
March 10, 2011 11:28 WSPC/S0218-1274 02859

International Journal of Bifurcation and Chaos, Vol. 21, No. 2 (2011) 545–550
c© World Scientific Publishing Company
DOI: 10.1142/S0218127411028593

DUAL SKEW PRODUCTS, GENERICITY
OF THE EXACTNESS PROPERTY AND FINANCE

ZBIGNIEW S. KOWALSKI
Institute of Mathematics and Computer Sciences,

Wroc�law University of Technology,
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By introducing the concept of dual skew products and dual measures we obtain the class of skew
products over Bernoulli shifts for which exactness is generic. We use the above to describe the
stationary distributions of random walks determined by skew products as above. Finally, the
application to binomial model for asset prices is presented.
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1. Introduction

Let us consider two homeomorphims S0, S1 of the
interval I = [0, 1] onto itself. They determine the
random walk on I as follows: x goes to S0(x) with
probability p and x goes to S1(x) with probability
q. Random walks on I may be realized as trans-
formations of a larger space. Let Ω be the space
{0, 1}N , N = {0, 1, 2, . . .}, with the (p, q)-measure
µp on (Ω,B), where B is the Borel product σ-algebra
and (p, q) is a prabability vector. Let σ be the one-
sided shift on Ω. In the space Ω × I we define the
skew product

S(ω, x) = (σ(ω), Sω(0)(x)). (1)

The distribution of the trajectory of the walk is
characterized by S-invariant measures belonging to
Mp(S). Here, Mp(S) denotes the set of S-invariant
probability measures such that m | B × {∅, I} = µp

for m ∈ Mp(S). Let us consider the inverse ran-
dom walk i.e. x goes to T0(x) with probability
p and x goes to T1(x) with probability q where
Ti = S−1

i for i = 0, 1. Denote by T (ω, x) and
Mp(T ) the skew product and the set of invariant

measures respectively for this walk. The pair S, T
will be called the dual pair. In this paper, we investi-
gate the following question: What is the relationship
between Mp(S) and Mp(T )? We construct the map
∗ : Mp(T ) → Mp(S) which is one to one and onto.
The construction of ∗ partially attaches to the map
# for dual-fibre systems considered in Chap. 21 of
[Schweiger, 1995]. Let Λ denote the Lebesgue mea-
sure on I. Now, we assume that µp × Λ ∈ Mp(T ).
Such situation was first considered in [Kowalski,
1987]. In general (T, µp×Λ) does not have any one-
sided generator of finite entropy. We show that if
the natural extension of (T, µp×Λ) to the automor-
phism is K-automorphism then (S, µp × Λ∗) has a
one-sided generator of finite entropy and is exact.
Moreover, µp × Λ∗ is nonatomic and nonabsolutely
continuous. Next, we prove that there exist dense
Gδ-sets in some compact metrizable spaces of home-
omorphisms g for which

Mp(Sg) = conv{µp × δ{0}, µp × δ{1}, µp × Λ∗}
where µp × Λ∗ has the properties as previously.
Here Sg0 = g, Sg1 = ǧ (for the definition of ğ
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see (3)). The genericity of dynamical properties
for deterministic homeomorphisms of Cantor set is
studied in [Hochman, 2008]. The description of sets
Mp(Sg), Mp(Tg) and ergodic properties of their ele-
ments allows us to get more exhaustive informa-
tion about the distribution of the trajectory of the
walk (see section below). The next section discusses
the product structure of invariant sets and invari-
ant measures of skew products with Bernoulli shift
in the base. Among other things, the example of
dissipative skew product with no product invariant
set is given. Section 4 is assigned to the binomial
model for asset prices. By using the results of Sec. 2,
we show that the asset price may be changed in a
chaotic way.

2. Dual Measures

Let σ be the two-sided (p, q)-Bernoulli shift on the
space Ω = {0, 1}Z , Z = {0,±1,±2, . . .}, with the
(p, q)-measure µp on (Ω,B), where B is the Borel
product σ-algebra. We define the transformations

S(ω, x) = (σ(ω), Sω(0)(x)),

T (ω, x) = (σ(ω), Tω(0)(x)),

which are homeomorphisms on Ω × I.

Theorem 1. T and S−1 are topologically conjugate.

Proof. Let Ť (ω, x) = (σ−1(ω), Tω(0)(x)). We desig-
nate homeomorphism Φ : Ω × I → Ω × I by for-
mula Φ(ω, x) = (φ(ω), x) where φ(ω)(i) = ω(−i).
By σ(φ(ω)) = φ(σ−1ω) we get ΦŤ = TΦ. Next, let
Ψ(ω, x) = (σ−1(ω), x). Then ΨS−1 = ŤΨ. There-
fore, ΦΨ makes the topological conjugation between
T and S−1. �

Let µ ∈ Mp(T ) and µ be the T -invariant measure
such that (T , µ) is the natural extension to auto-
morphism of (T, µ). The measure µ satisfies the
equalities

µ(−n[i1, . . . , in] × B)

= µ(0[i1, . . . , in] × Si1 ◦ · · · ◦ SinB),

where −n[i1, . . . , in] = {ω :ω(−n)= i1, . . . , ω(i−1)=
in} denotes the cylinder set in Ω, 0[i1, . . . , in] — the
cylinder set in Ω respectively and B is a Borel set.

Definition 1. We determine the measure µ∗ by the
formula

µ∗(A) = µ(ΦΨ(π−1(A)) for A ∈ B.

Here π(ω, x) = (ω, x) for (ω, x) ∈ Ω × I.

By the definition µ∗ ∈ Mp(S) and

µ∗(0[i0, . . . , in−1] × B)

= µ(0[in−1, . . . , i0] × Sin−1 ◦ · · · ◦ Si0B). (2)

Therefore

µ∗∗ = µ

Property 1. The transformation ∗ maps Mp(T ) on
Mp(S) in one-one manner.

Definition 2. (T , µ) is said to be K-automor-
phism if there exists sub σ-algebra D of B such
that

∞∨
n=−∞

T n(D) = B and
∞∧

n=−∞
T n(D) = R.

where R is trivial in the sense that it contains only
sets of measure 0 or 1.

Definition 3. (T, µ) is called exact if
∞⋂

n=0

T−n(B) = R.

Theorem 2. Let µp ×Λ ∈ Mp(T ). If (T , µp × Λ) is
K-automorphism then (S, µp × Λ∗) is exact.

The proof will be continued by auxiliary lemmas
and properties.

Property 2. The Frobenius–Perron operator (F-P)
for S with respect to µp × Λ∗ is given by

Pf(ω, x) = pf(0ω, T0(x)) + qf(1ω, T1(x))

for f ∈ L1(µp × Λ∗). Here iω = σ−1(ω) ∩ 0[i].

Proof. By (2) it is easy to check the equality

µp × Λ∗(S−1(0[i0, . . . , in−1] × B) ∩ 0[j0, . . . , jn−1] × C)

=
∫

1
0[i0,...,in−1]×B(ω, x)P1

0[j0,...,jn−1]×C(ω, x)dµp × Λ∗

for any blocks 0[i0, . . . , in−1], 0[j0, . . . , jn−1], n ∈ N and Borel sets B,C. �
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Lemma 1. h(S, µp×Λ∗) = h(T, µp×Λ) = h(σ, µp).

Proof. We have immediately

h(σ, µp) ≤ h(T, µp × Λ) = h(S, µp × Λ∗).

Therefore it is enough to show that h(T, µp × Λ) ≤
h(σ, µp). Let us consider the sequence of partitions
α × βk, k = 2, 3, . . . . Here α = {A0, A1} where
Ai = {ω : ω(0) = i} for i = 0, 1 and βk = {[0,
1/k), [1/k, 2/k), . . . , [(k − 1)/k, 1]}, k = 2, 3, . . . . It
is sufficient to show that h(T, α×βk) ≤ h(σ, µp) for
every k because

∞∨
i=0

T−i(α × βk) → ε as k → ∞

(see Theorem 5.10 in [Parry, 1969]). Here ε denotes
the point partition. Let us denote

(α × βk)n =
n−1∨
i=0

T−i(α × βk).

By strict monotonicity and continuity of Ti, i = 0, 1

(α × βk)n = {A × BA : A ∈ αn, BA ∈ βA} where

αn =
n−1∨
i=0

σ−iα

and βA is the partition of I on intervals. By induc-
tion on n we will prove that card(βA) ≤ nk for every
A ∈ αn, n = 1, 2, . . . . For n = 1, (α×βk)1 = α×βk.
Assume the inequality holds for n; we will argue
this for n + 1. We have

(α × βk)n+1

= T−1(α × βk)n ∨ (α × βk)

= {A × BA : A = σ−1(A) ∩ Ai, A ∈ αn,

BA ∈ βA = SiβA ∨ βk for some i ∈ {0, 1}}
Since SiβA and βk are partitions on intervals we get

card(βA) ≤ card(βA) + k ≤ (n + 1)k.

Consequently

h(T, α × βk) = lim
n→∞

1
n

H((α × βk)n)

≤ lim
n→∞

1
n

(H(αn) + ln[(n + 1)k]) = h(σ, µp)

�

Lemma 2. (S, µp × Λ∗) has a one-sided generator
of finite entropy.

Proof. Let S′ denote the Jacobian of S with respect
to µp × Λ∗. By Property 2 we see that

S′(ω, x) =

{
p−1 for ω(0) = 0

q−1 for ω(0) = 1.

Therefore, by Lemma 1∫
lnS′dµp × Λ∗ = h(σ, µp) = h(S, µp × Λ∗).

This implies that (S, µp×Λ∗) has a one-sided gener-
ator of finite entropy. The last conclusion follows as
consequence of Remark 8.10, p. 97 and Lemma 10.5,
p. 110 from [Parry, 1969]. �

Remark 1. (S, µp×Λ∗) has a 1-sided 3-element gen-
erator by Theorem 1 [Kowalski, 1988].

Remark 2. (T, µp × Λ) has non one-sided generator
of finite entropy if Si is not Λ preserving for some
i ∈ {0, 1} (see Theorem 2 [Kowalski, 1987]).

Proof of Theorem 2. If (T , µp × Λ) is K-automor-
phism then (S , µp × Λ∗) has the same property.
Therefore (S, µp × Λ∗) is exact as an endomor-
phism with a 1-sided generator of finite entropy.
For detailed motivations see Theorem 6.17, p. 74
of [Parry, 1969]. �

In order to apply Theorem 2 let us consider the
set Ga,b of homeomorphisms g : I → I included in
[Kowalski & Liardet, 2000] as follows:

(i) g(0) = 0, g(1) = 1;
(ii) g(x) ≤ x for any x ∈ I;
(iii) for all (x, y) ∈ I2:

x 
= y ⇒ a ≤ g(y) − g(x)
y − x

≤ 1
b
.

Here a, b ∈ (0, 1) and p < b.
Let ǧ be the homeomorphism defined by the

equality

pg + qǧ = Id . (3)

For every g ∈ Ga,b we consider similarly as in
(1) the skew product

Sg(ω, x) = (σ(ω), gω(0)(x))

where g0 = g, g1 = ǧ. Let Tg denote the dual skew
product of Sg. It follows from (3) that µp × Λ ∈
Mp(Tg). The main theorem of [Kowalski & Liardet,
2000] i.e. Theorem 1 states that the set of g in Ga,b
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such that (T g, µp × Λ) is K-automorphism contain-
ing a dense Gδ-set. Moreover, for g as above

Mp(Tg) = conv{µp × δ{0}, µp × δ{1}, µp × Λ}
by Theorem 1 [Kowalski, 2003] and

Mp(Sg) = conv{µp × δ{0}, µp × δ{1}, µp × Λ∗}
by Property 1. Therefore, we get directly by Theo-
rem 2,

Theorem 3. Assume that a, b ∈ (0, 1) and p < b.
Then the set of g in Ga,b, such that

Mp(Sg) = conv{µp × δ{0}, µp × δ{1}, µp × Λ∗}
and µp × Λ∗ is exact contains a dense Gδ-set with
respect to the uniform topology.

Remark 3. If (Sg, µp×Λ∗) is exact then the measure
µp × Λ∗ is nonabsolutely continuous.

Proof. By (2) and definition of Sg, µp × Λ∗ is not
a product measure and therefore nonabsolutely
continuous. �

Theorem 3 gives a positive answer to the open
problem proposed in [Kowalski & Liardet, 2000].
Now, it is the correct time for the analysis on Tg

and Sg as iterated random functions. The process
determined by random walk T can be written as
X0 = x0,X1 = Tω(0)(x0),X2 = Tω(1) ◦ Tω(0)(x0), . . .
Inductively

Xn+1 = Tω(n)(Xn).

We are interested in the situation where there is a
stationary probability distribution P on I with

µp{Xn ∈ A} → P(A) as n → ∞.

Let g belong to the generic set given by Theorem 3.
For T = Tg we obtain

µp{Xn ∈ A} = Pn1A(x0).

Therefore

µp{Xn ∈ A} → Λ(A) as n → ∞
in L1(µp×Λ∗) convergence by exactness of (Sg, µp×
Λ∗). We also get

1
n

n−1∑
k=0

µp{Xk ∈ J} → Λ(J) as n → ∞

for every x0 ∈ (0, 1) and any interval J ⊂ I, by
µp × Λ ∈ Mp(Tg) and Theorem 2 in [Kowalski &
Liardet, 2000]. For T = Sg

µp{Xn ∈ A} = P ∗n1A(x0)

where P ∗f(x) = pf (g0(x)) + qf (g1(x)). By P ∗f ≥ f
for any f positive, strictly convex and increasing
function on I (see proof of Lemma 3) and by unique-
ness of absolutely continuous invariant measure for
Tg we obtain

lim
n→∞P ∗nf(x) = (f(1) − f(0))x + f(0)

for every x ∈ [0, 1] and any continuous function f.
Therefore, we get

µp{Xn ∈ J} → (1 − x0)δ{o}(J)

+ x0δ{1}(J) as n → ∞
for every x0 ∈ [0, 1] and any interval J ⊂ I. The idea
of dual pairs allows us to construct new examples
of iterated random functions. For related discus-
sion and other examples see [Diaconis & Freedman,
1999].

In the further considerations, we introduce
additional assumptions about smoothness of Si,
i = 0, 1. Namely, we assume that S is described by

Si = (1 − εi)x + εig(x), i = 0, 1 (4)

such that g ∈ C2[0, 1], g(0) = 0, g(1) = 1, (1 −
sup g′)−1 < ε0, ε1 < (1 − inf g′)−1. Furthermore, we
suppose that there exists exactly one point x0 for
which g′(x0) = 1 and g′(x) < 1 for x < x0. The
operator F-P for T with respect to µp × Λ is given
by the equality

PT f(ω, x) = pS′
0(x)f(0ω, S0(x))

+ qS′
1(x)f(1ω, S1(ω)).

Let us observe, that∫
fPT (g)dΛ =

∫
P (f)gdΛ

for f ∈ L∞(Λ) and g ∈ L1(Λ). The above equality
is justified by naming S and T as a dual pair. We
can also generalize Remark 3 as follows

Lemma 3. Let S be given by (4). Then Mp(S) has
no invariant absolutely continuous measure for any
p ∈ (0, 1).

Proof. Assume on the contrary that µ � µp × Λ
is S-invariant and finite. Then µ = µp × ΛG (see
Theorem 3.1 of [Morita, 1988]), where

G =
dΛG

dΛ
.
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Moreover, PSG = G and P ∗Id ≥ Id or P ∗Id ≤ Id .
Here P ∗f(x) = pf (S0(x)) + qf (S1(x)). The last
inequalities hold by Lemma 3 in [Kowalski, 2003].
Let us assume that P ∗Id ≥ Id. For F positive,
strictly convex and increasing function on I we get∫

GFdΛ =
∫

PSGFdΛ =
∫

GP∗FdΛ

>

∫
GF (P ∗Id)dΛ ≥

∫
GFdΛ

which is impossible. �

3. Invariant Sets for Dissipative
Extensions

We start with a more general situation i.e. Si

are only nonsingular maps of I (Λ(B) = 0 ⇒
Λ(S−1

i (B)) = 0) for i = 0, 1. It is known by Theo-
rem 1 in [Kowalski, 2009] that if S is conservative
and a set E of positive µp ×Λ measure is S invariant
i.e. S(E) ⊂ E, then E = Ω × B for some Borel set
B ⊂ I. We show by the example that in the totally
dissipative case, invariant sets cannot be product
sets. Let S be given by

S0 =
1
2
x, S1 =

1
2
x +

1
2
.

So S is baker’s transformation.

Theorem 4. Let p = 1/6. Then (S, µp×Λ) is totally
dissipative.

Proof. Let PS denote F-P operator for S.
Therefore,

PSf(x) =
[
1
3
1S0I(x) +

5
3
1S1I(x)

]
f(T (x)),

for f ∈ L1(Λ).

Here T (x) = 2x mod 1. For f ≡ 1 we get

Pn
S1 =

∑
i∈{0,1}n

5
Pn

k=1 i(k)

3n
1Ii(x),

where {Ii}i∈{0,1}n is the partition of I on dyadic
intervals of rank n. The limit average of attendance
of 1 in dyadic extension is 1/2 for a.e. x. Therefore,
for a.e. x, there exists n0 such that for any n > n0

if x ∈ Ii, where i ∈ {0, 1}n, then

n∑
i=1

i(k) ≤ 2
3
n.

Hence,

∞∑
n=0

Pn
S1(x) =

n0∑
n=0

Pn
S1(x) +

∞∑
n=n0+1

Pn
S1(x)

≤
n0∑

n=0

Pn
S1(x) +

∞∑
n=n0+1

(
5

2
3

3

)n

< ∞

for a.e. x. Therefore,{
x :

∞∑
n=0

Pn
S1(x) < ∞

}

has measure 1. By Proposition 1.3.1 [Aaronson,
1997] S is totally dissipative. �

Conclusion 1. S is not ergodic.

Theorem 5. If A ∈ B,S−∞A = A and 0 <
µp × Λ(A) < 1 then A is not a product set.

Proof. Suppose on the contrary that A = D × B.
SA = A implies σ(D) = D and hence D = Ω.
S−1A = A implies TB = B and therefore B = I.
Finally, we get A = Ω× I which is impossible. �

We can also obtain invariant absolutely contin-
uous measure which is not a product measure. By
Theorem 4.1 [Friedman, 1970] there exists σ-finite
invariant measure µ ≈ µp × Λ. The measure µA =
µ |A is S-invariant absolutely continuous but not a
product measure.

4. Binomial Model for Asset Prices

Let us consider the classical one-asset binomial
model. For details see [Bahsoun et al., 2007,
Section 5]. At each period of time there are two
possibilities: the security price may go up by a
factor u(x) or it may go down by a factor d(x).
The factors u and d are functions of the prices,
u : (0, 1) → (1,∞) and d : (0, 1) → (0, 1). Given
the functions u(x), d(x) and the probabilities p =
pu, q = pd = 1 − pu, we can construct the random
map S which consists of the transformations Su, Sd

Su(x) = u(x)x and Sd(x) = d(x)x.
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Here Su : [0, 1] → [0, 1], Sd : [0, 1] → [0, 1] are con-
tinuous maps,∧

x∈[0,1]

Su(x) ≥ x and Sd(x) ≤ x.

We will assume that Su and Sd are homeomor-
phisms so S is given by (1). The subscript u of
Su illustrates that transformation Su comprises the
law which moves the price up and the subscript d of
Sd denotes that transformation Sd is the law which
moves the price down. The process determined by
the random walk S and starting from x0 ∈ (0, 1)
can be written as Xn. We now give examples to
illustrate the structure of the above model.

Example 1. Let

S0(x) = Su(x) =
x

λ0x + 1 − λ0
, λ0 ∈ (0, 1),

S1(x) = Sd(x) =
x

λ1x + 1 − λ1
, λ1 < 0.

Such S has been studied in [Kowalski, 2009,
Section 3]. It appears that if

p <
ln(1 − λ0)

ln
(

1 − λ0

1 − λ1

)

then Xn(ω) → 0 for a.e. ω, so the security price
goes to 0. If

p >
ln(1 − λ0)

ln
(

1 − λ0

1 − λ1

)

then Xn(ω) → 1 for a.e. ω, so the security price
goes to 1. In the case

p =
ln(1 − λ0)

ln
(

1 − λ0

1 − λ1

)

S is conservative. If additionally p is irrational then
S is ergodic but not exact. So for this p we have
chaotic behavior of the security price.

Let us consider the general case. If p is such that

pSu + qSd = Id or pS−1
u + qS−1

d = Id

then the trajectory of Xn is extremely chaotic for
typical Su. This is the consequence of Theorem 3.
The behavior of Xn for other p needs individual
analysis. For example, if S is given by (4) then the
description of Xn can be found in [Kowalski, 2009,
Section 3].
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