®° or |B| > |T|.
Since [{y;}| > 5/{yo,y;} UT°|, we obtain

Mz f(y;) < 3max{Agy, ,yure(f), Ar(f)}.

Since [{yo, v, y;}| < 3[{y;}| holds for each i € 7], we arrive at the inequality
IM=fIE <3( 30 F@PHYH+ Az ()P Kot + 3P Az ()P 1T +37 3 Agy i (£ 1{H)
yeT\T’ i=1
and, since |[{yo,y.} UT°| > |{y'}], by Holder’s inequality the last sum above is controlled by
- 12 G + 15 - T B ) b < 27 (3 PGP + 715 - 1o 2).
i=1

Notice that |T'\ 7| = 2. We apply Holder’s inequality again in order to get
Mz flp < 3(2+ 37 +3- 671 (1+ 22" Lrm! 7)) || £|I2,

and, consequently, we obtain cz(1,p) < max{1,7Y/Pm!/P~1},

Finally, we estimate c%(x,p) from below for x € [1,d) and p € [1,00). Take g := 17,3. Then
we have ||gl, = 1 and M <g(y;) = (1 + 1+ m)~t > (3m)~! for each i € [r]. Thus,

c - 1/P> 1/p,1/p—1
slmp) > o B (9)]7 2 7rm
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and, combining this with the inequality ¢ (x,p) > 1, we obtain the desired estimate. O

3.3.2 Composite spaces

In the following subsection we use Proposition 3.1.1 for certain properly chosen families of basic
spaces. The structures obtained here can be regarded as intermediate objects between basic

spaces and the spaces we want to construct in the proof of Theorem 3.2.2.
Lemma 3.3.4. Fiz & € [1,2), p € [l,00), € € (0,1], § € (0,2—F), and N € N. For each
n € N\ [N] let 6, = &, dn,mn be the basic space of the ﬁ?"st type constructed with the aid of
Tn = N2 | nP0-0/¢| d, =&+ f, and my, = nP/¢. Denote by G = Gz % peoN the space obtained
by applying Proposition 3.1.1 for kg = Kk + d and the family {&,, : n € N\ [N]}. Then
cg (K, p) = cg(k,p)

for all k € [1,00) and p € [1,00]. Moreover, the following assertions hold:

(a) If k € [F+d,00) or p € [p+ 4e,00], then cg(k,p) ~ 1.

(b) If k € (K,00), then cg(k,p) <

(c) If k € [1,K] and p € [1,p), then cx(k,p) =

(d) If p € [p, 0], then cg(k,p) S N2.

(e) If k € [1,K] and p € [p,p + €, then cx(k,p) Z N2,

Figure 3.4 describes the behavior of the function cgz(k,p) (and thus also of Ccé(li, D)).

p
A
~1
J R S e ‘
SN
Pret oo o
p >N1/2 l | 21
PT[ S
=00 <00,
1,, I I
: > K
1 )

Figure 3.4: The behavior of the function cx(x, p).

Proof. First, observe that cx(x,p) ~ C~(K, p) for k € [1, ko] and p € [1,00]. Indeed, in this case

ce, (k,p) = g, (K, p)
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holds for each n € N\ [NV], and hence the same is true if we take the supremum over n. Moreover,
we have ko > d,, for each n, which implies that cg(ro,p) =~ Ccé(li(),p) ~ 1 for all p € [1,00].
Combining this with the facts that cz(x,p) and c‘é(m,p) are estimated from below by 1 and
nonincreasing as functions of x, we conclude that cé(n, D) ~ cé(n, p) holds for the full ranges of
the parameters s and p.

Now, to prove (a), it suffices to show that cz(1,p) >~ 1 for p € [p + 4¢,00). For each such p
and any n € N\ [IV] we have the inequality

cs, (1,p) S 1+ N2/ pp=D/(p) . pyp(1=p)/(ep)
<14 N2/p . pp(0-p)/(er) < 1 4 N2p—2 < 1,

since 1 < p/p <2 and p — p < —4e. This implies that

cg(l,p) S sup  cg,(l,p) S 1.
neNN(N,oc0)

The condition (b), in turn, is a simple consequence of the fact that if k € (K, 00), then d, > k
holds only for finitely many values of n. Next, consider x € [1,K] and p € [1,p) (of course, we
can do this only if p € (1,00)). Then

limsup cg, (k,p) = lim N2P/P . ppB=D/(p)  P1=p)/(P) > Jipyy N2P/P . nPP=P)/(P) —
n—00 n—00 ~ n—oo

and hence (c) holds. To prove (d) assume that p € [p,o0) (the case p = oo is trivial). For each
n € N\ [N] we have

ce, (k,p) <14 NZP/P . pp=1/(ep) . pp(1-p)/(ep)
<14 N/p. ppo=p)/(er) < 14 N2.1 < N2

which gives

cg(k,p) S sup  ce,(k,p) SN2
neNN(N,o00)

Finally, take k € [1,K] and p € [p,p + €]. Since % <p/p<1and —e <p—p <0, we have

cs(K.P) 2 Ceny (rp) 2 N7 (2N)PF-D/e0) . (g )P-p)/2)
> N2/P (2 N)ﬁ(ﬁ—p)/(ep) > N3/2.N"1 = N1/2,

which justifies (e) and completes the proof. O]

Lemma 3.3.5. Fiz k € (1,2] (respectively, k € [1,2)). For each n € N let &, = &, 4. mn
be the basic space of the first type constructed with the aid of 7, = n, d, = R (respectively,
dp, =R+ 27“) and my, = 1. Denote by S = GA the space obtained by applying Proposition 3.1.1
for ko = 2 and the family {&, : n € N}. Then cg(k, p) = oo if and only if k € [1,K) (respectively,
k € [1,K]) and p € [1,00), and the same is true with cé(n,p) in place of cg(k,p).

Proof. We prove only the first version of this lemma and the second one may be verified similarly.
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Assume that p € [1,00) (the case p = oo is trivial). If x € [1, ), then for any n € N we have
Kk < d, and hence c%n(n,p) ~ nl/P. Therefore,

cg(k,p) = cg(k,p) 2 limsupcg, (k,p) ~ lim ntP — 5o

n—00 n—0o0

Consider the remaining case k € [k, c0). Since k = d,,, we have cg, (K, p) ~ 1. Consequently,

Cé(l{,,p) < C@(K’vp) < C@(Evp) S 1 < o0,
which completes the proof. O

Finally, we notice (without furnishing the detailed proof) that using the adequate spaces
S dn.mn instead of &, 4. . leads to the following counterparts of Lemmas 3.3.4 and 3.3.5.

Lemma 3.3.6. Fiz & € [1,3), p € [1,00), € € (0,1], § € (0,3 —F), and N € N. For each
n € N\ [N] let T, = T, 4,,.m,. be the basic space of the second type constructed with the aid of
T = N?P|nPP-V/e| d, =%+ %, and m, = nP/¢. Denote by T = %g,@Q&N the space obtained by
applying Proposition 3.1.1 for ko = K+ d and the family {Z,, : n € N\ [N]}. Then the following

assertions hold:

o We have c%(/i,p) ~ 1 for all k € [1,00) and p € [1, ).

e The conditions (a)-(e) from Lemma 3.3.4 hold with cz(x,p) in place of cz(K,p).
Lemma 3.3.7. Fiz & € (1,3] (respectively, k € [1,3)). For each n € N let T, = T, 4. m,

be the basic space of the second type constructed with the aid of 1, = n, d, = K (respectively,
d, =&+ 3= “) and my, = 1. Denote by T = ‘IA the space obtained by applying Proposition 3.1.1
for ko = 3 and the family {%, : n € N}. Then cz(k, p) = oo if and only if k € [1,K) (respectively,
k € [1,K]) and p € [1,00), and the same is true with cg(/ﬁ;,p) in place of cz(k,p).

3.3.3 Proof of the main result

Proof of Theorem 3.3.1. In the first step we construct a metric measure space 31 such that for
each r € [1,2) the associated modified maximal operators M 3 and M, 3, are of weak type
(p,p) if and only if p > h®(k) or p = oo, while My 3, is of weak type (1,1). The last property
can easily be verified, since only the basic spaces of the first type will be used to build 3;.

First, consider the case h°(k) < oo for each k € [1,2]. Let us introduce a countable set
Y =3%1UXe = {k1, K2, ... }, where 3 is the set of all k € [1,2) for which lim,,_,,.+ h®(x") < h¢(k)
(the case X1 = () is possible) and X5 is a dense subset of the interval (1,2) that has no common
points with ¥;. By induction we will construct a family of metric measure spaces {&,, j : n, j € N}
and then we will obtain 3; by applying Proposition 3.1.1.

Take k1 € ¥ and let §; € (0,2—k1) be such that he(x) > lim, _, + h¢(k)—1for k' € [1, k1+d1].
For each j € N we denote by &, ; the space égﬁ’e’g’]\[ from Lemma 3.3.4 constructed with the
aid of K = k1, p = h¢(k1), € = 4%., 0= 5]—.1, and N = j. Now we let n € N\ {1} and suppose
that for each ¢ € [n — 1] and j € N the space &;; has already been constructed. We choose
dpn € (0,2 — ky,) such that the following conditions are satisfied:
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o We have he(x') > lim, _, + h®(x) — L for each &' € [1, ki + &)
o If k; > K, for some i € [n — 1], then K, + 0, < K;.

For each j € N we denote by &, ; the space ég@a(gw from Lemma 3.3.4 constructed with the
aid to kK = kp, p = h%(ky), € = 4%., 0= 57’,1, and N = j. Finally, denote by 37 the space obtained
by applying Proposition 3.1.1 for kg = 2 and the family {S&,, ; : n,j € N}. It suffices to show
that for each x € [1,2) we have c§ (s, h°(k)) = oo, while c3, (,p) < oo if p > h(k).

Fix k € [1,2). If lim_, .+ h°(K") < h®(k), then Kk = Kk, € X for some n € N. Therefore, for
each j € N we have cg (k,h®(x)) = §1/2, which implies that

c§, (k, h(K)) Z supeg, (k,h°(k)) 2 lim 5% = oo,
" jeNn ™7 j—o0

In turn, if lim,/_, .+ h°(k’) = h°(k), then for each i € N we can choose k,, € ¥ such that k,, > &
and h°(kn,) > h°(k) — 4. Hence S, (5, he(k)) Z g, (K, h(K)) 2 i*/? and letting i — oo we

i

obtain c§ (k, h¢(k)) = oco.
Next, fix £ € [1,2) and let p € (h(k), h°(k) + 1). It is obvious that cg, ;(k,p) < oo for any
fixed n and j. We will prove that sup,, jen Cs,, ; (K, p) < 00. Let ng € N be such that

1
<p<h® —.
no+1_p (K)—i_no

he(k) +

Take n € N such that x ¢ [k, kn + 6n). With this assumption we obtain cg, ;(,p) =~ 1 for
J =mno+1 Inturn, if j <ng+1, then cg,, ;(5,p) S §2 < (ng+1)%. Otherwise, let n € N be such
that & € [kn, kn + 0n). There exists jo = jo(n) such that &k & [ky, kn + 0n j,) OF h(Kn) + J% < p.
This implies that cg,, ;(,p) = 1 for any j > jo. Hence, we deduce that sup,, jey €s,, ; (K, p) < 00
holds provided that x ¢ [kp,kn + ) for all but finitely many values of n. Finally, suppose
that this is not the case. Then we can choose [ > 2(ng + 1) such that k € [k, k; + &;). If

K € [Kn, kn + 0p) for some n > [, then

1 1
hC > 1 hc nN_Z > hc n) 9
(F;) n ml—>n,‘il+ (Kv ) [~ (H ) 2(710 + 1)
since Ky, € (ky, k1 + 0;), which implies that
> h(K) + ——— > h(kn) + ——
K Kn) + ——————.
p= nog+1 "~ 2(n0+1)

Hence, for that n, if j > 2(ng + 1), then cg, (x,p) ~ 1. Since cg, (x5, p) < 4(ng + 1)* for
J <2(no + 1), we conclude that sup,, jey s, ;(, p) < oo follows.

Now suppose that h¢ takes the value co and set a := sup{x : h°(k) = oo}. If a = 2, then we
use the appropriate version of Lemma 3.3.5 with K = 2 to choose 3;. Assume that a € [1,2). If
lim,,_,,+ h(Kk) = oo, then h® is continuous at a and we just construct 3; in the same way as we
did in the case h® < oo, but now using [a,2) and (a,2) instead of [1,2) and (1,2), respectively.
It is not hard to verify that 3; has all the expected properties. Otherwise, we introduce an



3.4. Further comments 47

auxiliary function b’ defined by the formula

/ _ ho if kK € [La]v
b (k) = { h¢(k) if k € (a,2],

where hg = h®(a) if h(a) < oo or hy = lim,,_,,+ h®(k) otherwise. Let 3} be the space constructed
as before with A’ instead of h®. We use Proposition 3.1.1 with ko = 2 one more time and obtain
31 combining 3} with the space from Lemma 3.3.5 with & = a (we use the appropriate version
of Lemma 3.3.5 depending on whether h¢(a) < oo or h¢(a) = 00).

In the second step we construct a metric measure space 32 such that for each x € [1,3) the
associated modified maximal operator M, 3, is of weak type (p,p) if and only if p > h(k) or
p = oo, while for each k € [1,2) the operator M; 5, is of weak type (p,p) for all p € [1,00].
The method is similar to that which was used to construct 3;. The key point is that this
time Lemmas 3.3.6 and 3.3.7 instead of Lemmas 3.3.4 and 3.3.5 should be used. Moreover,
Proposition 3.1.1 should be applied with kg = 3. We skip the technical details here.

Finally, we build the metric measure space 3 by applying Proposition 3.1.1 with kg = 3 for
31 and 32. It is not hard to see that we have: for each x € [1,2),

c5(k,p) < 00 <= max{c§, (k,p),c5,(k,p)} < oo <= p € (h°(k),o0],
and, for each k € [1,3),
¢3(mp) < 00 <= max{es, (x,p), ¢35 (,0)} < 00 <= p € (h(x), o),

where by (oo,00] we mean the singleton {oco}. Thus, the space 3 satisfies all the expected

conditions and the proof of Theorem 3.3.1 is complete. O

3.4 Further comments

In the last part of this section we focus on the situation in which we want to find a space 3 such
that the associated modified maximal operators Mzé and M, 3 are of weak type (p,p) if and
only if p > h(k) and p > h(k), respectively. In particular, we ask if there is a counterpart of
Theorem 3.3.1 with these inequalities instead of p > h°(k) and p > h(k). For simplicity, from
now on we deal only with the centered operators.

The first example indicates that the answer is positive if h° and h are continuous.

Example 3.4.1. Let h¢: [1,2] — [1,00] be a continuous nonincreasing function with h°(2) = 1.
Then there exists a metric measure space 3 such that for each k € [1,2) the associated modified
centered mazimal operator My, 5 is of weak type (p,p) if and only if p > h¢(k).

Proof. 1If h°(1) = 1, then the result is trivial since 3 may be chosen to be {a}, the set of one point,
equipped with the unique metric and counting measure. From now on assume that h°(1) > 1.
Let us introduce the following auxiliary set

Q= {(r,p) € ([1,2]NQ) x ([1,00) N Q) : p < h(k)} = {(kn,pn) : n € N}.
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For each n € N we choose d,, € (0,2 — ;) such that p, < h®(k, + 0,). We denote by S,, the
space ég’@e’g,N from Lemma 3.3.4 constructed with the aid of K = Ky, P = pn, € = %, 6 = 0y, and
N = 1. Then it is easy to show that 3 may be chosen to be the space constructed by applying
Proposition 3.1.1 for kg = 2 and the family {&,, : n € N}. O

The second example shows that there is no counterpart of Theorem 3.3.1 for arbitrary func-
tions h® and h satisfying (i)—(iv). This example is more general in the sense that we take into
account all metric measure spaces, not only those satisfying the assumptions specified at the
beginning of this chapter. In the proof we will apply the estimates for the operator norm that
can be obtained via interpolation (see, for example, [12, Theorem VIIL.9.1, p. 392]). Moreover,
we will use the basic fact that for any metric measure space X we have

lim CE,;:E(I{'UPO) = C%(507p0)7 Ko 2 ]-7 Do € [1700]
g

Example 3.4.2. Let (q1,q2,...) be an arbitrary enumeration of the set QN (1,2). Define
c 1
hi(r) =2— ) o mEL2
1€N:q; <k

Then there is no metric measure space X such that for each k € [1,2] the associated mazimal
operator M, y is of weak type (p,p) if and only if p > h§(k).

Proof. Suppose by contradiction that X is such a space. First we show that forany 1 <a <b <2
and N € N we can find a < a’ <V < b such that c(k, h§(k)) > N for k € [a/,V]. Indeed, take
gi € (a,b) and observe that

lim % (k, h§(q;) — 2771 = occ. (3.4.3)

K—q;

Next, let € € (0,2 — ¢;). Then we have h§(q;) — 271 — h&(g; + €) > 27"~1. Moreover, note that
¢ ¢ (1,¢;), which implies that 1 < hS(q;) — 277! < 2. Thus, if ¢§(g; + €, h§(g; +¢€)) < N, then

i1 S h§(g5+¢€)
hi(q:) — 2771 = B(ai +€) -

cklai + e hia) — 27 < 2(

by interpolation. Of course, in view of (3.4.3), such an estimate cannot occur for sufficiently
small values of e. Therefore, we can choose an interval [a’,b'] C (g;,b] C [a, b] with the expected
property. The rest of the proof consists of constructing inductively a sequence of closed intervals
[1,2] D [a1,b1] D [a2,be] D ... in such a way that for each n € N and k € [ay,,b,] we have
c%(x, h§(k)) > n. Clearly, we have ()2 [an,by] # 0 and c%(%, h§(R)) = oo holds for any
€ (pZ1lan, by]. This contradicts the assumption that Mg 4 is of weak type (h§(%), h(%)). O



Chapter 4

Boundedness from L9 to LP"

In the following chapter we return to the standard Hardy—Littlewood maximal operators, centered
M€ and noncentered M, and study their mapping properties in the context of Lorentz spaces
LP4, In the case of R? and the classical Lorentz spaces some results may be found in [4, 45|, for
example. However, little is known in this field about maximal operators associated with general
metric measure spaces. In particular, to the author’s best knowledge, there are no examples in
the literature showing explicitly various peculiar behaviors of M® and M in this context. Here
we introduce an appropriate class of spaces which provides the opportunity to generate a lot of
such examples. For clarity, we deal only with the centered Hardy—Littlewood maximal operator
ME, but we emphasize that very similar analysis may be done also for M instead.

The aim of this part of the dissertation is to study inequalities of the form

[M&Sllpr < c(py g, X)|1f]

par €M), (4.0.1)

which, for various parameters p, ¢, and r, may or may not hold, depending on the structure of
X. To be more precise, we are particularly interested in showing that the sets of parameters
for which (4.0.1) occurs can vary in many different ways. In our approach, to avoid making the
problem too complicated, we always assume that the parameter p is fixed. Then the analysis is
divided into the following three cases:

e Case I: ¢ fixed and r varying.
e Case II: ¢ varying and r fixed.

e Case III: both ¢ and r varying.

In each of these cases, we illustrate the situation with appropriately selected examples and the
general rule is that the more difficult the problem is, the more complicated structures are used.

The organization of this chapter is as follows. In Section 4.1 we describe Lorentz spaces
LP4(X). We also present an improved version of the space combining technique introduced in
Section 2.2. Sections 4.2, 4.3, and 4.4, in turn, are devoted to the study of mapping properties of
M€ in the situations corresponding to the three cases specified above. Throughout this chapter,
unless otherwise stated, we assume that (X, p) is bounded and | X| < oo. We also assume that
the measure of each ball is strictly positive.

49
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4.1 Preliminaries

We begin with basic information about Lorentz spaces LP4(X). For any Borel function f: X — C
we define the distribution function d¢: [0,00) — [0, 00) by

dp(t) ==[{z € X :[f(z)] > t}],
and the decreasing rearrangement f*: [0, 00) — [0, 00) by
f*(t) == inf{u € (0,00) : d¢(u) < t}.

Then for any p € [1,00) and ¢ € [1, 00| the space LP4(X) consists of those functions f for which

the quasinorm || f||, 4 is finite, where

P o) e )

. t
Il = o
SUDye (0,00) P (1) /P if g = o0

or, equivalently,
1
(J5= @) )™ irgen, o0,

SUPe(0,00) /P S*(t) if g =00

1 fllp.q =

The second formula is valid also for p = oo (here we use the convention t1/%° = 1). However, it
turns out that L°? is nontrivial only if ¢ = oo, since in each of the remaining cases it contains
only the zero-function. Let us also note that one could consider LP(X) even for the wider range
p,q € (0,00], but this is not the case of our study.

Many observations and details concerning Lorentz spaces are included in [6], for example.
For our purposes, it is instructive that one can estimate || f||,,, very precisely by calculating the
values df(2F) for all k € Z. Furthermore, observe that for each p € [1,00] the space LPP(X)
coincides with the usual Lebesgue space LP(X) and hence we write shortly || f||,, instead of || f|| -
Now we present several facts concerning LP9(X) spaces. The metric measure space is arbitrary

here, except for the condition | X| € (0,00) assumed in Fact 4.1.2.

Fact 4.1.1. Let p € (1,00), q € [1,00], and ny € N. Then there exists a numerical constant
Ca(p,q) independent of ng and X such that

1> fall,, < Cale) D 1
n=1 n=1

Fact 4.1.2. Let p € (1,00) and q € [1,00], and assume that | X| € (0,00). Then there exists

a numerical constant Cayvg(p,q) independent of X such that

fn € LPUX), n € [ng].

| favellp.g < Cave(s @) fllp.gs fe LX),

where favg = || fll1/|X] is constant.
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Fact 4.1.3. Let p € [1,00) and q,r € [1,00] with ¢ < r. Then LP%(X) C LP"(X) and there exists

a numerical constant C<,(p, q,r) independent of X such that

[fllpr < Cs(ps @, fllpgy € LPI(X).

All these facts are well known. For the proof of Fact 4.1.3 see [6, Proposition 4.2], for example.
Facts 4.1.1 and 4.1.2 are in turn easy consequences of |6, Lemma 4.5 and Theorem 4.6].

Now we formulate a lemma which will be very useful later on.

Lemma 4.1.4. Let X be an arbitrary metric measure space. Fix p € [1,00), q € [1,00], and
no € N, and consider a finite sequence of functions (fy),", with disjoint supports A, C X.
Assume that for each n € N\ {1} and t € (0,00) we have either dy, (t) > [A1 U---U Ap_q| or
dg,(t) = 0. Then there exists a numerical constant Ceupp = Csupp(p, q) independent of X, ng,
and (fn)nl, such that: if ¢ € [1,00), then

0 1/ i S /
! (Z:l Iallgg) " < | > Fullg < Como (Z_:l halls) "

Csupp

and, if ¢ = oo, then

ng
sup || fallpoo < H anHpoo < Csupp sup || fnllp,co-
] n—1 ’ né€(ng]

Csupp n€ng

Proof. Let f =73 "%, f, and consider ¢ € [1,00) (the case ¢ = oo is very similar). The claim is
an easy consequence of the fact that, under the specified assumptions, the quantities d f(t)l/ P and

(3P0, dy, (t)4/P)1/9 are comparable with multiplicative constants independent of t € (0,00). [

For our purposes, it will also be convenient to state the following variant of Lemma 4.1.4.

Lemma 4.1.5. Let X be an arbitrary metric measure space. Fiz p € (1,00) and q € [1,00], and
o with disjoint supports A, C X. Assume that for each
n>1andt € (0,00) we have either dy, (t) > |Apy1 UApy2U---| ordy, (t) = 0. Then we have:

for q € [1,00),

consider a sequence of functions (fy)

LS
n=1

Csupp

1/ ©© ° 1/
50) " <1 Fallyy < o (X Illg)

and, for g = oo,

o0
sup oo S Z <C sup 7
Goupy (B Illce < 112 Sl e < Conwn 315 1l

where Ceupp = Csupp (P, q) is the constant from Lemma 4.1.4.

Proof. The proof is identical to the proof of Lemma 4.1.4 and hence it is omitted. O
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Range of parameters. Recall that given a space X we are interested in studying inequalities
of the form (4.0.1) for various parameters p, ¢, and r. Now we indicate the exact range of
parameters that will be taken into account later on.

For each triple (p, q,r) and each X we denote by c(p, ¢, 7, X) the smallest constant ¢(p, q,r, X)
for which (4.0.1) holds (if there is no such constant, then we write c(p,q,r,X) = 00). Let us
mention here that for each fixed p € [1,00) the case c(p, g,r, X) < oo is easier to meet for smaller
values of g and bigger values of . We say that a triple (p, ¢, ) is admissible if one of the following

conditions is satisfied:

e p=g=1andr € [1,00],

e pe(l,00) and ¢,7 € [1,00] with ¢ <.

The range proposed above seems to be suitable for the following reasons. First, the considered
problem is trivial if p = oo. Next, if r < ¢, then we have c(p,q,7,X) = 0o under very mild
assumptions on X (see Observation 4.1.6). The reason for this is that there are natural (usually
proper) inclusions between Lorentz spaces and the maximal function M f is usually not smaller
than the initial function f. Finally, the case p = 1 and ¢ € (1, o0] also turns out to be outside
our area of interest (see Observation 4.1.7).

In Observations 4.1.6 and 4.1.7 below we remove the restriction that the diameter of a given
space is finite. Moreover, in Observation 4.1.6 the condition |X| < oo is also skipped. Finally,

by supp(p) we mean the support of p, that is, the set {z € X : |B(x,s)| > 0 for all s € (0,00)}.

Observation 4.1.6. Let X be such that | X \ supp(u)| = 0. Assume that there exists an infinite
family B of pairwise disjoint balls B satisfying |B| € (0,00). Then for each fized p € (1,00) and
q,r € [1,00] with r < q we have c(p,q,r,X) = 0.

Indeed, fix p,q € (1,00) and r € [1,00] with r < ¢ (the case ¢ = oo can be considered very
similarly). For any ng € N we can find a family of pairwise disjoint sets {E,, : n € [ng]} with the

following properties:

e Each FE, is a union of finitely many elements from 8.

e For each n € [ng] \ {1} the estimate |E,| > |Ey U---U E,_1| holds.

Consider gy, € LP%(X) defined by

)
g’I’LO = Z n_2/(q+'r) ’E’I’L|_1/p1En'

n=1

By Lemma 4.1.4 the following estimates hold

P 1/q no 2 1/q 1 P 1/r no o 1/r
l9llng < Conone0) (2) " (3om™#) " gl 2 g (0) (o)
n=1 9

~ Csupp r

Observe that for each = € supp(u) we have MS.g(x) > g(x). Since 2r/(¢+1r) <1< 2q/(q+ 1),

lgllp.r
l9llp.q

we obtain lim, o = oo and, consequently, c(p, g, r, X) = co.
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One additional comment should be made here. Namely, if B from Observation 4.1.6 does not
exist, then there are only finitely many points = € supp(i) such that |B(x, s;)| < oo for some
sz € (0,00). In this case M$ is trivially bounded between any two Lorentz spaces, provided
that | X \ supp(p)| = 0 is satisfied. On the other hand, spaces for which | X \ supp(x)| # 0 holds

are rather exotic and will not be considered here.

Observation 4.1.7. Let X be such that | X| < co. Assume that for any e € (0,00) there exists
a Borel set E with |E| € (0,€). Then for any q € (1,00] and r € [1,00] the associated mazimal
operator M does not map LY9(X) into LY (X). In particular, we have c(1,q,r,X) = occ.

Indeed, fix ¢ € (1,00) and r € [1,00] (we omit the case ¢ = oo since the thesis is the stronger

the smaller ¢ is). Let {E,, : n € N} be a family of pairwise disjoint Borel subsets of X such that
27Tl < B, <270,

where (I,,)nen is an arbitrary sequence of positive integers satisfying l,,+1 > Il,, + 2. Define

<1
E,
9=
2 i,

and observe that, in view of Lemma 4.1.5, we have

nt

ot < om0 (1) (30 ) < o

On the other hand, | X| < co implies that for any = € X we have

=0

el

ol . 1<
c 1

$9(x) > 75+ >

x| 2 X 2

and hence M$g does not belong to L7 (X).

The following remarks will be useful later on.

Remark 4.1.8. Let X = (X, p, ) be an arbitrary metric measure space. Define X' = (X, p/, 1)
by letting p' = Cp and u' = Cop for some numerical constants Cy,Cy € (0,00). Then for each
admissible triple (p,q,r) we have ¢(p,q,r,X) = c(p,q,r, X').

Indeed, one can easily see that replacing p with p’ does not change anything since for any x € X
the families {B,(x,s) : s € (0,00)} and {By(x,s) : s € (0,00)} coincide. Moreover, replacing j
with p/ makes that both quasinorms in (4.0.1) are multiplied by 021/ P,

Remark 4.1.9. Let X = (X, p, u) be an arbitrary metric measure space. Fix an admissible triple
(p,1,7) with p € (1,00) and suppose that there exists C' = C(p,r,X) € (0,00) such that

||MC$1EHPJ" < C”lEHzL1
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holds for all measurable sets E C X satisfying |E| < oo. Then we have c(p,1,r,X) < C1C,

where C1 = C1(p,r) € (0,00) is some numerical constant independent of X.

Indeed, the result for r = oo is well known and can be found in the literature (see [6, Theo-
rem 5.3, p. 231]). Moreover, careful analysis of the proof in [6] reveals that the claim follows

also for r € [1, 00).

Space combining technique. At the end of this section we describe how to adapt the technique
introduced in Section 2.2 to the Lorentz setting. Suppose that for each n € N there is some space
Dn = (Ya, pn, tin) for which the behavior of the function c(p, q,r,9») is known. Our goal is to
use the family {2),, : n € N} to create a new space, say 9 = (Y, p, u), for which c(p,q,r,9)) is
comparable to sup,cy €(p,q,7,Yn). It turns out that Y may be built in a very transparent way

under the additional assumption that each of the spaces 2),, consists of finitely many elements.

Proposition 4.1.10. Let (Yn)nen be a given sequence of spaces Dyn = (Ya, pn, tin). Assume
that each of them consists of finitely many elements and pu,(Yy,) € (0,00). Let 9 = (Y, p, p) be
the space constructed with the aid of (Yn)nen by using the method described below.

Step 1. Introduce p, and p, by rescaling (if necessary) py and p,, respectively, in such a way

that the following conditions are satisfied:

e The diameter of Y, with respect to pl, is strictly smaller than 1.
o For everyy €Y, and n € N we have 0 < 2p7, 1 (Yoq1) < pr,({})-

Step 2. Denote ), = (Yo, pl,, 11h,) and notice that in view of Remark 4.1.8 we have ¢(p, q,7,Qn) =
c(p,q,m,2)) for eachn € N, p € [1,00), and q,r € [1,0].

Step 3. Set Y = U, en Yn, assuming that Y, NY,, = 0 for any ny # na. Finally, define the
metric p on'Y by

_ |} pulyi,y2) i {y1,y2} C Yy for somen €N,
p(Y1,y2) = )
1 otherwise,

and the measure 1 on'Y by

wE) =Y w(EnY,), ECY.
neN

Then for each p € (1,00) and q,r € [1,00] with ¢ < r we have

1
G supc c(p,q¢,7,Yn) < c(p,q,7,Y) < Csup c(p,q,7,Dn), (4.1.11)
neN neN

where C = C(p, q,r) is a numerical constant independent of (X,)nen-

Proof. In the proof, it will be convenient to use the following local and global versions of MC@:

fef(y) = sup Fldn Mg fy) = sup / 7ldn.
: s€(0,1] ‘B(yv )‘ B(y,s) ’ glob s€(1,00) ’B Y,s ’ (y,s) ‘
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First we show the inequality

sup c(p,¢,7,Dn) < c(p,q,7,9),
neN

assuming that c¢(p,q,7,%) < oo holds. For fixed n € N take f € LP%(9))) and extend it to
F e LP9(Q) by setting F(y) = 0 for all y € Y\ Y,,. Then |

|| - ||p,q refers to function spaces over different measure spaces). Moreover, by the definition of p,

(here the symbol

for any y € Y,, we have
MYF(y) = Mi F(y) = My, f(y).

ThllS, if HMC@FHP,T < C(pv%r’@)HFHp,q? then also ”MC@;pr,r S C(pv q, T7@)||f||p;‘1’

Conversely, let us show

c(p,q,7,9) < Csup c(p,q,7,Yn).
neN

Assume that r < oo (the case r = oo is similar) and take F' € LP9(9)). By Fact 4.1.1 we have

Ipir):

For n € N define f,, € LP%(9)),) by restricting F to Y,. Using Lemma 4.1.5, together with the

definitions of p and u, we see that

HM%FHPJ < CA(p7r)(||MlocF”p7‘ + ”M lobF

1/r
| M F Il < Coupp(p, T (ZHMloCF-lynH;,r)

= Csupp p,r (Z HMED/ fn”P "“)
< Csupp(pv T) ELIGIII\)I pvar gjn <Z ”f”HP Q>

Using Lemma 4.1.5 again, we obtain

> /T > / > /
(Sislpa) " < (S salige) " = (1F-13,08,) " < Conpplo. D1 Fll
n=1 n=1 n=1

Let us now estimate || Mg, F||p,r. Note that Mg
of p. Thus, Facts 4.1.2 and 4.1.3 imply

alob " = [[F[[1/p(Y') is constant by the definition

IMgiob E llpr < Cavg (7)1 F7

p,r < Cavg(p7 Q)C‘—>(pa q, T)HF”ILQ'

Consequently,

C(p, q77a72)) S CA<p7T) (Cl(p77a>cl(p7 q) sup C(p,q,?“,@n) + Cavg(pv Q)C‘—>(p7q7r))

neN



56 Chapter 4. Boundedness from LP? to LP"

Finally, it remains to notice that sup,,cy ¢(p, ¢, 7,9») cannot be arbitrarily small. Indeed, taking
g =1y, € LP9(Q)}) we see that

IM$, g pH/r e g g)l,

pir = lgllpr =
(here for r = oo we use the convention co!/*® = 0o~/ = 1). Hence,

sup c(p, q,7,Dn) > c(p, q,m, Y1) > pt/" "V ap=trglla

neN

and the proof is complete. O

As in the previous sections, we have the following remark.
Remark 4.1.12. Fach space %) obtained by using Proposition 4.1.10 is nondoubling.

Indeed, fix € € (0,00) and let ng = no(€) € N be such that 1(Y;,) < e. Then for any y € Y;,, we
have B(y, 2) = Y, which implies that x(B(y, 3)) < e, while p(B(y,3)) = u(Y).

Several times in Sections 4.2 and 4.3, to avoid notational complications we write shortly
A1 < Ay (equivalently, Ay = A;) to indicate that A; < CAy with a positive constant C
independent of all significant quantities (in particular, A; = oo implies that A2 = oc0). We shall
write A1 ~ As if A < As and As < A; hold simultaneously. While studying the behavior of

$ acting from LP9(X) to LP"(X), we allow the implicit constant to depend on the parameters
p, ¢, and 7, but not on any other factors, including the underlying metric measure space. We
also use the convention that [v,v) = (v,v] = 0 and [v,v] = {v} for any v € RU {oc}. Finally,
let us emphasize here that, in view of M% f = M%|f|, each time we study the behavior of M5

later on, we restrict our attention to functions f > 0.

4.2 Results for ¢ fixed and r varying

In this section we describe the situation in which the maximal operator acts on a single Lorentz

space LP2:%(X). Our goal is to prove the following theorem.
Theorem 4.2.1. For each admissible triple (po,qo,T0) the following statements are true:

e There exists a (nondoubling) metric measure space 3 such that c(po,qo,7,3) = oo for

r € [q0, 0], while c(po,qo,T,3) < 0o forr € (g, 0]

e There exists a (nondoubling) metric measure space 3’ such that c(po,qo,r,3') = oo for

r € [qo,70), while ¢(po, qo,7,3") < 00 for r € [rg, o0].

The proof of Theorem 4.2.1 is located in Subsection 4.2.2.
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4.2.1 Test spaces of type I

Now we introduce and analyze auxiliary structures which we call the test spaces of type 1. Each
such space is a system of finitely many points equipped with a metric measure structure. Hence,

we can use it as a component space in Proposition 4.1.10.

Test spaces of type I for p € (1,00). Fix [ € N and take a nondecreasing sequence m =
m(l) = (m;)}_, C N. Let (Mj)é':o satisfy M; = 25:1 m; for each j € {0} U [l]. We introduce
S = 6m = (S, p, 1), a test space of type I, as follows. Set S := {x; : i € {0} U [M;]}, where all

points are different. Define p determining the distance between two different elements of S by

oe.y) = { 1 if g € {z,y},

2 otherwise.
Finally, take u defined by

1 ifi=0,

p({zi}) = pm({zi}) = { 27 if i € [M;]\ [M;_1] for some j € [I].

Figure 4.1 shows a model of the space &.

T To TM—1 T,

Lo

Figure 4.1: The test space of type I for p € (1, 00).

Note that we can explicitly describe any ball:

{zo} for0<s<1,

B(xzg, s) = {

S forl<s,
and, for i € [M],
{z;} for0<s<1,
B(zi,s) =< {zg,z;} forl<s <2,
S for 2 < s.

In the following lemma we express the behavior of ¢(p, ¢, 7, &) in terms of m.

Lemma 4.2.2. Let & be the test space of type I defined above. Then for each admissible triple
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(p,q,r) there is a numerical constant C; = Ci(p, q,r) independent of m such that: forr € [1,00),

l l
él (Z 9ir(=1+1/p) m;/p) 1/r <c(p,q,m,6) < Cy ( Z 9ir(=1+1/p) m;/p) 1/7"’

j=1 j=1

and, for r = oo,

L sup 9 (=141/p) y 1/P <c(p,q,m,6) < Cysup 9i(=141/p) y 1/P
L jell ’ jell] !

Proof. Fix an admissible triple (p, q,r). First we estimate c(p,q,r, &) from above. It is worth
noting here that if r € [1, 00), then

l
(ZQW(,Hl/p)m;/p)l/r > sup 2/(-1H1/Pp 1P L

j=1 JEll T2

Take f € LP49(&) such that || f]|,, = 1. One can easily check that
M f < max{f,2MGf, fave},

where MG f(zo) = 0 and M§f(z;) = f(x0)/2’ for i € [M;]\ [M;_1], j € [I]. By Fact 4.1.1,

pr)

and then, by Facts 4.1.2, and 4.1.3, || f|l,.» < C(p,q,7) and || favgllpr < Cave(p,7) C(p, ¢, 7).

Thus, it remains to estimate ||M§f||p . Note that ||f|,, = 1 implies that f(zg) < (%)1/‘1 if
q € [1,00) and f(zg) < 1 if ¢ = co. We consider only the first case and the second one can be

HMCGf”p,T < QCA(va) (”f”p,r + HMSJCHP,T + Hfavg

treated very similarly. Since m is nondecreasing, we have

1/ 0 forjeZ\N,
d(f,j) = dMgf((%) 2_j_1> << my27t for j e[l —1],
m2!Tt for j € N\ [I — 1],

which implies that, for r € [1, 00),

l
IMEFIE, < S d(f, ) /P2 m < 37 20 /e,

JEZ =1
and, for r = oo,

| MG fllpr S sup d(f,j)l/”2_j < sup 2j(_1+1/p)m;/p.
JEL Jell

Finally, to obtain the reverse inequality from the thesis it suffices to take g := 1, and calculate
[ M&gllp,r- We omit the details here. O
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Before we go further let us look at the expression
! 1/r
( S i) m;/p) (4.2.3)
j=1

that appears in the thesis of Lemma 4.2.2. Observe that if p € (1,00), then the factor
27r(=1+1/p) tends rapidly to 0 as j tends to oo. Thus, for example, given rg € [1,00), we can find
a nondecreasing sequence of positive integers (m;);en such that the series in (4.2.3) diverges if
and only if r € [1,79]. Unfortunately, this idea does not work for p = 1 and hence we consider

this case separately.

Test spaces of type I for p = 1. Fix [ € N and take a nondecreasing sequence of positive
integers m = m(l) = (ﬁlj)é»zl satisfying m; = 1. Next, associate with m a strictly increasing

sequence of positive integers (hj)é'zl such that
|20+ Ji g | > 2N (4.2.4)
for each j € [l — 1]. We introduce S = éﬁ‘l = (S, p, 1), a test space of type I, as follows. Set
S = {wo} U{x;s : k € [2"], j eI},

where all elements are different. We use auxiliary symbols for certain subsets of S. Namely, we
set Sp = Sj11 = 0 and for j € [l] denote

S;={ajn ke M)}, S5 = {ayy ke 2]\ 20 /my)),

where we use the convention [c] = [|¢]] for noninteger ¢ € (0,00) (notice that if m; = 1 for some
J, then S; = ). Then we define the metric p determining the distance between two different

elements x,y € S by the formula

1 ifxg € {z,y} or {z,y} € §j_1 U S; for some j € [l],
p(r,y) = .
2 otherwise.

Finally, we let 1 to be counting measure. Again we can explicitly describe any ball:

{zo} for0<s <1,
S for 1< s,

B(fL’O,S) = {
for ks € 2% /7], J € [I
{zjr} for0<s <1,

B(xjk,s) = ¢ {xo} U §j71 US; forl<s<2,
S for 2 < s,
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and, for k € [2M]\ [2% /m;], 7 € [1],

{zjr} for0<s<1,
B(xﬁk, S) = {1‘0} U gj_l U Sj U Sj—l—l forl <s<2,
S for 2 < s.

In the following lemma we express the behavior of ¢(1,1,r, é) in terms of m.

Lemma 4.2.5. Let & be the test space of type I defined above. Then for each r € [1, 0] there is

a numerical constant C; = C1(r) independent of m such that: for r € [1,00),

él (li(mj)—r)l/r <c(1,1,1,6) < C (li(mj) )UT,
=1 g=1

and, for r = oo,

1 ~
a S C(l,l,T,G) S Cl.

Proof. Fix r € [1,00]. First we estimate c(1,1,r, é) from above. It is worth mentioning that if

€ [1,00), then 7y = 1 implies that (zg;ll(mj)*r)l” > 1. We take f € LY(S) with || f|l, = 1.

One can easily check that

Mcéf < max{f, Mgfa favg}7
where M f(z0) == 0 and M f(z) == |B(z, 3)|~! for z € S\ {z}. Therefore,

[MEfllr S Nl

+ Hfanglr

(now Fact 4.1.1 is not available but we still have the quasitriangle inequality since the number of
summands is controlled uniformly). By Fact 4.1.3 we have || f|1, < C(1,1,7) and || favg|l1,r <

Co,(1,1,7) || favelh = C=(1,1,7). It remains to estimate |Mf|/1,. By using (4.2.4) and the

fact that (h;)! j—1 is strictly increasing we obtain

0 forie (Z\N)Ulh],
d(f,z) = d/\/tgf (2_1) 5 2h‘7' (ﬁlj)_l for 7 € [hj—i—l] \ [h’j]v .] € [l - 1]7
2M fori € N\ [hy],

which implies that, for r € [1, 00),

IMEFIT, <D d(fi 2"5ij o

€L

and, for r = oo,
MG Sl S supd(f,i)2™" <1

1EL
Finally, to obtain the reverse inequality from the thesis it suffices to take g := 1y, and calculate

[MEgll1,r Again we omit the details. O
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4.2.2 Proof of the main result

Proof of Theorem 4.2.1. Fix an admissible triple (po, go,70). We consider four cases depending

on the values of pg and rg.

Case 1: py € (1,00) and 79 € [1,00). First we obtain 3 such that c(pg,qo,r,3) = oo for
r € [qo,r0], while ¢(po,qo,7,3) < oo for r € (rg,00]. Let (a;)ijen be given by the formula
a; = 2i@o=1);=po/r0 and let ig € N be the first index such that ajy+1 > 1 and (ai)fiioﬂ is

nondecreasing. Thus, the sequence (a;);en satisfying

_— { 1 for i € [ig],
’ [a;] forie N\ [ig],

is also nondecreasing (here the symbol [ - | refers to the ceiling function). Then, for any n € N
let &, = Gy, (1,) be the test space of type I constructed with the aid of I, = n and m, =
(a1,...,an). We denote by 3 the space ) obtained by applying Proposition 4.1.10 with 9),, = &,
for each n € N. It is not hard to see that 3 satisfies the desired properties. Indeed, fix r € [1, 00).

By using Lemma 4.2.2 we have

c(po, qo,7,3) = sup (ZQ”( 1+1/po) T/po)l/’"

neN )

which gives

c(po; o, 7, 3) =~ sup (ZQJT —1+1/po) 4 Z ,T/m)l/?".

neN\[io] i=1 i=ig+1
We can easily see that the second series above tends to oo as n — oo if and only if r € [1, r¢].

Finally, a slight modification of the argument above allows us to get a space 3’ such that
c(po, qo,7,3") = oo for r € [qo,70), while ¢(po, qo,7,3’) < oo for r € [rg, 00]. Namely, instead of

(a;)ien we will use a family of sequences {(agn))ieN : n € N}, where agn) = a; log(n + 3)7Po/70,

Then for each n € N we build (aﬁ”))ieN as before, this time using (az(.n))

i(()n). After all, we let &/, = &, o (1n) e the test space of type I constructed with the aid of I, = n

and m,, = (c‘zgn), . _(n)) Then the space 3’ is constructed by applying Proposition 4.1.10 with

D, = &), for each n € N. It is clear that

ieN and the critical index

o = 1/m
c(po, qo, 70, 3') < sup (ZQWO(—Hl/po) + Zi_l log(n + 3)_1) 0
neN Mo =

and, since the quantity above is finite, we obtain c(po, qo,7,3’) < oo for r € [rg,00]. Now let
€ [qo,70). Since for every n € N the sequence (agn))iﬁio 41 is nondecreasing, for each n € N we

have dgn) > agn) whenever ¢ > ig. Thus,

1/m
c(po, qo, 7, 3/) 2 sup Z j=r/ro log(n_i_?))fr/ro) 0
nEN\[lo} 1:10_1_1
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Since the quantity above is infinite, the argument is complete.

Case 2: pg € (1,00) and 79 = 00. Let (b;);en be a nondecreasing sequence of positive integers
such that lim;_ o 2i(_1+1/p0)bi1/p0 = o0o0. Then for each n € N we let &, = Gy, ;) be the test
space of type I constructed with the aid of I,, = n and m,, = (b1,...,b,). Finally, we let 3 to be
the space ) obtained by applying Proposition 4.1.10 with 9),, = &,, for each n € N. It is routine
to check that ¢(po, g0, 7, 3) = oo holds for every r € [gp, ].

In order to obtain 3’ such that ¢(po, qo, 7, 3’) = oo for r € [go, 00), while ¢(po, go, 00, 3") < 00
we use a proper variant of the diagonal argument. Namely, consider a sequence (r(i))ieN such
that () € [1,00) for each i € N and lim; s ¥ = oo. Then for each i € N let {&, : n € N} be
the family consisting of the test spaces used in Case 1 to build 3 for ro = (). Now we construct
3’ by applying Proposition 4.1.10 to the whole family {&, : n,i € N}. For every r € [1,00) there
is ig € N such that (%) > 7 which implies that

C(pO,CIOaT, 3,) 2, SUPC(p07 qo0, T, 6?) = Q.
neN
On the other hand, it is not hard to see that for each n,i € N we have c(po, qo, 0, &%) < 1,
which implies ¢(po, qo, 00, 3’) < o00.

Case 3: po = 1 and 9 € [1,00). First we obtain a space 3 such that c¢(1,1,7,3) = oo for
r € [1,70], while ¢(1,1,7,3) < oo for r € (rg,o0]. For each i € N set ¢; = [i*/™ ] and observe
that (¢;);en is nondecreasing. For each n € N let én = éﬁin(ln) be the test space of type I
constructed with the aid of [,, = n and m,, = (cy, ..., ¢,). We denote by 3 the space ) obtained
by applying Proposition 4.1.10 with ),, = én for each n € N. Again, it is not hard to see that
3 satisfies the desired properties. Indeed, fix r € [1,00). By using Lemma 4.2.5 we have that
c(1,1,7,3) is comparable to sup,,cy ( >1, i7"/"0) Y7 which is equal to oo if and only if r € [1,7¢].

Now we build 3’ such that ¢(1,1,r,3") = oo for r € [1,rg), while ¢(1,1,7,3") < oo for
r € (rp,00]. For each n € N let (cgn))ieN be defined by cgn) = [i'/70log(n + 3)1/m0]. We
let é% = éﬁ‘ln(ln) be the test space of type I constructed with the aid of I, = n and m,, =
(cgn), ey cﬁf)) and construct 3’ by applying Proposition 4.1.10 with 9),, = é;l for each n € N.
Then, by using Lemma 4.2.5, for each fixed r € [1,00) we obtain that ¢(1,1,r,3’) is comparable

to suppey (Sory i7"/ log(n + 3)_T/T0)1/T which is equal to oo if and only if r € [1, 7).

Case 4: py = 1 and ry = co. In order to obtain 3 such that c(1,1,7,3) = oo for every r € [1, 0]
we proceed as in Case 2. Namely, we choose a nondecreasing sequence of positive integers (d;);en
such that lim;_,o0 d; = co. Next, for any n € N we let &,, = Gy, (,,) be the test space of type I
constructed with the aid of I, = n and m,, = (d,...,d,). Then we denote by 3 the space Q)
obtained by applying Proposition 4.1.10 with ), = &,, for each n € N. By using Lemma 4.2.2
we conclude that 3 satisfies the desired properties.

Finally, we can obtain 3’ such that ¢(1,1,7,3’) = oo for r € [1,00), while ¢(1, 1, 00, ) < oo,
by using a family of spaces {éf% : n,i € N} introduced similarly to the family {&? : n,i € N}
considered in Case 2, but this time choosing appropriate test spaces éﬁl considered in Case 3.
We skip the details here. ]
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4.3 Results for ¢ varying and r fixed

Our next goal is to construct spaces X such that, given admissible triples (po, g0, 70) and (po, g(, r0)
with ¢y < qo, there exists a significant difference between the behaviors of M acting from
LPo-®0 (%) to LPo™0(%X) and from LPO% (%) to LPo™0(X), respectively. The approach proposed in
this section allows us to obtain such a result only if g5 = 1. The reason for such a limitation
is that the use of Remark 4.1.9 is required here. Nevertheless, the following theorem is a good

starter before the main course served in Section 4.4.

Theorem 4.3.1. Fiz an admissible triple (po, qo,T0) with qo € (1,00]. Then there exists a (non-
doubling) metric measure space 3 such that c(pg, 1,7r9,3) < oo and c(po, qo,70,3) = 0.

The proof of Theorem 4.3.1 is located in Subsection 4.3.2.

4.3.1 Test spaces of type II

Let us begin with the following observation. Each test space introduced in Subsection 4.2.1 had
one central point, namely xo, and the function 1y, played the main role in estimating the
size of c(p, q,7, &) or ¢(p,q,7,&). Since the values [|11,yllpo,1 and [|1 {40y llpo.qo are comparable,
we are now forced to change the strategy and introduce test spaces of another type, say ¥,
for which the size of c(po, qo, 0, %) will be calculated by testing the action of the associated
maximal operator on more complicated functions. This can be done if we ensure that the new
spaces will have more central points grouped into several different types. The detailed analysis
will be made separately for the following two cases: qo, 79 € (1,00) with g9 < ¢ or go € (1,00)

and r9 = co. We omit the case gy = rg = oo.

Test spaces of type II for r € (1,00). Fix [ € N and an admissible triple (p,q,r) with
g, € (1,00) (note that, in particular, p € (1,00) and ¢ < r). Associate with the quadruple
(p,q,m 1) four sequences of positive integers, (mi)ézl, (hi)ézl, (ai)ézl, and (Bi)ézl, with the

following properties:

The sequences introduced above will determine the structure of the test space constructed in
this section. Let us emphasize that the properties (i)—(vi) can be met simultaneously. Indeed,
let hy = m; = 1 and choose mg such that ma > 2mih; and the set {h € N: 1 < mé_ph < 2}
contains at least hj elements. Thus, it is possible to take hy for which the conditions ho/h; € N
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and 1 < mé_p he < 2 are satisfied. Continue this way until the whole sequences (m;)!_; and

(hi)li:1 are chosen. Next, let o satisfies l<P*p1)T o1 > 2myh; and oz%*phl < 2. Take (7 such that
1< ai_pﬁlhl < 2. Then choose ag such that as > 2a1 31 and Oé%_phg < 2 and take B9 satisfying

1< a;_p Baho < 2. Continue this way until the whole sequences (ai)ﬁzl and (ﬁi)ézl are chosen.
Now we formulate a few thoughts that one should keep in mind later on.

e The sequences (m;)!_; and (a;)!_; are used to define the associated measure, while (h;)!_,

and (Bz)izl help to describe the number of elements of a given type.

e The property (i) allows the set of points of a given type to be divisible into an appropriate

number of equinumerous subsets.

e The properties (ii) and (v) say that the sequences (m;)!_; and (a;)!_; grow very fast. This
fact results in large differences between the masses of points of different types, which in

turn simplifies many calculations regarding the distribution function.

e The properties (iii) and (vi) are of rather technical nature. They are responsible for the

balance between the number of points of a given type and the mass of each one of them.

e The property (iv) says that the values aj,...,q; are relatively large compared with
mi,...,m; and hy,...,h;. Thus, the points from the upper level (see Figure 4.2) will

have much greater masses than those from the lower level.

e The property (iv) is the only one where the parameter [ is involved.
We construct € =%, ;. = (T, p, it), a test space of type II, as follows. Set
T = {wij, w7 i € [l], j € [hl, k € [ifil},
where all elements z; ;, iﬂzk are different. We use auxiliary symbols for certain subsets of 1"
T° = {afy, i€ l], k € LB},

for i €[],
T, = {x,-,j 1 € [hz]}, Tio = {1‘;}7k ke [hzﬁz]}7

and, for 4,7* € [I] with i <4* and j € [hy],

o . o .7 j —1
Observe that the family {77, : j € [h;]} consists of disjoint sets, each of them containing
exactly hi«fi~/h; elements (here the property (i) was used) and U?l:l 5, =1%.
We introduce p by letting

m; if x = x; ; for some i € [I], j € [hi],

feen o; if x =27, for some i € [I], k € [hif3;].

u({a}) = {
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By using (ii), (iv), and (v), we deduce that u satisfies the following inequalities: for each x € T°,
{z} > T\ T,
and for each ¢,7* € [I] with ¢ <¢*, zy € T+, and xp € T,
{ol > 1Ty U T, oo} > T8 U+ UTE).

Finally, we define the metric p on T determining the distance between two different elements
xz,y € T by the formula

. 1 if {z,y} = {zij, 20 .} and 27, , € T3, o,
p(z,y) = : ’ 7
2 otherwise.

It is worth noting here that for each i,7* € [I] with ¢ < ¢* and « € T there is exactly one point
y € T; such that p(z,y) = 1.
Figure 4.2 shows a model of the space (T, p) with [ =2, hy = 1, and hy = 2.

o

(e} (e} o (o]
i1 1.8, Ta1  Typ, L9841  T395,

1,1 2,1 x22

Figure 4.2: The test space of type II for r € (1,00) with [ =2, hy =1, and hy = 2.

As usual, we explicitly describe any ball: for i € [l], j € [hi],

{z;;} for0<s<1,
B(mi,j,s) = {Cﬂi,j} U Ué*:i Tix;5 forl<s <2,
T for 2 < s,

and, for i* € [l], k € [hiBi],

{xf ,} for 0 <s <1,
B(@ie g s) = 4 {zf i} Udmigaf p € Triy} for1<s <2,
T for 2 <s.

In the following lemma we describe the properties of c(p, 1,7, %) and c(p, ¢, 7, %).
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Lemma 4.3.2. Fizl € N and an admissible triple (p,q,r) with q,r € (1,00). Let T be the test
space of type II defined above. Then there is a numerical constant Co = Cay(p,q,r) independent
of I such that

c(p, 1,7, %) < Cy

and

c(p,q,r, %) > ézll‘l/".

Proof. First we estimate c(p, 1,7, %) from above. According to Remark 4.1.9 it suffices to prove
that | MS$1g|pr S [11E|lp,1 holds uniformly in E C T. Take ) # E C T and let f = 1g. By
using the sublinearity of M%, we can assume that either £ C T° or E C T\ T°. Consider the
case B C T°. Then

Mg f <max{f, 1p\7o, fave}
and the desired estimate follows easily from the fact that |T'\ T°| < |E|. Now consider the case

E cCcT\T° We have
Mg f < max{f, M{f, favs},

where

|EUB(z, 5)|
|B(z, )]

As previously, in view of Facts 4.1.1, 4.1.2, and 4.1.3 it remains to prove the estimate

MG f(z) == 1po(x)

M1l < [E- (4.3.3)

Suppose for a moment that (4.3.3) holds for each E such that E C T; for some i € [l]. Then, for
arbitrary E C T'\ T°, we let E; := ENT; and f; :== 1, for each i € [I]. By (ii) we have

0.f(z) <2 max MG fi(z)
1€(l]
for each x € T. Therefore, given ¢ € (0,00) we have
!
dpsp(2t) <Y dpggp, (1).
i=1

Denoting d(f,i,n) == dpcy,(2") we thus obtain

IME£1E (Z?”"(Z ats.im) )"

neL =1

If » > p, then by Minkowski’s inequality we have

(ZQ"”(id(f,i,n))r/p)p/r <y (ZQWd(f i T/p) i \Ei| = |E].

neZ i=1 n€ezZ
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On the other hand, if » < p, then

(Z2”T(Zl:d(f,i,n))r/p>p/r (ZZQ”%{ (f,i,n) T/p) <Z|E |r/p> < |B|

nez =1 =1 n€ezZ

where in the last estimate we again used (ii).

Now we return to the proof of (4.3.3) for E C T;. Suppose that F consists of v elements for
some vy € [h;]. For each x € TS with ¢* € [i — 1] we have M f(x) = 0. On the other hand, for
each ¢* € [I] \ [¢ — 1] we have precisely vyh;= ;= /h; elements x € T for which M f(x) is nonzero.

Moreover, for each such x we have M f(z) < (G-»r o m;;.". Thus, we obtain

I I
IMEFllpe S (l“f”” mioé;*l)r(l(”fl)r ai=yhi=Bixh; )% <SPPI > (aifpﬁi*hi*)g

which is controlled by a constant multiple of 5"/ pm:/ P —|E|"/? in view of (iii) and (vi), and the

fact that the sum in the expression above has at most [ elements.

In the next step we estimate c(p, ¢, 7, T) from below. Take g defined by
g = Z — ]‘Ti'

Then, by using (ii) we have

lgll, S Zm‘qmq/p—Z( {Phy) Y

=1

and then (iii) gives ||g||p,q < 1/9. Let us now focus on MSg. For each i € [I] and = € TP we have

1
Msg(z) > B3 yeB%;m)g(y)l{y}L

P
Note that (iv) implies that |B(z, 3)| < 21%-D" q; and, as a result, we obtain

i
B -1 1 S -1
Mgg(x) 2 10-rra; E mi = [0=pra
ir=1 "

Next, by using (v) we deduce that

l !
HMQQHprNZ (i10-p7 o o ’T0|7"/p 1! er 1- PB;h;) r/p

=1 =1
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In view of (vi) each element of the series above is bigger than " and hence

IMSgllpr 2 177 (S) Tz =,
=1

p,r imply that c(p,q,7, %) 2 1=, O

Thus, the estimates obtained for ||g||,q and ||[MSg

Test spaces of type II for r = co. The argument described above needs only a few minor
modifications to cover the second case under consideration. Fix [ € N and an admissible triple
(p,q,00) with ¢ € (1,00) (note that, in particular, p € (1,00)). Associate with (p,q,r,[) a large
(%i)ézlﬂ and (51’)2:17 with

constant o € (0, 00) and three sequences of positive integers, (m;)!_;,

the following properties:

As before, we notice that the properties (i)—(v) can be met simultaneously.

We construct T = ip,q,l = (T, p, ), a test space of type II, as follows. The set T" and the
metric p are defined as before with the aid of (Ez)ﬁzl and (B,)ﬁzl instead of (h;)!_; and (3;)!_;,
respectively. Then we introduce p by letting

m; if x = x; ; for some i € [I], j € [hi],
i if = a7, for some i € [l], k € [hif3i).

p({z}) = {

The following lemma describes the properties of ¢(p, 1, oo, %) and c(p, q, 0, ‘E)

Lemma 4.3.4. Fiz l € N and an admissible triple (p,q,o0) with ¢ € (1,00). Let T be the text
space of type II defined above. Then there is a numerical constant 62 = az(p, q) independent of
l such that

c(p, 1,oo,§) < Cy

and

~ 1
c(p,q,00,%) > — 1=V,
( ) z

Proof. We present only a sketch of the proof. First we want to estimate c(p, 1, 0o, ‘%) from above.

The main step here, as in the proof of Lemma 4.3.2, is to prove that

IMG1Ell} 0 < |E]

p,o0 ~
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holds uniformly in £ C T; and i € [I], where

|EU B(z, 5)|

MGle(z) = 1po(x) B9
12

Suppose that E consists of v elements for some v € [h;].
For each x € T2 with ¢* € [i — 1] we have M{f(x) = 0. On the other hand, for each
i* €[]\ [i — 1] we have precisely yh i+ /h; elements z € T2 for which M f(z) is nonzero.

Moreover, for each such z we have M§f(z) < m; (i*a)~L. We observe that

_ i i*
m; \P e S - 1-pR T
(Fa) S derBhi? =y Yol 23

and, in view of (iii) and (v), we have

*

’yﬁ@fhi_l(i*)*p Zjalip,@jhj < ymg (i) 7P ZJPA S ym = |E.
=i j=i

Now we estimate c(p, g, oo, ‘E) from below. Take g defined by

Then, by (ii) and (iii), we have

! ! N
lgllfg < D ITI47 =3 (i ha) P S 1.
i=1

=1

By (iv) for each i € [I] and x € T we have M%g(x) > (2a)~!. Thus, in view of (v), we obtain
! s !
IMEGIIE oo Z @ PITO =Y ' PjBihy =y 7" 2 1P,
i=1 i=1

p.oo imply that c(p, q, oo,‘f) > 1-1/q, O

Thus, the estimates obtained for ||g||,4 and H./\/l%g

4.3.2 Proof of the main result

Let (po, qo,7r0) be a fixed admissible triple with gy € (1,00) (we omit the case gy = oo since the
thesis is the stronger the smaller o is). Consider the case 19 € [gp,o0). For each n € N let
Tn = Tp.gnrniln D€ the test space of type II constructed with the aid of (py, gn, ) = (Po, qo, T0)
and I,, = n. We let 3 be the space ) obtained by applying Proposition 4.1.10 with 9),, = ¥, for
each n € N. By using Lemma 4.3.2 we conclude that c(pg, 1,79,2)) < oo, while c(po, q0,70,2)) =

0o. On the other hand, if rg = oo, then we let T,, = T, ;.1 be the test space of type II
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constructed with the aid of (py,¢,) = (po,qo) and I, = n. Finally, we construct 3 by applying
Proposition 4.1.10 with ), = ‘En for each n € N. By using Lemma 4.3.4 we conclude that

C<p07 1,00,2)) < 00, while C(pO,Q0,00,QJ) = 00.

4.4 Results for ¢ and r varying

The aim of this section is to complete the picture outlined in Sections 4.2 and 4.3. Namely, for
each p € (1,00) we introduce a family of spaces X for which we are able to control the behavior
of c(p, q,r, X) considered as a function of two variables, ¢ and r. As a result, we characterize all
possible shapes of the sets
p . 11 2. MS s P4 DT 2
O (%) = {(5, ;) € [0,1]° : M5 is bounded from LP9(X) to L (%)} C [0,1]

(the shapes of these sets are described in terms of their topological boundaries and the underlying
space is the square [0,1]? with its natural topology). The following theorem, the culmination

point of this dissertation, can be viewed as an extension of Theorems 4.2.1 and 4.3.1.

Theorem 4.4.1. Fiz p € (1,00) and let X be an arbitrary metric measure space such that

|X \ supp(p)| = 0. Then one of the following two possibilities holds:
o The boundary of Qb (X) is empty, that is, QO (X) =0 or Qf (X) = [0, 1]2.
o The boundary of Oy (X) is of the form
{5} [0, lim F(w)] U {(u F(u)) € (5,1))
where § € [0,1] and F': [6,1] — [0,1] is concave, nondecreasing, and satisfying F(u) < u.

Conwversely, for each F' as above there exists X such that M is bounded from LP9(X) to LP"(X)
if and only if the point (%, 1Y lies on or under the graph of F, that is, % > 6 and % < F(%)

T

Let us emphasize one more time that even though Theorem 4.4.1 is stated for the centered
operator M5, it is possible to obtain its analogue for the noncentered operator Mx.

To prove Theorem 4.4.1 we should focus on two separate tasks. First we want to indicate
some conditions that the sets QF; (X) must satisfy in general, in order to ensure that no situations
other than those listed in Theorem 4.4.1 are possible. This problem is treated in Subsection 4.4.3
(see Remarks 4.4.10 and 4.4.11, and Theorem 4.4.12). The second goal, which turns out to be
the harder one, is to introduce a special class of spaces for which we are able to control precisely
the behavior of the maximal operator and, at the same time, this behavior is very peculiar. This
problem is covered by Theorem 4.4.2 stated below. We note that, in fact, Theorem 4.4.2 is
slightly more general and it consists of four similar results which have been collected together

for the sake of completeness.
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Theorem 4.4.2. Fiz p € (1,00) and § € [0,1] (respectively, § € [0,1)). Let F: [6,1] — [0,1]
(respectively, F: (0,1] — [0,1]) be concave, nondecreasing and satisfying F(u) < w for each
u € [0,1] (respectively, u € (8,1]). Then the following statements are true:

e There exists a (nondoubling) metric measure space 3 such that c(p,q,r,3) < oo if and only
if% >0 (respectively, é >4) and + < F(%)

e There exists a (nondoubling) metric measure space 3’ such that c(p,q,r,3’') < oo if and
only if% > ¢ (respectively, % >¢) and % < F(%)

A short comment should be made here regarding the spaces 3 and 3’. Although the word “exists”

is used in the formulation of Theorem 4.4.2, each space is constructed explicitly. Moreover, the

construction process described later on originates in the idea of Stempak, who provided some

interesting examples of spaces, when dealing with a certain related problem regarding modified

maximal operators (see [49]).

The rest of this section is organized as follows. In Subsections 4.4.1 and 4.4.2 we study the
behavior of the maximal operator in the context of two classes of very specific spaces, namely,
the test spaces of type III and their advanced cousins, the composite test spaces. The latter class
is used in Subsection 4.4.3 to prove Theorem 4.4.2 and, as a consequence, the second part of
Theorem 4.4.1. The rest of Subsection 4.4.3 is devoted to indicating properties of Q4}; (X) which
allow us to deduce the first part of Theorem 4.4.1. In particular, we formulate a suitable inter-
polation theorem for Lorentz spaces LP9(X) with the first parameter fixed (see Theorem 4.4.12).
This theorem, in fact, follows from a much more general result |7, Theorem 5.3.1] using advanced
interpolation methods. However, in Appendix we give its elementary proof which, to the author’s
best knowledge, has never appeared in the literature so far.

To avoid misunderstandings, we note that several times later on we identify 1/00 and 1/0
with 0 and oo, respectively, when dealing with ¢,r € [1,00] and u, F(u) € [0,1]. Also, for 6 =1
the conventions [4,1] = {1}, (4,1] = 0, and lim,,_,s F'(u) = F(1) are used.

4.4.1 Test spaces of type III

Let p € (1,00) and N, M, L € N. We associate with each quadruple (p, N, M, L) four sequences

of positive integers, (m;)N;, (h)Ny, ()M, and (By)M,, satisfying the following assertions:

(i) hw/hi €N,

(ii) mip1 > 2myh;,
(iii) 1 <m, Ph; <2,
(iv) a1 > 2mpyhy,

(V) g1 > 204, LB1AN,

)
)
)
)
)
)

(vi) 1< PBrhy < 2.

Let us check that the properties (i)—(vi) can be met simultaneously. Set mq = hy = 1. Then we

specify m;;1 and h;;q for some i € [N — 1], assuming that the quantities mq,...,m;, h1,..., Iy
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have already been chosen. We take m;; > 2m;h; such that the set {h € N: 1 < mil;fh < 2}
contains at least h; elements. Then we choose h;11 for which h;11/h; € Nand 1 < mg_;f hit1 <2
hold simultaneously. Thus, the properties (i)—(iii) are satisfied. Next we take «; such that
o1 > 2myhy and ai_th < 2 hold, and choose f3; satisfying 1 < a}_pﬁth < 2. Then we
specify ag11 and fiiq for some k € [M — 1], assuming that the quantities a1, ..., o, 81, .., Bk
have already been chosen. We take api11 > 2o LBirhy. Since aillth < ai_th < 2, we can
choose Bj11 satisfying 1 < a,:_]i Br+1hn < 2. Thus, the properties (iv)—(vi) are satisfied as well.

The four sequences will determine the structure of the test space of type III constructed
below. Here we formulate a few thoughts that one should keep in mind later on.
e Our space consists of two levels (lower and upper) concerning points of N and M types,
respectively (see Figure 4.3).

e The sequences (m;)¥; and (ay)2L, are used to define the associated measure, while (b)Y,

and (ﬁk)é\i , are responsible for the number of elements of a given type.

e The property (i) makes the set of points of a given type divisible into an appropriate

number of equinumerous subsets.

e The properties (i) and (v) say that the sequences (m;)Y, and (ay)M, grow very fast.
The huge differences between the masses of points of different types allow one to use

Lemma 4.1.4 frequently.

e The property (iv) says that the values a; are large compared with my and hy. The points
from the upper level have much greater masses than the ones from the lower level and

Lemma 4.1.4 can be applied also in this context.

e The properties (iii) and (vi) are of rather technical nature. They keep the balance between

the number of points of a given type and the mass of each one of them.

e The property (iv) is the only property involving the parameter L.

Let K € [1,00). We define 4 = 8, v v k.1, = (U, p, 1), the test space of type III, as follows.
Set
U= {x;j, a0 € [N], j € [hl], k € [M], | € [LBrhn]},

where all elements x; ;, xz,l are different. We use auxiliary symbols for certain subsets of U:
U° = {le k€ [M], 1€ [LBrhn]};
for i € [N] and k € [M],
Up = {xij:j€elhl}, Up={ap;:1€[LBhn]};

for i € [N], j € [hi], and k € [M],

j—1

LﬁkhN] }

(]

Uik = {:L’ZJ S {]iLﬁkhN} \ {
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Observe that the sets U, ., j € [hi], are disjoint and, in view of (i), each of them contains exactly

LBihn/h; elements. Moreover, U;“Zl U;;x = Uy, holds for each i € [N].
We introduce p by letting

m; if x = x; ; for some i € [N], j € [hy],

plieh) = { Koy if o=, for some k € [M], I € [Lhw].

Note that, in view of (iv), (ii), and (v), the following inequalities hold: for each = € U°,
{z} > U\ U,
for each ¢ € [N]\ {1} and z € Uj,
Hz}| > |U1U--- U U],
and for each k € [M]\ {1} and z° € Uy,

{2} > [U7 U--- U Ug_y.

Finally, we define p by the formula

0 ifx =y,

plz,y) =1 1 if {z,y} = {z;;, 2} ,} and 7, € U2,
2 otherwise.

It is worth noting here that for each i € [N], k € [M], and x° € Up, there is exactly one point
x € U; such that p(z,x°) = 1. This point is denoted by I';(z°) later on.

Figure 4.3 shows a model of the space (U, p) with N =3 and M = 2. The solid line between

two points indicates that the distance between them equals 1. Otherwise the distance equals 2.

o o o) (e} o o) [e] o [0) [e] o [0)
L11T12T13%14 Lo 1 L2 T23T34X25L26La7 Loy

Figure 4.3: The test space of type III with N =3 and M = 2.
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As usual, we explicitly describe any ball B C U. We thus have: for i € [N], j € [hi],

{l‘i,j} for0<s < 1,
B(xij,8) = {zij}U{z® €eU°:Ti(2°) =z} forl<s<2,
U for 2 < s,

and, for k € [M], I € [LByhn],

{zp,} for0<s <1,
B(ayy,s) = {zh,} U{Ti(zy,) ri € [N]} for1<s<2,
U for2<s.

Now, for each fixed ¢ € [N] and k € [M], we introduce a linear operator Ay ; = Aj; ¢ given

by the formula
F@i(x)) {Ti (@)} - o
Apif(z) = { {z}] if x € U,

0 otherwise.

In the following lemma we estimate the norm of Ay ; acting from LP4(4) to L (LL).

Lemma 4.4.3. Let 4 be the test space of type III defined above. Fix q,r € [1,00] with ¢ <,
i € [N], and k € [M], and consider the operator Ay ;. Then there exists a numerical constant
Cs1 = Cs3.1(p,q,r) independent of N, M, K, L, i, and k such that

1
Caot KPP < | A il gy s por y < Cag KHF/PLYP,

Proof. First we estimate || Al zp.a(st)—srpr sy from above. Take f € LP9(4). Since Ag;f =
A i(f - 1y,), we may assume that the support of f is contained in U;. If this is the case, then
for each ¢ € (0,00) we have the equality

KLOék/BkhN
day1(t) = — = dg (tKay/mi)

and simple calculations give
_ 1-1/p, —1/p_—1+1/p 51/p; 1
Ak llpr = KL i 0 TR B TR
Thus, in view of (iii), (vi), and Fact 4.1.3, we obtain

| Ag,ifllpr <4Cs(p,q,r) K~ ple ¢

p,q-

mg

Kay,

Finally, consider g := 1y,. Then we have Ay, ;g = 1ye and hence

Watlor oo o g e e,
9lip,q

where in the last inequality we again used (iii) and (vi). O
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Next we introduce a linear operator A = Ag given by the formula

SN Apif(x) ifxe U, ke [M],

0 otherwise.

artoy={

As before, we estimate the norm of A acting from LP9(4l) to LP" ().

Lemma 4.4.4. Let $1 be the test space of type III defined above. Fix q,r € [1,00] with ¢ <r and
consider the operator A. Then there exists a numerical constant C3 = Cs2(p,q,r) independent
of N, M, K, and L such that

1
Cspo

)

K- Ye /e prt/r Ni-ta < Al oty or sty < Caa K- pp et/ N1-1/a,

Proof. First we estimate [|Al|rp.q(s1)—rrry) from above. Take f € LP9(U). In view of Af =
A(f - 1inpe), we may assume that the support of f is contained in U \ U°. We decompose
f=Nfi, where f; == f-1p,. Then, by (i), (v), and Lemma 4.1.4, we have

/1

S 1 N ¢ V4
P47 Coupp(p,9) <; ”fin’q)

and

r O\ 1/
pr ’

Moreover, by using Fact 4.3 and Lemma 4.4.3, we obtain the following estimate

M
||-Apr,r < Csupp(pﬂ“) (Z H‘Af ) 1U13
k=1

N

N
IAS - 1o llpr < Calp,r) Y e fillpr < Calp,r)Csa(p,q.r)EHFVPLYPY " £l
i=1 =1

for each k € [M]. Therefore,

N
[Afllpr < Csupp(p,7)Ca(p,7)C3,1(p, T)Kilﬂ/le/le/r Z 1 fillp,q-
i=1

On the other hand, an application of Holder’s inequality gives

N 1/q 141 N
(Do fillg) ™ = NS il
i=1 =1

Combining the two estimates above we conclude that

IAS lpr < Coupp (D, @) Csupp (0, 7)C A (p, 7)C3.1(p, g, 7) K /PP AU NIV f

p,q-
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Finally, consider g := Zi\; L(him;)~Y/P 15, Then, by using (iii), we have

M

N
A2 D e, i
and thus
_ M1/
HAng’T > <EkM:1 (K_Hl/le/pNak Hl/pﬂli/ph%p) ) > K- pr/ppgt/r N1-1/a
”g”p,q B 21/pCSUpp (p7 q) Csupp (p7 T)Nl/q - 21/pcsupp <p7 Q)Csupp (p7 T) ’
where we used (ii), (v), and Lemma 4.1.4 in the first inequality, and (vi) in the second. O

In the following lemma we estimate the norm of the maximal operator Mg acting from
LP9(8l) to LP"(U). This is the main result of this subsection.

Lemma 4.4.5. Let L be the test space of type III defined above. Fiz q,r € [1,00] with ¢ < r and
consider the associated operator M¢. Then there exists a numerical constant C3 = C3(p, q,7)
independent of N, M, K, and L such that

Ci (1 + K—Hl/le/PMl/TNl—l/Q) < c(p,q,m4) < Cs (1 + K‘HI/I’LI/I’MI/”NI_I/‘?).
3

Proof. First we estimate c(p, ¢, 7,4l) from above. Take f € LP4(4l) such that || f|/,, = 1. It is
easy to check that
MG f < max {f,4Af,2M°f, favs },

where //\;l/cf = 1y\po - maxgoepye f(2°). Therefore, by Fact 4.1.1, we have

M f

pr 4Ca@) (Il + 1AL e + 1Ml + L vl )

The inequalities H/\f/\l/Cpr,T < | fllpr and || favellpr < Cavg(,7)|| fllp,r follows from (iv) and

Fact 4.1.2, respectively. Combining the estimates above with Lemma 4.4.4 we conclude that
||M1C,[f||p,7” <4 CA(pa T) (C°—>(pv q, T) (2 + Can(p’ T)) + 0372(]9, q, T) (K_H_l/le/le/TNl_l/q)) :

Now we estimate ¢(p, ¢, 7, 41) from below. First, arguing as in the proof of Proposition 4.1.10,

we obtain c(p, q,r, ) > pt/r=1/ap=1/r¢l/a  Finally, the inequality

1
clp,qr ) > — K- HYp et/ N1/
(P30 = 2C32(p,q:7)

is a consequence of Lemma 4.4.4 and the fact that M f > Af/2 for each f € LP9(4). O

At the end of this subsection we reformulate the result of the previous lemma in a way that

makes it easier to use later on.



4.4. Results for q and r varying 7

Corollary 4.4.6. Fizp € (1,00), A € (0,00), and a,b,x € N. Let 8k, \ 41 ) be the test space
oy, Nk, with p as above, N = kK, M = k%, and some K, L satisfying K- 1TVPL1/P = \gb.
Then for each q,r € [1,00] with ¢ < r we have

ég (14 A6/78/0) < e(p, @, 1, 8\ ) < Cs (14 Aw2/70/1),

where C3 = Cs(p, q,r) is the constant from Lemma 4.4.5.

4.4.2 Composite test spaces

In the following two sections by a composite test space we mean any metric measure space 20
that arises as a result of applying Proposition 4.1.10 to a certain family of test spaces introduced
in Subsection 4.4.1. This is a bit imprecise, but one can think of composite test spaces as inter-
mediate objects between test spaces and the spaces we want to obtain in Theorem 4.4.2. More
precisely, these latter ones will be composite test spaces constructed with the aid of a sequence

of simpler composite test spaces. We now briefly explain the details of such a construction.

Proposition 4.4.7. Let (2,,)nen be a given sequence of composite test spaces. Then there exists

a composite test space W such that for each p € (1,00) and q,r € [1,00] with ¢ < r we have

1
72 Sllp C(p7 Q7 Ta w’n) S C(p7 qa 7’, QB) S 02 Sllp C(p7 qa 7,7 mI71)7
C? nen neN

where C = C(p, q,r) is the constant from Proposition 4.1.10.

Proof. Note that each space 20, is constructed with the aid of some sequence of test spaces,
say {Up m : m € N}. Let 20 be the space obtained by applying Proposition 4.1.10 to the family
{8, m : n,m € N}. The thesis follows directly from Proposition 4.1.10. O

Now we show how to construct composite test spaces for which the associated maximal

operators have very specific properties.

Lemma 4.4.8. Let p,e € (1,00), v € R, and a,b, R € N. Then there exists a composite test
space W = W, ap.R,e Such that for each q,r € [1,00] with ¢ < r we have

c(p,q,r, W) =00 if a/r—>b/q="r,
C'R“ < c(p,q,r, W) < C4(1+ R*?) if a/r—b/qe (v—2ed,y—ed),
C(paQaram)§C4 Zf G/T—b/qﬁ'y—?)ed,

where d = va? + b2 and Cq = Cy(p,q,r) is independent of v, a, b, R, and e.

Figure 4.4 describes the behavior of the function c(p, ¢, r,20). We notice that the parameter d
appears here only for purely aesthetic reasons (for example, the Euclidean distance between the

lines a/r —b/q =~y and a/r — b/q = v — ed equals ¢).
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/7y

1 _q=r
a/r —b/qg=~

|a/r—bjg=~—ed
fa/r—=b/q=~—2ed
a/r —b/q = — 3ed

I~ CZIREd <.< C4(1 + RQed)

> 1/q

Figure 4.4: The behavior of the function c(p, ¢, r,20).

Proof. For each n € N let i, be the test space L,y 44 from Corollary 4.4.6 with p, a, and
b as above, K = R", and A = R~ t(n+2)ed  We let 20 be the space obtained by applying
Proposition 4.1.10 to the family {4, : n € N}. The following estimates for Mgy, are satisfied: if
a/r —b/q =, then

c(p,q,r,200) > Cl lim R~ t(n+2)edpry _ o

i

3 n—0o0
ifa/r —b/q € (v — 2ed,y — ed), then
c(p,q,r,20) > 1 sup R+ (nt2)ed pr(y—2ed) _ LGd
sy Yy Iy = CCg SN CCg

and

c(p,q,m,20) < CCssup (1 + R—m+(n+2)€an(v—ed)> < CCg(l + R2ed)’
neN

and, if a/r —b/q < v — 3ed, then

c(p,q,r,2) < CCssup (1 + R—n'y+(n—|—2)ean(’y—3Ed)) = 2CCs3.
neN

Therefore, 20 satisfies the desired properties. O

At the end of this section we present another result for composite test spaces, which is
particularly helpful if the domain of F' in Theorem 4.4.2 is of the form (4, 1], or if the domain is

of the form [4, 1], but either § = 1 or F' is not continuous at 9.
Lemma 4.4.9. Letp € (1,00), § € [0,1], and w € [0,6]. Then the following statements are true.

o There exists a composite test space QS = Qﬁi&w such that c(p, q,r,20=) < oo if and only
if1/g>6,r>qorl/g=0,1/r <w.
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e There exists a composite test space W< = QU;(SM such that ¢(p,q,r,20<) < oo if and only
if1/g>6,r>qorl/g=94,1/r <w.

Proof. Fix p € (1,00), 6 € [0,1], and w € [0, d]. First we construct 20=. For each n take a,, = n,
b, = n?, and 7, satisfying a,w — b8 = v, — 3dp€,, where d,, = \/a2 + b2 and ¢, = 1/(3n). Let
20,, be the composite test space from Lemma 4.4.8 with p as above, v = v, @ = an, b = by,
R =n", and € = €,. Since lim,_,o by/a, = 00 and ap(w + 1/n) — byd > v, — 2de,, it is easy to
check that 20= may be chosen to be the space obtained by applying Proposition 4.1.10 to the
family {20, : n € N} (to obtain c(p, ¢,r,20=) = oo for 1/q > 6, r < q we use Remark 4.4.11, see
Subsection 4.4.3). Finally, in order to construct 20< we take a, = n, b, = n?, and 7, satisfying
an(w —1/n) — byd = v, — 3dne, and apw — b0 € (7, — 2dn€n, Yo — dné€y), where d,, and €, are
as before, and then we repeat the previous procedure. ]

We note that Lemma 4.4.9 may also be used to construct 3 such that QF; (3) = 0. Indeed, it
suffices to take 20< with p as above, 6 = 1, and w = 0.

4.4.3 Proof of the main result

This section is devoted to proving Theorem 4.4.1. The proof consists of two parts. First of
them relies on showing that the conditions imposed on F' in Theorem 4.4.1 are necessary. The
second one consists of furnishing a bunch of examples of spaces so that each of the scenarios
specified in the thesis can be illustrated with some nondoubling space. This part will be ensured
by Theorem 4.4.2.

Necessary conditions

Here we briefly discuss why there are no alternatives for the shape of Q; (X) other than those

mentioned in Theorem 4.4.1. We begin with the following simple observation.

Remark 4.4.10. Fiz p € (1,00) and let X be an arbitrary metric measure space. If (u,w) €
W (%), then [u, 1] x fw,1] € Qly ().

Indeed, this follows by the fact that the Lorentz spaces LP9(X) increase as the parameter g
increases.

By Remark 4.4.10 we know that either QF; (¥) is empty or it consists of points lying under
the graph of some nondecreasing function, say F', and the domain of F is of the form [, 1] or
(6,1] for some § € [0,1] or § € [0,1), respectively. More precisely, for each u from the domain of
F we have (u,w) € Qf; (X) for w < F(u) and (u,w) ¢ QF; (%) for w > F(u) (here we do not
focus on whether (u, F'(u)) belongs to Q¥ (X) or not, except for the case F'(u) = 0, which forces
that the first option actually takes place).

Remark 4.4.11 below, in turn, explains why the assumption F'(u) < u is needed.

Remark 4.4.11. Let X be a metric measure space such that | X \ supp(p)| = 0. Assume that
there ezists an infinite family B of pairwise disjoint balls B satisfying |B| € (0,00). Then for
each p € (1,00) we have Q¥ (X) C {(u,w) € [0,1]* : u < w}.
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Indeed, this is just a reformulation of Observation 4.1.6.

Finally, the fact that Qfj; (¥) is convex, and hence F must be concave, is justified by the

following interpolation argument.

Theorem 4.4.12. Fix p € [1,00) and qo,q1,70,71 € [1,00] with g0 < q1, o < ro, and ¢ < rq.

Let X be an arbitrary metric measure space and assume that the associated mazimal operator
% is bounded from LP9(X) to LP"(X) for i € {0,1}. Then for each 6 € (0,1) the operator
$ is bounded from LP%(X) to LP"0(X), where

Y

qe q0 q1 To To 1

1 1-60 6 1 1-6 6
+ -

We explain briefly how Theorem 4.4.12 can be inferred from the general theory of interpolation.
We begin with the comment that Lorentz spaces in this context were considered for the first
time by Hunt in [20]. However, the theorem formulated there does not cover Theorem 4.4.12.
Hence, we are forced to refer to the literature where some more advanced interpolation methods
are developed. The appropriate variant of Theorem 4.4.12 for linear operators can be directly
deduced from |7, Theorem 5.3.1] (see also [37], where the K-functional for the couple (LP%0, LP-1)
is computed). Then, a suitable linearization argument (see [22], for example) allows us to extend
this result to the class of sublinear operators and thus the maximal operator M$ is also included.

Although there are several ways to deduce Theorem 4.4.12 from the theorems that appear
in the literature, each of them, to the author’s best knowledge, requires a deep understanding of
the interpolation theory. As the author found an elegant, elementary proof of Theorem 4.4.12,

he decided to present it in Appendix.

Proof of Theorem 4.4.2

Proof of Theorem 4.4.2. We consider three cases depending on the properties of F.
Case 1: F': [§,1] — [0, 1], F continuous at 0. Fix p € (1,00) and ¢ € [0, 1], and take F': [§,1] —
[0, 1] concave, nondecreasing, continuous at d, and such that F'(u) < u for each u € [4,1].

First we construct 3. We can assume that 6 € [0,1), since the case § = 1 is covered by

Lemma 4.4.9. Consider the following countable set

{(;i) € ((0,11nQ)*: (225 A 71~>F(c11>> v <2<5>}

and enumerate it to obtain a sequence (P, P,,...). Fix n € N and let P, = (qin, %) Since F'

is concave and nondecreasing, we can choose 7, € R, a,,b, € N, and ¢, € (0,00) such that
b an/rn - bn/Qn = Tns
o if a,/r —by/q > v — 3€ndy, then é >0, % > F(%) or % < 9§, where d,, = \/a? + b2.
Let 20,, be the composite test space from Lemma 4.4.8 with p as above, v = v, a = an, b = by,

R =1, and € = ¢,. It is easy to check that ) may be chosen to be the space obtained by applying
Proposition 4.4.7 to the family {20, : n € N}.
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Now we construct 3’. Again we assume that § € [0, 1), since the case 6 = 1 is covered by
Lemma 4.4.9. For each n € N and u € [§, 1] we choose 7y, € R and ay, 4, by, € N such that

® Yo — 2dnu/n < anutt = by F () < Ynu — dpu/n, where dno = /a2, + 02,

o if ap /7 — bnu/q > Ynu — dnu/n, then % >4, % > F(é) or % < 4.
Let 20, , be the composite test space from Lemma 4.4.8 with p as above, v = yp 4, @ = apu,
b="bpu, R=n", and e = 1/n. Fix n € N and observe that for each u € [4, 1] the set

En. = {v € [6,1] : ypu — 2dp/n < av — bF(v) < ypu — dn/n}

is open in [6, 1] with its natural topology. Thus {E,, ,, : u € [0, 1]} is an open cover of [4, 1] and we
can find a finite subset U, C [9,1] such that (J,c;. Enwu = [6,1]. Finally, we let 3’ be the space
obtained by applying Proposition 4.4.7 to the family {20,,,, : n € N,u € U, }. We will show that
3’ satisfies the desired properties. Fix ug € [d, 1] and observe that for each n € N there exists

u, € U, such that ug € E,, ,,,. Therefore, in view of Lemma 4.4.8,

1 1
C(p7 1/“’07 1/F(u0)7 5/) > @C(I% 1/“’07 ]-/F(UO)vwn,un) > 0204 ndn’u-

Since n is arbitrary and d,,,, > 1, we conclude that ¢(p,1/ug,1/F(up),3’) = oo and, as a result,

we obtain ¢(p,q,7,3") = oo if % > 9, % > F(%) or % < 0. Now let us consider a pair (gq,r)

satisfying % >4, % < F(%) Then we have

d(q,r, F) = min {de<<(1], %), (u,F(u))) tu € [0, 1]} >0,

where d, is the standard Euclidean metric on the plane. Observe that for each n € N and v € U,

we have the following implication
Anu/T — bnu/q > You — 3dnu/n = d(g,r, F) <2/n.

Hence if n > 2/d(q,r, F'), then for each u € U,, we have ay, /7 — bnu/q < Ynu — 3dpu/n, which
implies ¢(p, ¢, 7, Wp) < Cy. Finally, since for each of the finitely many pairs (n,u) satisfying
n <2/d(q,r,F) and u € U, there is c(p, q,r,20,,+) < oo, we conclude that c(p,q,r,3’) < co.

Case 2: F:[4,1] — [0,1], F not continuous at . Fix p € (1,00) and 6 € (0,1), and take
F: [),1] — [0, 1] concave, nondecreasing, satisfying F'(0) = w < lim, s F'(u) for some w € [0, ),
and such that F(u) < u for each u € [6,1]. Let F be the continuous modification of F, that is,
F(u) = F(u) for u € (6,1) and F(8) = lim,_,5 F(u). Then F satisfies the conditions specified in
Case 1. Let 5 and 3’ be the spaces obtained in Case 1 for F. We also let 20 be the composite
test space WS (respectively, 20<) from Lemma 4.4.9 with p, §, and w as above. It is easy to
check that 3 (respectively, 3’) may be chosen to be the space obtained by using Proposition 4.4.7
to 3 (respectively, 3 ) and countably many copies of 20.
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Case 3: F: (6,1] — [0,1]. Fix p € (1,00) and ¢ € [0,1), and take F': (d,1] — [0, 1] concave,
nondecreasing and such that F(u) < u for each u € (§,1]. We extend F to F: [§,1] — [0,1],
setting ﬁ(d) = limy_5 F'(u). Then F satisfies the conditions specified in Case 1. Let 3 and 3/
be the spaces obtained in Case 1 for F. We also let 20 be the composite test space 20< from
Lemma 4.4.9 with p and § as above, and w = 0. It is easy to check that 3 (respectively, 3')
may be chosen to be the space obtained by applying Proposition 4.4.7 to 3 (respectively, 3 ) and
countably many copies of 20. 0

Proof of Theorem 4.4.1

We are ready to prove the main result of this chapter.

Proof of Theorem 4.4.1. The first part of the theorem follows from Remarks 4.4.10 and 4.4.11,
and Theorem 4.4.12, and the second part follows from Theorem 4.4.2. O

The last issue we would like to mention in this chapter is the boundary problem. Denote be
99 (X) the upper part of the boundary of Qf; (X), that is, the set {(u, F(u)) : u € Dom(F)},
where Dom(F) is the domain of F'. According to this, for each space constructed in Theorem 4.4.2

one of the following two possibilities holds
Oy, (X) C Qg (X)) or 00y (X) N QY (X) = 0.

In fact, Proposition 4.4.7 combined with Lemmas 4.4.8 and 4.4.9 can provide a wide range of
other cases. For example, if F' is strictly concave, then for a given set £ C Dom(F) such that
E is countable we can find X such that M is bounded from LPV/%(X) to LP/F(W (%) if and
only if u ¢ E. Nevertheless, it is probably very difficult to describe precisely all forms that the
intersections OOk (X) N QO (X) can take.



Chapter 5

BMO spaces

BMO traditionally occurs in the literature as a function space associated with the space R,
d € N, equipped with the Euclidean metric and Lebesgue measure. Roughly speaking, it contains
functions whose mean oscillation over a given cube @ C R is bounded uniformly with respect
to the choice of that cube. Although BMO was introduced by John and Nirenberg [23] in the
context of partial differential equations, it is also a very useful tool in harmonic analysis. One
reason is that many of the operators considered there turn out to be bounded from L to BMO
even though they are not always bounded on L°°. This, in turn, can often be used to prove the
boundedness of such operators on LP for some p € (1,00) by using the interpolation theorem
obtained by Fefferman and Stein [15]. Another interesting fact is that BMO is dual to the Hardy
space, H', which is of great use in harmonic analysis. This result was shown by Fefferman
[14]. Finally, BMO functions are in close relation with other objects appearing in this field
such as Carleson measures, paraproducts or commutator operators (for further consideration see
[9, 10, 11, 18], for example).

It is well known that most of the theory mentioned above can be developed in a more
general context including all doubling metric measure spaces. However, the situation changes
significantly if the space we deal with is nondoubling. We have examples showing that some of
the classical theorems fail to occur in certain nondoubling situations (see |3, 46] for studying the
weak type (1,1) boundedness of the Hardy-Littlewood maximal operator), while, in contrast,
some theorems can be proved for wider classes of spaces, usually requiring more complicated
methods (see [41, 52|, where the boundedness of the Cauchy integral operator was considered).

BMO spaces for nondoubling spaces were quite successfully studied by Mateu, Mattila, Nico-
lau and Orobitg [38]. In particular, the authors have shown that for many Borel measures on RY,
not necessarily doubling, it is possible to define BMO spaces in such a way as to be able to use
an interpolation argument analogous to that obtained in [15]. On the other hand, a somewhat
surprising fact shown in [38] is that there exist measures on R? for which the associated spaces
BMO and BMOy, defined with the aid of cubes and balls, respectively, do not coincide. Another
result, which will be described later on, is related to some untypical behavior of the family of
spaces {BMOf : p € [1,00)}, which occurs under certain conditions. In summary, there are
many examples in [38] which illustrate that in some specific situations BMO spaces may have
very unusual properties. This idea also accompanies the following chapter.

Our main motivation here is to study the spaces BMOﬁ with p € [1,00) considered as sets of
functions, in order to describe whether the natural inclusions between them are proper or not.
Since we deal with arbitrary metric measure spaces, balls determined by metrics are used to
define BMO’I;. From now on we omit the subscript and write BMOP instead of BMO{’).

83
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5.1 Preliminaries and results

Let X = (X, p, ) be a given metric measure space. For a locally integrable function f: X — C
and an open ball B C X such that |B| € (0,00) we denote the average value of f on B by

o= [ f@auta).

Then, given p € [1,00), we let BMOP(X) be the space consisting of all functions f for which

I/

1 1/p
= s ([ 17@) = fol dito)

is finite (the supremum is taken over all balls B contained in X and such that |B| € (0,00)).
We keep to the rule that two functions are identified if they differ by a constant. With this
convention || - ||« satisfies the norm properties and thus BMO?(X) can be viewed as a Banach
space (it is a mathematical folklore that BMOP(X) is complete in any setting). If p = 1, then
we will usually write shortly BMO(X) and | f||« instead of BMO!(X) and || f||+ 1, respectively.
Recall that if p;,pe € [1,00) with p; < pa, then by using Holder’s inequality we always have
the inequality || f|l«p, < [[fll+p. and, as a consequence, the inclusion BMO?(X) C BMOP! (X).
Moreover, if BMOP!(X) and BMOP?(X) coincide as sets, then the corresponding norms are
equivalent. In fact, this is always the case if p is doubling. Indeed, one can obtain that the
spaces BMOP(X) with p € [1, 00) coincide by using the John—Nirenberg inequality which is true
for spaces satisfying the doubling condition (see [38, Theorem A, p. 563|, for example). However,
the John—Nirenberg inequality fails to occur in general. Moreover, in [38] the authors construct
a nondoubling space X for which there exists f € BMO(X) such that f ¢ BMOP(X) for all
p € (1,00). Here we go further and describe precisely which types of relations between the
spaces BMOP(X) with p € [1,00) actually can happen. Namely, we prove the following theorem.

Theorem 5.1.1. For a given space X we have one of the following three possibilities:
(A) The spaces BMOP(X) with p € [1,00) all coincide.

(B) There exists pg € (1,00) such that for two distinct parameters p1,ps € [1,00) the spaces
BMOP*(X) and BMOP?(X) coincide if and only if max{p1,p2} < po.

(C) There ezists pg € [1,00) such that for two distinct parameters p1,pa € [1,00) the spaces
BMOP*(X) and BMOP?(X) coincide if and only if max{p1,p2} < po.

Conversely, for each of the possibilities described above and for any permissible choice of pg in the
cases (B) and (C) we can construct X for which the associated spaces BMOP(X) with p € [1, 00)

realize the desired properties.

The rest of this chapter is organized as follows. In Section 5.2 we present a short proof of the
main theorem based on certain results of a rather technical nature which are proved later on.
Sections 5.3 and 5.4 are devoted to the study of these technical issues. Finally, in Section 5.5
some additional remarks concerning the John—Nirenberg inequality are given.
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5.2 Proof of the main result

In this section we prove Theorem 5.1.1. To do this we use two ingredients which we formulate

here and prove in Sections 5.3 and 5.4, respectively. The first one is the following.

Lemma 5.2.1. Let X be a given metric measure space. If BMOP*(X) C BMOP?(X) for some
p1,p2 € [1,00) with p1 < pa, then for any a € (1,00) we also have BMO®P* (X) C BMO*?(X).

The second goal we need is to find a suitable family of spaces for which some specific relations
between the associated BMO spaces occur. The process of constructing such spaces is the most
technical part of this chapter. We will obtain two complementary results stated below.

Proposition 5.2.2. For each pg € (1,00) there exists a space X such that BMOP(X) coincides
with BMO(X) if and only if p € [1,po).

Proposition 5.2.3. For each pg € [1,00) there exists a space X such that BMOP(X) coincides
with BMO(X) if and only if p € [1, po].

Now we show that Theorem 5.1.1 follows easily from the results mentioned above.

Proof of Theorem 5.1.1. For a given space X define
po = po(X) =sup {p € [1,00) : BMOP(X) = BMO(X)}.

The case pg = oo corresponds to (A). On the other hand, if py € [1,00), then we have two
possibilities: BMO?(X) coincides with BMO(X) or not. We analyze only the first option which
corresponds to (C), and the second one which corresponds to (B) can be treated similarly.
Obviously, we have that BMOP(X) coincides with BMO(X) for each p € [1,pg]. Let us now
consider two distinct parameters pi,ps € [1,00) with ps > max{po,p1}. If p1 < po, then by the
definition of py we have BMOP*(X) C BMOP?(X). On the other hand, if p; > pg, then there
exists a € (1,00) such that py/a < py < pa/a. Hence, we have BMOPY/*(X) € BMOP?/(X)
and by using Lemma 5.2.1 we conclude that BMOP!' (X) C BMOP?(X).

Finally, the last part of Theorem 5.1.1 can be deduced from Propositions 5.2.2 and 5.2.3.
Indeed, the spaces obtained there cover all specified cases corresponding to (B) and (C). Since
the scenario described in (A) can be realized by any doubling space, the proof is complete. [

5.3 Proof of the key lemma

This section is entirely devoted to proving Lemma 5.2.1. It is worth mentioning here that it is
possible to formulate Lemma 5.2.1 in a more general form than the one presented before. Indeed,
the proof does not rely on the fact that balls were used to define the spaces BMO?(X). Thus,
the conclusion remains true if one considers the spaces BMOP(X) introduced with the aid of an
arbitrary base (that is, a fixed family of subsets of X) instead.
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Proof of Lemma 5.2.1. Suppose that BMOP'(X) C BMOP?(X) for some pi,p2 € [1,00) with
p1 < p2 and fix a € (1,00). We begin with a simple observation that it suffices to find a sequence
(gnN)F— satisfying ||gn||«.ap; < C uniformly in N and limy 0 ||gN]|5,ap, = 00-

Take f € BMOP!'(X) \ BMOP?(X) and write f = f1 + if2, where both f; and fo are real-
valued. Observe that at least one of the functions fi, fo also lies in BMOP! (X) \ BMOP?(X).
Therefore, we can assume f to be real-valued.

Fix N € N and choose a ball By C X such that

1

w1 | = ey[?dp=N. (5.3.1)
|BN| JBy

Take fn = f — fBy and introduce gy defined by

gn (@) = sgn(fn(@)) - | ()]

Our first goal is to show that ||gn||«,ap, < C holds independently of N. Notice that

1 op
w/B’h—hB’pd,u< |B‘2//’h ’pdﬂ( du() |B‘ ’h hB‘pd,u (5.3.2)

holds for any p € [1,00), B C X, and locally integrable h. In particular, (5.3.2) implies that

g [ [ 1) = Iy P duo) duto) < 2wy, =2, (539

holds for each ball B C X. We would like to obtain a similar estimate for gy and ap; instead of
fn and py. Take any two points x,y € B. If gny(x) and gn(y) are of the same sign, then

lgn(2) — gn @)|°P = | |fn @)Y = | fn @)Y " < [ fn(z) — I (y)]P.

On the other hand, if gn(z) > 0 and gy (y) < 0, then we obtain

lgn (@) — g ()| < 2 (g (2) P + (=gn () *) = 277 (fn (@) + (=N ()™)
< 2% fn(z) = In(y)

Combining (5.3.3) with the last two estimates gives

3 [ lan(@) = ax @™ du(e) ap(e) < 20 12,

which, by using (5.3.2) again, results in the desired inequality ||gn|l«.ap; < 227 £l -

It remains to estimate ||gn||«,ap, from below. For M € (0,00) we take N € N satisfying
90PN _ 20P2 (N[ 4 1)°P2 > M (5.3.4)

and show that .

= [ lav = (gn) Byl dp = M. (5.3.5)
IBn| /By
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We consider the following two cases: |(gn)By] < M + 1 and (gn)By < —M — 1 (for the
remaining case (gn)py > M + 1 one can replace fy and gy by —fy and —gn, respectively). If
|(gn) By | < M+1, then we use the following estimates: for € By such that |gny(z)| > 2(M +1),

lgn (@) — (gn) By [*F2 = 272 |gn (2)| "2 = 272  fv (@) |72, (5.3.6)
and, for z € By such that |gn(z)| < 2(M + 1),
9N (@) = (9n) By [*7* 2 0 2 [gn (2)|*72 = 2972 (M + 1) = [ [ (2) [P — 27F2(M + 1)*72. (5.3.7)

Applying first (5.3.6) and (5.3.7), and then (5.3.1) and (5.3.4), we obtain

/ g — (gn) 5y 72 dpt > 27072 / [l du— 207 (M + 1)°72| By

> (277N = 272(M +1)°" ) [By| > M|By|.
On the other hand, if (gn)p, < —M — 1, then
/ (fnv —gn)dp > (M +1)[By|.
Bn

Let Uy == {z € Byn : gn(x) > 1}. Observe that we have fx(y) —gn(y) <1 forany y € By \Un
(the definition of gn is involved here) and hence

[ U= aw)dn > Byl (53.9)
Un
Therefore, by using the definition of Uy, the fact that (gn)p, < 0, and (5.3.9) we obtain

/ g — (gn) By 7 dpt > / GO dpy = / 2 dp > / (fx —gv)du> M|By|. (5.3.10)
Bn Un Un Un

Finally, (5.3.5) follows from (5.3.8) and (5.3.10). Thus, the proof is complete. O

5.4 Test spaces

In this section we present a simple method of constructing metric measure spaces X = (X, p, | - |)
with specific properties of the associated spaces BMOP(X) with p € [1,00). Here | - | is counting
measure on X, and this is the only measure that will be considered in Sections 5.4 and 5.5.

Throughout this chapter the term test space will be used for each space X built in the following
way. Let M = {my; : i € [n], n € N} be a fixed triangular matrix of positive integers with
m1,1 = 1. Define

X =Xy = {:Emm :j€{0}Umy,], i €[n], ne N},
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where all elements z,,; ; are different. By S, ; we denote the branch

Sn,i = {$n,i,07 Tnyids s Tnyiyma, }

Later on we also use auxiliary symbols S, = U ;S,; and T, = U}_, Sk, and the function
V: X x X — N defined by V(z,y) := min{n € N: {z,y} C T,,} (in other words, if z € S,,, and
y € Sp,, then V(x,y) = max{ni,ns}). We introduce p determining the distance between two
different elements x,y € X by the formula

n+3 if {z,y} = {Tnn0 Tnt1,1,0} for some n € N,
) n- 22'1+1 if xp 0 € {z,y} C Sp; for some 1 <i<n,neN,
plz,y) = n— 22.1+2 if {z,y} = {2n,i0,Tni+10} for some 1 <i<n-—-1,neN,
V(z,y) otherwise.

At first glance, such a metric may look a bit strange. However, its main advantage lies in the
arrangement of balls containing exactly two points which we call pair of neighbors later on.
Moreover, any ball that cannot be covered by at least one of the sets

N ={z}U{y € X : y is a neighbor of z}, reX,

must be of the form T, or T, U {xp41,1,0} for some n > 2. These two properties make the
associated BMOP(X) spaces easy to deal with. Figure 5.1 shows a model of the space (X, p)

(neighboring points are connected by a solid line).

T3,1,1 L3,1,m3,1
x27271 x2a27m2,2
.’E271’1 x2717m2,1 8 8
3 3
T1,1,1 £1,1,mq 4
2
3
3 7 5
1,10 2 2210 4 2,20 2 x3,1,0

Figure 5.1: The test space (X, p).

Fix pyp € (1,00). Our intention is to choose the matrix M in such a way as to obtain that
BMOP(X) = BMO(X) if and only if p € [1,pg). We construct M inductively. Namely, for each
n € N\ {1}, supposing that the values my; with ¢ € [k] and k € [n— 1] have already been chosen,

we take

i = L(n—?i— Lo (n—zl'):—2)p0J (D)
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for i € [n], where b, is an even positive integer so large that

|T;—1| < min { L v i’"l)po - f:’;)mJ , nl;’;o } (C2)

We need a few auxiliary estimates. First, observe that from (C1), (C2), and the fact that b, is
even it follows that b, /2 < |T),| < 2b,. Moreover, for each i € [n] we have

‘Sn,i’ < Ay, ; <4 ( ‘1 _ .1 ) (5.4.1)
T, by, (n—i+1)p0  (n—i+2)po

and
|Sn,i| Mmpq

v

1 1 1
> = - . 4.2
T = 2b, — 4<(n—i+1)7’0 (n—i+2)P0) (54.2)

We are now ready to prove Proposition 5.2.2.

Proof of Proposition 5.2.2. For fixed pg € (1,00) let X = (X, p,| - |) be the test space with M
defined with the aid of (C1) and (C2).

First we show that for each p € (1, pg) there exists C}, € (0,00) such that || f]l+«p, < Cpllf]l«
holds for every f € BMO(X). Without any loss of generality we can assume that ||f|l. = 1.
Observe that then we have |f(x) — f(y)| < 2 whenever z and y are neighbors. Hence, for each
B C X at least one of the following two possibilities holds:

(a) We have B C N, for some = € X and thus max{|f(y) — f(z)| : y,z € B} < 4.
(b) We have B =T, or B =T, U{zp41,1,0} for some n € N\ {1}.
If (a) holds, then we obtain the trivial bound

B 2 /@) = ol < 4 (5.43)

zeB

To analyze the case (b), fix n € N\ {1} and assume that B = T,, or B = T,, U {zp41,1,0}. For
each [ € Nset Ej := {x € B : [f(x) — f(zpnol > 1} . In each of the two cases, {z,11,10} € B
or {xp+110} ¢ B, by using (C2) and (5.4.1) we obtain the following estimates: for [ € [n — 1],

1
| By < | Tn—1 U U2 Syl < 4

5.4.4
B Sl S arow 040
for I € [n?]\ [n — 1],
|Eél| ‘Tn—1| 2
< < 5.4.5
Bl S T S (5:4:)
and, finally, for I € N\ [n?],
|EY,| = 0. (5.4.6)
Moreover, recall the basic fact that for any a € C we have
Y@ = falP <22 |f(x) —al. (5.4.7)

zeB reB



90 Chapter 5. BMO spaces

Thus, applying first (5.4.7) with a = f(2yn,0), and then (5.4.4), (5.4.5), and (5.4.6), we obtain

zeB zeB

— |B|/o P)\Pfl‘{x € B:|f(z) = f(xnno)| > )‘Hd)‘

op+1 =

p —1 /
< 20 + 2)P7*|E.
= 18] Zl L+ 2 Bl (5.4.8)
p 1 2(2n2)p71
P 2 28
<p4 (1+Z l_|_1po +n n2po )

<p4P(1+ 42#’*]’0*1 +2P).
=1

Combining (5.4.3) and (5.4.8) shows that for each f satisfying || f||« = 1 and B C X we have
SUPpc x ﬁ Yowep | f(x) — fBP < Cf with C), independent of B and f.

Now we prove that there exists ¢ € BMO(X) \ BMOP (X). We begin with the following
simple remark. Given f such that |f(z) — f(y)| < 2 for any neighboring points z,y, and B of
the form T;, or T}, U{zp41,1,0} for n € N\ {1}, the average value of f over B does not differ too
much from f(xy,,0). Indeed, by using (C2), the estimate |B| > b, /2, and (5.4.1), we obtain

/5 — f(mnn0|<2+‘B|Z|{xeB — f(@nn0)| > 21}]

(5.4.9)

n—1 n—l
IU 5,
<242 o Tl

4 00
- - —bp
§6+2l51(nl)p0§6+8l51l O N

for some fixed integer N = N(pg). Let us now take g defined by the formula
9(Tn,ij) z+Zk: j€{0}U[my,], i € [n], neN.

It is easy to check that g € BMO(X) since for each B C X at least one of the estimates (5.4.3) and
(5.4.8) holds with p and f replaced by 1 and g, respectively. Indeed, to obtain these inequalities
for f before we used only the information that |f(z) — f(y)| < 2 for any neighboring points x
and y. Our function g satisfies this condition as well. In addition, (5.4.9) remains true if we put
g in place of f. Let n € N\ {1} and take B = T,,. Observe that

lg(z) —gp| >n—1i— N, x € Sp,, 1 € [nl. (5.4.10)



5.4. Test spaces 91

Therefore, if n > 4N, then by using (5.4.10) and (5.4.2) we obtain

|B‘Z’9 QB\p°>’B‘Zpol—1p°1Hx€B —g5| > 1}
zeB =1
~N— ~N—
Z Z 1)Po— 1’ U
n =2 =1
> poni po 1( 1 - 1 )
. W“i” Yoyt
- 8 (N+1—-1)po

=2
[n/243/2—N |

Po -1
2 9po+3 Z (=1

[=N+1

since (N+1—1)7P0 > 2(n+1)7P0 for [ < [n/24+3/2—N]and N+1—1<2(l—1) for i > N+1.
Letting n — oo we conclude that g ¢ BMO™(X). O

At the end of this section we will be interested in test spaces X for which BMOP(X) coincides
with BMO(X) if and only if p € [1, pp], where py € [1,00) is fixed. We can easily get such spaces
slightly modifying the previous construction of M. Namely, instead of using (C1) and (C2), we
define m,, ; for n € N\ {1} and ¢ € [n] by

Mind = Llog(nl) +1 ((n — fl 1Hro  (n— fZ— 2)P0>J’ (1)

where b,, is an even integer so large that

[Tn1] < min Qlog(nl) +1 <(n —i(inl)PO B (n ﬁHZ)PO )J’ n(;zo ) (C2)

Now we present a sketch of the proof of Proposition 5.2.3.

Proof of Proposition 5.2.3. For fixed py € [1,00) let X = (X, p,| - |) be the test space with M
defined with the aid of (C1’) and (C2’). We show that for each p € [1, pg] there exists C, € (0, c0)
such that || ]|+, < Cpl| f]|+ holds for every f € BMO(X). To this end, observe that

n—1
4-(1+1)rt 2(2n2)p~1
4?(1 3 2. )
Pl +11_1 (I + 1)po n2ro )’

is bounded uniformly in n if p € [1,po]. This allows us to get a proper variant of the estimate
(5.4.8) for each such p.

Now we prove that for ¢ € BMO(X) defined as in the proof of Proposition 5.2.2 we have
g ¢ BMOP(X) for all p € (pg,0). To see this note that if p € (pg,00), then the estimates
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analogous to (5.4.9) and (5.4.11) remain true. Namely, for B = T}, one can obtain

|gB - g(xn,n,0)| < Na

where N is some positive integer independent of n, and

|n/2+3/2—N]|

1 p (log(n) + 1)1 o
1B] Z l9(z) — 9B’ > 2P0 13 Z (I = 1)ppo=t,
zeB I=N+1

Finally, the right-hand side of the inequality above tends to infinity with n. O

5.5 Further constructions and comments

In the last part of this chapter we consider several variants of the construction process described
in Section 5.4, in order to obtain test spaces with another interesting properties.

Our first goal is to show that if the entries of the matrix M grow fast enough, then the
John—Nirenberg inequality holds for all f € BMO(X). This result may be a little surprising at
first, since we know that the John—Nirenberg inequality holds for doubling spaces. Keeping that
in mind, one may suppose that X should have rather little chance of preserving this property if
we force the terms m,,; to grow rapidly. However, observe that in Section 5.4 the ratios between
the values my 1,...,my,, played a crucial role in estimating the mean oscillation of the studied
functions and the estimates we obtained were stronger if the values m,, ;/my , for i € [n — 1]
were smaller.

To formulate our result in a more readable way it is convenient to identify the matrix M
with the sequence M’ = (m/,m},...) formed by writing the entries of M row by row, that
is M’ = (my1,ma21,m22,m31,...). In what follows, for simplicity, we use M based on the
geometric sequence (2’“*1);0:1. Nevertheless, it will be clear that the presented proof also works
for any lacunary sequence (mj,)52,, that is, a sequence satisfying mj, 41 /mj. > cfor all k € N,
where c¢ is some fixed constant strictly greater than 1.

Proposition 5.5.1. Let X = (X, p,| - |) be the test space with M identified with the geometric
sequence (2":_1)2":1, Then for the space BMO(X) the John—Nirenberg inequality

{z € B:[f(x) = fB] > A}
| Bl

< crexp(—c2M/|[f]+), (5.5.2)

holds with constants ¢y, ca € (0,00) independent of f € BMO(X), B C X, and X € (0,00).

Proof. Let f € BMO(X) be such that || f||« = 1. First, observe that the main difficulty in proving
(5.5.2) is related to the situation described in (b), where B is of the form T}, or T), U {zn+1,1,0}-
Indeed, if the case (a) happens instead, then we have max{|f(z)— f(y)| : ,y € B} < 4 and hence
(5.5.2) holds for any A € (0,00) if we choose ¢; and ¢z such that c¢; exp(—4cz) > 1. Therefore,
fix n € N\ {1} and consider B of the form specified in (b). Note that 2¥ < |B| < 21 where

k = @ Once again we will take advantage of the useful property that |f(z) — f(y)| < 2
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holds for neighboring points = and y. Proceeding just like we did before to get (5.4.9), we can
estimate the value |fp — f(2nn,0)| by some even integer N which does not depend on f, n, and
the fact whether B includes {xy41,1,0} or not. Then for any integer { € N\ [NV — 1] we have

o€ B:|f(x) = fpl > 21} < o € B: (&) = f(wnn0)| > 20 = N/2)}| < 257HN/2H
< 2Vl B,

and now it is routine to choose ¢; and ¢z (independent of significant parameters) such that (5.5.2)
holds for all A € (0,00) and B C X of an arbitrary form. O

For the presentation of the remaining two results we return to the matrix description of the
space X. The following construction of M is very similar to the one described in Section 5.4, where
the conditions (C1) and (C2) were used, but this time we choose the parameter py separately in
each step of induction. Namely, let P = (p1,pe,...) be a sequence of numbers strictly greater
than 1. We define m,,; for n € N\ {1} and i € [n] by

by, by,

n,g — - ) 1*
n, L(n7i+1)pn (nfijLQ)an (C1%)
where b,, is an even integer so large that
b b b, b
Tn_ < i = - = 9 - ) . . 2*
[ Tna] < min Q(n F1)pn (n+ 2)an n2vn n”) (€2°)

Our next purpose will be to show that by a suitable choice of P it is possible to obtain a space
X for which the associated spaces BMOP(X) are all different. Although this result can also be
deduced from Theorem 5.1.1, the advantage of the current approach lies in the fact that the
proof presented below, contrary to the proof of Theorem 5.1.1, is constructive. Namely, for each
p, P € [1,00) with p < p’ we explicitly construct f € BMOP(X) \ BMOP (%). In what follows we
take P formed by writing the elements of some countable dense subset of (1,00) in an arbitrary
order. We can use the set QN (1, 00), for example.

Proposition 5.5.3. Let P = (p1,p2,...) be as above and consider the test space X = (X, p,| - |)
with M defined by using (C1*) and (C2*). Then for each p,p’ € [1,00) with p < p' there exists
g € BMOP(X) such that g ¢ BMOY (X).

Proof. Fix p,p’ as above and let J == J(p,p’) = [%p/,p’]. We take g defined by the formula

n—1

9(zpnij) =1i-15(pn) + Zk -15(pr), j€{0}U[my,], i € [n], neN.
k=2

Note that g is similar to the analogous function considered in the proof of Proposition 5.2.2, but
this time it grows only in those S, for which the corresponding values p, belong to J. It is now

a standard procedure to show that g € BMOP(X) \ BMOP (%) and most of the work consists of
proving the appropriate variants of the estimates (5.4.8), (5.4.9), and (5.4.11). O
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We conclude our studies with an example of a test space X for which the associated spaces
BMOP(X) coincide for the full range of the parameter p, but the John—-Nirenberg inequality does
not hold. Namely, we have the following.

Proposition 5.5.4. There exists a (test) space X with the following properties:

(i) For each p € (1,00) there exists Cp, € (0,00) such that the inequality || fl«p < Cpl| f||+ holds
for all f € BMO(X).

(ii) There exists g € BMO(X) such that for each I € N we can find By C X and \; € (0,00)

satisfying
[{z € Bi : |g(z) — gB,| > M}
| Byl

In particular, there is no inequality of the form (5.5.2) satisfied by all f € BMO(X).

> lexp(—A/1).

Proof. The space X will be built by using M constructed with the aid of (C1*) and (C2*) for
some suitable sequence P of positive integers. The key idea is to choose P such that p, tends to
infinity very slowly.

First, notice that the sole assumption lim,,_, . p, = oo implies (i). Indeed, let f be such that
|fll = 1. Observe that for each p € (1,00) there exists N(p) € N\ {1} such that p, > p+1
for all n € N\ [V(p)]. Therefore, (5.4.8) holds with p+ 1 instead of py for each such n and B of
the form T;, or T}, U {zp11,1,0}. Since there exists a numerical constant K € (0, 00) depending
only on p such that for any other choices of B the inequality max{|f(z) — f(y)| : x,y € B} < K
holds, we see that (i) is satisfied.

It remains to show that with additional assumptions imposed on P also (ii) holds true. To
be more specific, the slow growth of the elements of P will suffice. Suppose for convenience that
p2 = 2 and P is nondecreasing. We claim that there exists N € N such that the inequality
|fB — f(2nno)] < N holds for B =T, with n € N\ {1} and any f such that ||f|. = 1. Indeed,
we see that now (5.4.9) holds with pg replaced by 2. We are ready to define P inductively. Set
p2 = 2. Assuming that p, = k for some n,k € N\ {1}, we define p,4+1 by the formula

s { kit L(n7F — (n 4+ 1)7F) < kexp(—(n — N —1)/k), (555)

k+1 otherwise.

Clearly, we have lim,,_,o p, = 00 and the sequence (py,)22, is nondecreasing as planned.
Finally, let g be as in the proof of Proposition 5.2.2. Of course, we have g € BMO(X). Fix
[ € N\ {1} such that L := L(l) := max{k € N\ {1} : py = [} is strictly greater than N + 1. Then

e eTry:lg(x) —gn|>L-N-1}|  HzecTi:l|g(@) —g(rrro)l>L -1} _ [Spil
77| B 77| |11

and, by using (5.4.2) and (5.5.5),

(L' —(L+1)7) > lexp(—(L — N = 1)/1).

Thus, if | € Nis large, then the inequality stated in (ii) holds with B; = T, and \y = L—-N—-1. O



Chapter 6
Dichotomy property

A dichotomy regarding the finiteness of the Hardy—Littlewood maximal functions was noticed
for the first time by Bennett, DeVore and Sharpley [5] in the context of functions of bounded
mean oscillation. Namely, the authors discovered the principle that for each f € BMO(R?) the
maximal function MCf (or M) either is finite almost everywhere or equals oo on the whole RY.
Later on, however, it turned out that this property is not directly related to the BMO concept.
Fiorenza and Krbec [16] proved that for any f € LL (R?) the following holds: if MC f(z¢) < oo
for some ¢ € R?, then MCf is finite almost everywhere. Finally, Aalto and Kinnunen [1] have
shown in a very elegant way that this implication remains true if one replaces the Euclidean
space by any doubling space. On the other hand, some negative results in similar contexts also
appeared in the literature. For example, C.-C. Lin, Stempak and Y.-S. Wang [36] observed that
such a principle does not take place for local maximal operators. In the following chapter we
shed more light on the aforementioned issue by examining the occurrences of the dichotomy
property for maximal operators associated with metric measure spaces X for which the doubling
condition fails to hold. We focus on the two most common maximal operators, centered M€ and
noncentered M.

Given a metric measure space X = (X, p, 1), we always have {x € X : M f(z) =00} C {z €
X : Mf(xz) = oo} for any f € L{ (u). Moreover, if X is doubling, then the reverse inclusion
follows as well. Thus, the sentences “ M€ possesses the dichotomy property” and “.M possesses the
dichotomy property” are equivalent as long as the doubling condition is satisfied. In nondoubling
setting the situation is different. First of all, we have no assurance that the dichotomy property
for M€ or M still occurs. Moreover, since M°f and M f may be incomparable, there are no
obvious indications that the existence or absence of the dichotomy property for one operator
implies its existence or absence for another one. Therefore, a natural problems arise:

Can each of the four possibilities actually take place for some (nondoubling) space?

The aim of this chapter is to answer this question in the affirmative.

In Section 6.1 we formulate the main problem. In Sections 6.2 and 6.3 the appropriate
examples of nondoubling spaces are provided. Finally, in Section 6.4 we characterize (in terms
of ) all situations in which M¢ possesses the dichotomy property in the case X = (R%, p, p),
d € N, where p is the metric induced by any norm on R¢. Throughout this chapter we assume
that 4 is such that |B| € (0, 00) holds for each open ball B determined by p.
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6.1 Preliminaries and results

Consider a metric measure space X = (X, p, u). Throughout this chapter B,(x) stands for the
open ball centered at € X with radius r € (0,00). By LL (1) we denote the space consisting
of functions f which are integrable (with respect to u) on every ball B C X. Note that this
definition is slightly different from the standard one, where the integrability of f on every compact
subset of X is assumed. Nevertheless, if X is such that every ball has compact closure, then the
two definitions are equivalent (this is the case for the standard Euclidean space, for example).
We say that the associated noncentered maximal operator M possesses the dichotomy prop-
erty if for any f € Ll (1) exactly one of the following cases holds: either |E.(f)] = 0 or
Ex(f) = X, where Eoo(f) == {z € X : Mf(z) = oo}. Similarly, the associated centered
maximal operator M€® possesses the dichotomy property if for any f € Llloc(u) we have either
|ES,(f)] =0o0r ES (f) = X, where ES (f) = {x € X : M°f(x) = co}. Notice that, equivalently,
the dichotomy property can be formulated in the following way: if M f(z¢) < oo (respectively,
M f(zg) < 00) for some f € LL (u) and 2y € X, then M [ (respectively, M€ f) is finite p-almost

everywhere.
The following theorem is the main result of this chapter.

Theorem 6.1.1. For each of the four possibilities regarding whether M and M€ possess the di-
chotomy property or not, there exists a nondoubling metric measure space for which the associated
mazimal operators behave just the way we demand.

Proof. Examples A, B, C, and D in Sections 6.2 and 6.3 together constitute the proof of this
theorem, illustrating all the desired situations. O

It is worth noting at this point that, in addition to indicating appropriate examples, our goal
is also to ensure that they are constructed as simply as possible. Thus, in all examples presented
later on X is either R? or Z¢, while p is the standard Euclidean metric d, or the supremum
metric d. Finally, in the discrete setting p is defined by letting p({z}) € (0, 00) for each point
x € X, while in the continuous situation p is determined by a suitable strictly positive and
locally integrable weight w.

For the convenience of the reader, the results obtained in Examples A, B, C, and D have
been summarized in Table 6.1 below.

Table 6.1: Occurrences of the dichotomy property (DP) for M and M€ associated with spaces
described in Examples A, B, C, and D.

X | p 1 DP for M | DP for M¢
Ex. A | R | de du(z) = exp(2?)da v X
Ex. B | R | de du(z) = exp(—2?)dz 4 v
mlif p =
Bx. C | Z* | doo u({(nm)}) = { ' 1 i)ftgerw(i)s’e. X v
4lmlif n =0,
Ex.D | Z? | do | p({(n,m)}) =¢ 27" ifn<0andm=0, X X

1 otherwise.
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One more comment is in order. While the doubling condition for measures is often assumed
in the literature to provide that most of the classical theory works, some statements can be
verified under the less strict condition that the space is geometrically doubling or satisfies both
geometric doubling and upper doubling properties (see [21] for the details). In our case, although
the metric measure spaces appearing in Table 6.1 are nondoubling, the corresponding metric
spaces are geometrically doubling. This means that the general result for the class of doubling
spaces, concerning the existence of the dichotomy property for maximal operators, cannot be
repeated in the context of geometrically doubling spaces. Finally, Example 6.4.3 in Section 6.4
illustrates the situation where the space is geometrically doubling and upper doubling at the
same time, while the associated operator M does not possess the dichotomy property.

6.2 Real line case

In this section we study the dichotomy property for M and M€ associated with the one-
dimensional space (R,de, ) with arbitrary Borel measure p. We consider spaces from this
class separately, since they share certain specific properties, mainly due to their linear order (for
example, in this context M always satisfies the weak type (1, 1) inequality with constant 2). Our
first task is to prove the following result.

Proposition 6.2.1. Let X = (R, de, ) with p such that |B| € (0,00) for each B C R. Then M
possesses the dichotomy property.

The proof of Proposition 6.2.1 is preceded by some additional considerations.
Let 7(B) be the radius of a given ball B. For f € LL (1) we denote

Lp= = {eeRilim s o 5 [ 1) = F@)lduts) = o}
and
Iy = L5 = {w € R iy s / )~ f(@)|du(y) = 0}.

Notice that there is a small nuisance here, because f is actually an equivalence class of functions,
while Ly and L‘Ji clearly depend on the choice of its representative. Nevertheless, for any two
representatives fi and f; of a fixed equivalence class we have [Ly ALp| =0 and [LG ALY, | =0
(where A denotes the symmetric difference) and this circumstance is sufficient for our purposes.

The conclusion of the following lemma is a simple modification of the well known fact about
the set of Lebesgue points of a given function. Although the proof is rather standard, we present
it for the sake of completeness (cf. [17, Theorem 3.20]).

Lemma 6.2.2. Let X = (R, de, p) with p such that |B| € (0,00) for each B C R. If f € L. (n),
then |[R\ Ls| = 0.

Proof. Let us introduce the sets Ly y with N € N by

IN
i
—

Ly = {acER:limsup sup / |f(y) x)| du(y)
r—=0  Bsz:r(B)=r ’B‘
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Note that Ly = (X_; Ls,n. Therefore, it suffices to prove that for each N € N there exists
a Borel set Ay such that (=N, N)\ Ly y C An and |Ay| < 1/N.
Fix N and consider fy = f-1(_n_1n41)- Thus, fy € L'(u) and Ly, n coincides with Ly x
n (=N, N). Take a continuous function gy satisfying || fx — gn|[z1() < 1/(9N?) (notice that
continuous functions are dense in L'(u) by [17, Proposition 7.9]) and define two auxiliary sets

Ey={zeR:|(fn —gn)(z)] > 1/(3N)}, EY ={z eR: M(fn —gn)(z) > 1/(3N)}.

Observe that |E}| < 1/(3N) and |E%| < 2/(3N). Now we fix 29 € (=N, N) \ (B} U E%) and
take € € (0, 1) such that |gn(y) — gn(z0)| < 1/(3N) whenever |y — 20| < €. If B contains zg and
satisfies r(B) < €/2, then by using the estimate

1f(y) = f(@o)| < |fn(y) — an (W) + lgn (y) — gn(@o)| + [(gn (z0) — Fn(zo)l;

which is valid for all y € B, we obtain

1 1
) du(y) < — — < =
7 L 1£0) = F@) dn(s) < MUty =)o) + 337 + (o) = (o)) < -
and therefore Ay = Ezl\/ U EJQV satisfies the desired conditions. O

Remark 6.2.3. The definitions of Ly and LS can also be adapted to the case of arbitrary space
(X, p,p). Then we have | X \ Lyl =0 (respectwely, (X \ L =0) for all f e LL (w) if only the
associated mazximal operator M (respectively, M€) is of weak type (1,1) and continuous functions
are dense in L' (u). This is the case, for evample, when dealing with L§ and (R, p, 1) withd € N,
where p is induced by a fized norm (in particular, p = de and p = do are included) and p is
a Borel measure. We explain some details more precisely in Section 6.4.

We are now ready to prove Proposition 6.2.1.

Proof of Proposition 6.2.1. Assume that |Es(f)] > 0. Then we can take x € L such that
M f(z) = co. For each n € N there exist a ball B,, containing x and satisfying

1
Bl s ) duly) > n
Fix € € (0, 00) such that
51 1) = @)l aut) <1

holds whenever r(B) < ¢, and denote § := min{u((z — €¢/2,z]), u([x,z + €/2))} € (0,00). We
obtain that B,, C (v —€¢/2,x +¢/2) if n > |f(x)| + 1 and, as a result, |B,| > ¢ for each such n.

Next we fix an arbitrary point 2’ € R with 2/ > z (the case x < 2z’ can be considered
analogously). We denote v = |(z,2’ 4+ 1)| and notice that v < oo. Moreover, let B, := B, U
(x,2' +1) for n € N. If n > |f(z)| + 1, then the set B/, forms a ball containing z’ and therefore

, 1 |Bn| 1 on
d d .
MI@ 2 g [ 150100 2 g [ 161 2 7
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This, in turn, implies that M f(z') = oo, since n can be arbitrarily large. O

At the end of this section we give an example of a space of the form (R, de, w(z)dz), where
w is a suitable weight (and w(x)dz is nondoubling), for which the centered Hardy-Littlewood
maximal operator does not possess the dichotomy property.

Example 6.2.4 (Example A). Consider the space (R, de, pt) with du(x) = exp(x?)dx. Then M
possesses the dichotomy property, while M does not.

Indeed, M possesses the dichotomy property by Proposition 6.2.1, and for the second part we
argue as follows. Let f(z) == x - 1(goc)(z). We shall show that M°f(z) = oo if and only if
x € ]0,00). For z € R and r € (0,00) let us introduce the quantity

1
1B ()] J, )

First, observe that lim, ,o A, f(0) = co. Indeed, fix N € N and take ro € (N, 00) such that

/ e dz > 1/ e dz
(N,r) 3 J(=rp)

holds whenever r > rg. Therefore, for each such r we obtain

Af(x) = £ (y)] e’ dy.

A, f(0) = f(z)e* dax > Tdr >

[B:(0)]
and thus M°f(0) = co. If x € (0,00), then A, f(x) > A,4,f(0) holds whenever r > z. This
fact gives M°f(x) = oo for each such z. It remains to show that M¢f(x) < oo if x is strictly

negative. Observe that it is possible to choose 7o € (|z|, 00) such that e®* < 2|z[e™ holds
whenever r > 1. If r < rg, then A, f(x) < f(z + rg). On the other hand, if » > ry, then

1 2 N 22 N
1B+(0)| /B, (0) 3’

1 e(err)Q e(:):+7“)2
flx)e” “dr <
B Jo, )T

<
=2/ —r,—r)| T 2lz|er® T
Consequently, we obtain M f(z) < co.

Arf(z) <

6.3 Multidimensional case

Throughout this section we work with spaces that do not necessarily have a linear structure. In
the first place we would like to get that in certain circumstances M¢ must possess the dichotomy
property. Of course, for our purpose, we should ensure that the introduced criterion is relatively
easy to apply and returns positive results also for some nondoubling spaces. Fortunately, it turns
out that it is possible to find a condition that successfully meets all these requirements.

The following result is embedded in the context of Euclidean spaces but it is worth keeping
in mind that, in fact, it concerns all spaces for which |X \ L} = 0 holds whenever f € Li ().
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Proposition 6.3.1. Let X = (R% de, ) with d € N and p such that |B| € (0,00) for each
B C R. Assume that
~ ~ |Br+1(y0)|

C = C(yo) := limsup

< 0o for some yo € RY. 6.3.2
r—00 |Br(y0)| ( )

Then the associated maximal operator M€ possesses the dichotomy property.

Observe that the condition (6.3.2) is related to certain global properties of a given metric
measure space X and thus its occurrence (or not) should be independent of the choice of yp.
Indeed, it can easily be shown that if the inequality in (6.3.2) holds for some yg, then it is also
true for any y € X in place of yp (possibly with another constant C depending on y).

Secondly, as it turns out according to Theorem 6.4.1 in Section 6.4, the converse also holds
in the case X = (R?, d,, 1). Namely, we shall prove that if M® possesses the dichotomy property,
then (6.3.2) holds for some yg € R? In Proposition 6.3.1 above we state only one of the
implications, since this is enough to prove Theorem 6.1.1. On the other hand, the opposite
implication allows us to say that the formulated condition is sufficient and necessary at the same
time and, since looking for such conditions is interesting itself, we discuss it in a separate section.

Proof. Let f € LL (p) and assume that |ES (f)| > 0. We take xq € L such that M f(zo) = oc.

loc
Hence for each n € N we have a ball B,, centered at xy and satisfying

1

Bal /. |f ()] du(y) > n.

Fix € € (0, 00) such that

1

[Br(@0)] /5, o) |f(y) = f(xo)ldu(y) <1

holds whenever r < € and denote ¢ := |Bc(z¢)| € (0,00). If n > |f(x0)| + 1, then B,, € Be(z)
and, as a result, we have |B,| > §. This fact easily implies that lim,, ., r, = oo, since f is
locally integrable.

Let us now fix x € RY. There exists rg € (0,00) such that

|Bri1(y0)| < 2C|B;(yo))

if r > ro. We take ng > |f(zo)|+1 large enough to ensure that if n > ng, then r, —|yo —zo| > ro.
For each n € N consider the ball By, :== B, 40—s((z). If n. > ng, then

|B’;L’ < ’Brn+|xofx\+\yofx\(y0)| < (2c~1>m‘Brnf|xofyo|(x0)‘ < (26)m’Bn‘7

where m is a positive integer independent of n and such that m > |z — x| + |yo — | + |70 — Yo
Finally, by using the fact that B,, C B], we obtain

1 |B,| 1 n

B /B Wl 2 g [ 1wl 2 i

MEf(z) =

which gives M€ f(z) = oo, since n can be arbitrarily large. O
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Remark 6.3.3. The conclusion of Proposition 6.3.1 remains true if we take doo instead of de
provided that this time the balls determined by do are used in (6.3.2). There are also no obstacles
to getting discrete counterparts of these statements. Namely, one can replace R by Z¢, and obtain
the desired result for the space (Z%, p, 1), where p = de or p = dso and p is arbitrary.

Now, with Propositions 6.2.1 and 6.3.1 in hand, we can easily give an example of a nondou-
bling space, for which both M and M possess the dichotomy property.

Example 6.3.4 (Example B). Consider the space (R, de, ) with du(z) = exp(—x2)dx. Then
both M and M° possess the dichotomy property.

Indeed, M possesses the dichotomy property by Proposition 6.2.1, while M® possesses the
dichotomy property by Proposition 6.3.1, since lim,_,~ |Br+1(0)|/|Br(0)| = 1.

At this point a natural question arises: will we get the same result for Gaussian measures in
higher dimensions? The next proposition settles this in the affirmative.

Proposition 6.3.5. Let X = (R?, de, u) with d € N and p such that |RY| < co. Assume that p
is determined by a strictly positive weight w such that, for each n € N,

w(zx) € [ep, Chl, x € B,(0), (6.3.6)

for some numerical constants ¢, Cy, € (0,00) with ¢, < C,. Then the associated mazimal
operators, M and M€, both possess the dichotomy property.

Proof. It suffices to prove that M possesses the dichotomy property, since |R%| < oo implies that
(6.3.2) is satisfied with C = 1 (regardless of which point yo € R? we choose).
Take f € LL (u). We shall show that [R%\ Ly| = 0. For each n € N consider y,, determined

by the weight w,, given by
wn(z) = { w(z) if z € By(0),

1 otherwise.

Observe that the condition (6.3.6) implies that j, is doubling. Let f, == f1p, ). We have

[Bu(0) \ Lyl = |Ba(0) \ Ly, ()| < IR\ Ly, ()| = 0,

because f, € LL _(un). This gives [R?\ L¢| = 0, since n can be arbitrarily large.
Assume that |Eo(f)| > 0 and take xg € Ly such that M f(zg) = co. For each n € N there
exists a ball B,, containing xg and such that

1
|Bnl JB,

|f ()] du(y) > n.

Fix e € (0,00) such that
1
o [ 10w~ )l dnte) <1
|B| /B
holds whenever B C B(xg). If n > |f(zo)| + 1, then B, € Bc(zp). Thus, combining the

condition (6.3.6) with the fact that r(B,,) > €/2 for each n as before, we conclude that |B,| > 0
for some ¢ € (0,00) depending on zy and € but independent of n.
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Let us now fix € R? and take n € N such that n > |f(xg)| + 1. Let B/ be any ball
containing x and B,,. Then we obtain

1 on
> d )|d on
which gives M f(z) = oo, since n can be arbitrarily large. O

Until now we furnished examples illustrating two of the four possibilities related to our initial
problem. In both cases the specified space was R with the usual metric and a Borel measure
determined by a suitable weight. Unfortunately, as was indicated in Proposition 6.2.1, such
examples cannot be used to cover the remaining two cases, since this time we want M to not
possess the dichotomy property. Therefore, a natural step is to try to use R? instead of R.
This idea turns out to be right. However, for simplicity, the other two examples will be initially
constructed in the discrete setting Z2. Also, for purely technical reasons, the metric d, is replaced
by dso. Nevertheless, after presenting Examples C and D, we include some additional comments
in order to convince the reader that it is also possible to obtain the desired examples using metric
measure spaces of the form (R2, de, 11).

While dealing with Z?2, for the sake of brevity, we will write shortly B,.(n,m), u(n, m),|(n,m)|
instead of B, ((n,m)), u({(n,m)}), |{(n,m)}|, respectively.

Example 6.3.7 (Example C). Consider the space (Z2,dx, 11), where u is defined by

u(n,m) = { amifn=0,

1 otherwise.
Then M€ possesses the dichotomy property, while M does not.

Indeed, observe that M€ possesses the dichotomy property by Proposition 6.3.1 (or, more pre-

cisely, by Remark 6.3.3), since
hm ‘BT‘FI <07 0)’

=4.
r=oo |B,(0,0)|

To verify the second part of the conclusion consider the function f defined by

2" if n >0 and m =0,
0 otherwise.

fn,m) = {

We will show that M f(1,0) = oo and M f(—1,0) < oo (in fact, it should be clear to the reader
that (1,0) and (—1,0) may be replaced by any other points (n1,m1) and (n2, m2) such that n;y is
strictly positive and ng is strictly negative). For each N € N consider the ball By := By(N,0).
Observe that

2N

1 fIN,0) - |[(N,0)]
Mf(l,O)Z|BN|(nmz)£B f(nvm)’(nvmﬂz (2N*1)2 - (2N71)2

which implies that M f(1,0) = oo, since N can be arbitrarily large. On the other hand, consider
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any ball B containing (—1,0) and denote
K = K(B) =max{n €Z: (n,0) € B}.

If K <0, then clearly >, .ycp f(n,m) - [(n,m)[ = 0. In turn, if K > 0, then B must contain
at least one of the points (0, —|K/2]) and (0, | K/2]). Consequently, we have

1 2f(K,0)
_ . < == L 2K
(n,m)eB
which implies that M f(—1,0) < oo.
Example 6.3.8 (Example D). Consider the space (Z2,dwo, it), where p is defined by

glmlifn =0,
w(n,m) == 27° ifn <0 and m =0,
1 otherwise.

Then both M and M€ do not possess the dichotomy property.

Indeed, to verify that M does not possess the dichotomy property we can use exactly the same
function f as in Example C. It is easy to see that M f(1,0) = oo and M f(—1,0) < oo hold as
before. In order to show that M does not possess the dichotomy property consider g defined by

on? if n>0and m =0,
g(n,m) = i
0 otherwise.

For each N € N consider the balls BY :== By(1,0) and By, :== Bn(—1,0). If N is large, then

1 g(N,0) N2 (N-2)21
Tl : >_ JVDE) 9

B+ Z g(n7m) |(n¢m)’ = 9l(_N 270
\N!(mn)EB]+V (=N +2,0)]

e 1 29(N — 2,0)
4 _N2 _9)2
D g(n,m)-y<n,m)\ggT:2 N2+(N=2)%+1
|Bx| - (=N, 0)]
(n,m)€By

This, in turn, easily leads to the conclusion that M¢g(1,0) = oo and M°g(—1,0) < co.

Finally, as we mentioned earlier, we outline a sketch of how to adapt Examples C and D to
the situation of R? with the Euclidean metric. First, note that the key idea of Example C was
to construct a measure which creates a kind of barrier separating (in the proper meaning) the
points (n, m) with positive and negative values of n, respectively. Exactly the same effect can be
achieved if we define w so that it behaves like el¥! in the strip = € (—%, %) and like 1 outside of it.
However, because of some significant differences between the shapes of the balls determined by
de and doo, respectively, one should be a bit more careful when looking for the proper function
f such that Mf(z,y) = oo if x > 1 and M f(z,y) < oo if x < —1. Observe that any ball B

such that (—1,0) € B and (N,0) € B must contain at least one of the points (0, —/N) and
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(0,v/N). Therefore, if By is such that N is the largest positive integer n satisfying (n,0) € By,
then one should ensure that the integral | By (z,y) w(z,y)dx dy does not exceed C’e‘/ﬁ, where
C € (0,00) is some numerical constant. On the other hand, we want this quantity to tend to
infinity with N faster than N2. This two conditions are fulfilled simultaneously if, for example,
f(x,%) behaves like 22 in the region {(z,y) € R?: 2z > 0, |y| < %}, and equals 0 outside of it.

Finally, to arrange the situation of Example D, it suffices to define w in such a way that it is
comparable to el if |z| < %, to e’ if z < 0 and ly| < %, and to 1 elsewhere. Also, apart from
those described above, there are no further difficulties in finding the appropriate functions f and
g that break the dichotomy condition for M and M€, respectively.

6.4 Necessary and sufficient condition

The last section is mainly devoted to describing the exact characterization of situations in which
M possesses the dichotomy property, for metric measure spaces of the form (R, d,, ;) with
d € N and p such that |B| € (0,00) for each B C R. Namely, we have the following theorem.

Theorem 6.4.1. Let X = (R? de, ) with d € N and p such that |B| € (0,00) for each B C R.
Then MC possesses the dichotomy property if and only if (6.3.2) holds.

We show the proof only for d = 2, since in this case all the significant difficulties are well
exposed and, at the same time, we omit a few additional technical details that arise when d > 3.
In turn, the case d = 1 is much simpler than the others, so we do not focus on it. When dealing
with R?, we will write shortly B,(x,y) instead of B,((x,v)), just like we did in the previous
section in the context of Z2.

Proof. Let us first recall that one of the implications has already been proven in Proposition 6.3.1.
Thus, it is enough to show that (6.3.2) is necessary for M€ to possess the dichotomy property.

Take (R?,d, ;1) and assume that (6.3.2) fails to occur. Thus, for the point (0,0) there exists
a strictly increasing sequence of positive numbers (ay)ren such that

| Bay+1(0,0)] > 2%% By, (0,0)]

holds for each k£ € N. In addition, we can force that a; > 8 and ag41 > ar + 2. For each n € N
and j € [2"] we define

2m(j — 1) @)}

S0 = {(@:9) € Buenn(0,0): (awy) € [TE =, 2

where ¢(x,y) € [0,2m) is the angle that (x,y) takes in polar coordinates.
Take n = 1 and choose j; € [2] such that the set

1
Ay = {k eN:[sY) | > \Bak(0,0)\/Q}
is infinite. Next, take n = 2 and choose jo € [4] satisfying [j2/2] = j1 and such that

A2 = {k; € Al : ’Bli?27j2| > |Bak(0a0)|/4}
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is infinite. Continuing this process inductively we get a sequence (j, )nen satisfying [jn+1/2] = jn
for each n € N and, by invoking a suitable diagonal argument, a strictly increasing subsequence
(ak, )nen such that for each n € N we have

S, 12 |Ba,, (0,0)]/2",  neN,

From now on, for simplicity, we will write B,, and S, j, instead of B,, (0,0) and S,g::_ i
respectively. Observe that the obtained sequence (j,)nen determines a unique angle ¢ € [0, 27)
which indicates a ray around which, loosely speaking, a significant part of u is concentrated. For
the sake of clarity we assume that ¢g = 0 (thus, (j,)nen equals either (1,1,1,...) or (2,4,8,...)).

For each n € N denote B,,— = By /5(—ay, +2,0) and consider the function f defined by
o~ 2" [ By
f= 1p, .
2B,
Of course, f € L (). We will show that M°f(z,y) = oo for (x,y) € Bjs2(0,0) and

Mcf(xay) < oo for («T,y) S Bl/2(370)
Fix (z,y) € By/2(0,0) and observe that B, C By, —1(¥,y) C B, and therefore

1

S fdp>
’Bakn—l(xvy” Bakn—l(xvy)

fdu=2"
|Bn| /B,

which gives M°f(x,y) = oco.
In turn, fix (z,y) € By/2(3,0) and consider r € (0,00) such that B,(z,y) intersects at least
one of the sets B,,_. Notice that this requirement forces r > 2. We denote

N = N(z,y,r) =max {n € N: By(z,y) N Bp— # 0}.

One can easily see that r > ay, and hence (ag,,0) € By_2(z,y). Also, it is possible to choose
No := No(z,y) € N\ {1} such that if N > Ny and (ax,,0) € Br_a(z,y), then Sy C Br(x,y).
Define

N = N(z,y) =max {r € (2,00) : N(z,y,7) < No} € (2,00).
If 7 € (2, N], then

1

-7 fdu=0C,
’BT(xa y)‘ Br(z,y)

1
fdp < ———
|BQ(*T7 y>| Bﬁ+1(x7y)

where C' € (0,00) is a numerical constant depending on (z,y) but independent of r as above.
On the other hand, if » > N, then

1 2N+ B
|Br(z,9)| /B, (2y) |SN+,jn]
Consequently, we have M f(z,y) < oo. O

Remark 6.4.2. The proof presented above relies on certain Euclidean geometry properties and
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therefore it cannot be repeated in a more general context. However, one can replace do with p
induced by any norm on R% and get the same result by using similar arguments with only minor
modifications. In this case, of course, the balls in (6.3.2) are taken with respect to p. Thus, among
other things, we must take into account how the shape of these balls is related to the direction
determined by the angle ¢ specified in the proof. Finally, the weak type (1,1) inequality of M®
associated with (R?, p, 1), which is needed to provide |RY \ L§e| = 0 in Proposition 6.5.1, can be
deduced from a stronger version of the Besicovitch covering lemma (see [13, Theorem 2.8.14]).

We conclude our studies with an example which indicates that a potential necessary and
sufficient condition for M must be significantly different from the one stated for M°. Namely,
while (6.3.2) concerns only the growth at infinity of a given measure, the parallel condition for
M should deal with both global and local aspects of the considered spaces. Thus, this problem,
probably more difficult, is an interesting starting point for further investigation.

Example 6.4.3. Consider the space (R?,de, p1) with p == A1 + X2, where A1 is one-dimensional
Lebesgue measure on A == [0,1] x {0} and A is two-dimensional Lebesgue measure on the whole
plane. Then there exists f € L'(u) with compact support such that Eno(f) = A.

Indeed, for each n € N denote S, = [0, 1] x (27"* 277**+1) and consider the function

(o]
f=> 2"1g,.
n=1
2

Observe that f equals 0 outside the square [0,1] x [0,1] and || f|l; = > o2 2" -27" < 2. Fix
x € [0,1] and for each n € N consider the ball B, == B, 2., (z,27"), where €, € (0,00) is
such that | By| < 27272, Notice that (z,0) € B, for each n. If n > 2, then |B, N S,| > 2727°~1
which gives
1 on . 272n271
dy>——5— =
Bl /5. Fdnz — =505

Consequently, we have M f(z,0) = co. On the other hand, consider (z,y) ¢ A. Now there exist
€, L € (0,00) such that if de((z,y), (z/,y')) < 2¢, then f(2/,y’) < L. Consequently, we obtain
Mf(z,y) < max{L, | fll/(me*)} < oo.
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Here we give an elementary proof of Theorem 4.4.12 stated in Subsection 4.4.3. In what follows
the operator is specified to be M., but one can also replace it with, for example, any operator
‘H satisfying the following assertions:

(A) 0< fi<fo = 0<Hf1 <Hfo,
(B) [Hf| < HIf],
(C) H(Ifal + | f2]) < Cu(H]fr] + H]f2l)-

Proof of Theorem 4.4.12. First, notice that we can assume that ¢y < ¢1 and rg < r1. Indeed, in
each of the remaining cases the thesis follows easily from Fact 4.1.3.
Fix § € (0,1) and let C_, be such that

IM&llpr: < Collgllpg, g€ LPH(X), i € {0, 1}
Our aim is to obtain the inequality

Mg

pro = CHng,qev (A1)

for each g € L% (X) with some C independent of g. For any measurable function g: X — C we
introduce Sg,Tg: Z — [0, 0] by

Sg(n) = 2"d,(2M)Y?,  neZ,

and
Tg(n) = SMsg(n) = 2"dpme (2P,  nel.

We observe that for each g € [1, 00] there is a numerical constant Cp(p, ¢) such that

1
Cao(p,q)

where || - ||4 denotes the standard norm on ¢9(Z). Let

1Sallq < llgllp.q < Colp,q) ISgllg, g € LP(X),

Co = maX{CD(pa q0)a CD(p7 q9)a CD(p’ Q1), CD(pv TO)a CD(p7 T@)a CD(pv 7’1)}.
Thus for each ¢ € {0,1} we have
ITgllr, < CEC [1Sglla, (A2)

107



108 Appendix. Interpolation theorem

and our aim is to obtain the inequality
1T gllry < CliSgllgs (A3)

which would imply (A1) with C = CC2,.

In order to deduce (A3) from (A2) we follow the classical proof of the Marcinkiewicz inter-
polation theorem for operators acting on Lebesgue spaces (see [53, Theorem 1]). It turns out
that this strategy can be successfully applied but we must take into account certain additional
difficulties. Namely, our “map” is given by Sg +— T ¢ and this operation cannot be understood
as a well defined operator, since there are usually many different functions with the same dis-
tribution function. Thus, we do not apply the Marcinkiewicz interpolation theorem directly but
rather repeat its proof in our context. We proceed with the details below.

Assume that r; < oo and fix f € LP%(X) satisfying f > 0. For each A € (0, 00) we introduce
the set Ny = {n € Z : Sf > A}. Observe that either Ny = ) or Ny consists of finitely many
elements n; > -+ > n,, for some m € N. For each j € Z let E; = {x € X : f(z) > 2/}. If
Ny =0, then we let f3 :==0 and f{ := f. Otherwise, if Ny # (), then we define

f(?\ =f- (1En1 + ZlEnk\Enkfl)’ fl)\ =f- Z 1E”j\E"J'—1'

k=2 JEZ\N)
Notice that f < f3 + f7* and hence M f < M%f@ + M%ff‘ Moreover, we have
Sfi(n) =Sf(n) > A,  n€ Ny,

and
Sfi(n) <min{\, Sf(n)}, nez.

Let (Sf)} ==Sf 1n, and (Sf)} = Sf - 17\ n,- Then it is not hard to check that
1S lgr < (12787 4 479/ 4 YVE S g, (A4)
Next we study the distribution functions of (Sf)?, i € {0, 1}, more carefully. Observe that we

have d(sf)a(y) < dsf(A) for y € (0, ) and dis (y) < dsg(y) for y € [\, 00). Hence, combining
these estimates, the fact that d( S is nonincreasing, and the equality

2/2 A
940 / yqo—l dy = / yqo—l dy,
0 0

o] 3 240 o 3 oo B
/ Yy s (v) dy < 500 1 / y*© N dsp(y) dy < 2% / (y — A/4)* dss(y) dy.  (A5)
0 22 24

we conclude that

Similarly, since dg ) (y) < dsf(y) for y € (0,) and d(sf)é(y) =0 for y € [\, 00), we have

00 A A4
/0 y" s (y) dy < /0 y© sy (y) dy < 270 /0 y* sy (y) dy. (A6)
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Now we turn our attention to 7f. Fix y € (0,00) and A = A(y) € (0,00) (which will be
specified later on). Since M§f < MS§fa+MSf7, we have T f(n) < 2YP(T £ (n—1)+T f(n—1))
for each n € N. Hence

drs(9) < dypy (0/27) + dr (/2119 (A7)

By the hypothesis we have

TS0 ISFAG:

dypa(y/217) < 2mifP s (2'/PcECL)" i (A8)
Therefore, combining (A4), (A5), (A6), (A7), and (A8) gives
o (o.9] o0 7“0/‘]0
17515 =m0 [ targyay < o[yt ([ @ awam st )" dy
0 0 Ay)/4

(eS) A(y)/4 ri/
+/ yo (/ 10Ny (1) dt) o dy)
0 0

with some constant ¢’ which may depend on p, qo, q1, 709,71, 6, and C_, but is independent of f
and the choice of \(y).

It is worth noting here that the inequality above reduces the problem to estimating the
expression of the form very similar to that appearing in [53, (3.7)| (here ds¢, A/4, qo, ¢1, 70, 71,
and 7y play the roles of m, z, as, a1, be, b1, and b, respectively). Thus, in order to obtain (A3),
we may repeat the remaining calculations without any further changes. We briefly sketch the

rest of the proof for the sake of completeness.
Denote by P and @Q the two double integrals appearing in the last estimate. Then
o0 o0
Po/T = sup / yroro / (t = My)/4) ™ dsg(t) dtwo(y) dy
wo JO Ay)/4

and
00 A(y)/4
qu/rl = sup /0 yrgfmfl A tq171 de(t) dt wy (y) dy,

w1

where the functions w; are nonnegative and satisfy

[ee) 1 T4
0

(note that (%)_14—(”%’%)_1 =1). Weset A\(y) = 4||Squ_eT£y5, where 7, £ € R will be determined
later on (of course, we can assume that ||S f||4, > 0). Now, by using Hélder’s inequality, we obtain

/0 g /Han—Tg (= IS Fllg o)™ disy (1) dt woly) dy
a9 Y

o0 IS flig,t!/¢
< / 0 dsg(t) / Y00 g (y) dy dt
0 0
ro—40

o0 IS flg, e/ a0 IS gyt 0
< [Tetago | yortag) (| YTl (y)dy) T dt
0 0 0
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and the last expression does not exceed

(rg=r0)aoT roo . (rg—rglag
(ro— 10) SIS Fllgy ™ / (T () .

Similarly, we obtain

o0 IS Fllag
/ yrg—rl—l/ tq1—1dsf(t)dtw1(y)dy
0 0
rg=r)ar  poo . (rg—ri)ay
< (ri—r0) VIS lgp / T dgy(1) ar.
0

Collecting these estimates we conclude that

_ (r 7‘7,)47, Ti/i
rwnmw”Zusm ([T g ae)

for some C” independent of f. Choosing

- qe(rqul - Toqal)’ { — qe_l(rl_l - TG_I) (Ag)

L —To _7"9_1((11_1—%_1)’

gives that both terms in the sum above equal [|Sf||79. Thus (A3) holds with C = (20",
which completes the proof in the case r; < co.

Finally, let us assume that r; = co. If g1 = oo, then the formulas in (A9) reduce to 7 =0
and £ = 1. We choose A(y) := cy for some sufficiently small constant ¢ € (0,00). In fact, if
¢ < CZ'C%27Y/7, then we have dpa (y/2'/P) = 0, while dpa (y/2'/P) may be estimated in the
same way as it was done before. On the other hand, if ¢ < 0o, then the formulas in (A9) reduce to
T=qp/q1 and € = q1/(q1 —qp). Again, it can be shown that if A(y) := c’HfHq_eqe/(qrqe)yql/(q“q@),
where ¢ € (0,00) is sufficiently small (but independent of f and y), then drpa (y/2'/7) = 0 and
deO)\ (y/2'/P) may be estimated as before. This completes the proof in the case 1| = oc. O
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