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Abstract

The one-dimensional quantum harmonic oscillator is considered.
We complement the wave solution of the Schrödinger equation by
presenting the motion of particles for n-quantum state at the moment
of jump from n−1 to n-quantum state as orbits of stationary random
walk. Consequently, we get two equlibrium positions of the oscillator
in n-quantum state. The numerical solutions are given for n=2,3.

1 Introduction

One-dimensional quantum harmonic oscillator Ψ satisfies the Schrödinger

equation

i~
∂Ψ

∂t
= HΨ

where H = 1
2
(P 2 + Q2) is the Hamiltonian. Here P = −i d

dx
and Q is

multiplication by x. Let us consider the n-quantum state solution

Ψn(x, t) =
1√

n!2n
√
π
Hn(x)exp(− i

2~
(2n+ 1)t)exp(−x

2

2
).
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for n ≥ 0. Here Hn is nth Hermite polynomial i.e

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

The quantum interpretation of

Φn(x) =

∫ x

−∞
|Ψn(y, t)|2 dy =

1

n!2n
√
π

∫ x

−∞
H2

n(y)exp(−y2)dy

is the probability distribution of occurrence of a particle in R. We consider

a sudden change of n-quantum state Ψn to the state Ψn+1 by analyzing only

the probability distributions Φn and Φn+1 . Therefore we don’t apply theory

of quantum transition.

In Theorem 2.1 [3] it has been observed that for n ≥ 1 there is the unique

partition on intervals {Ik : k = 1, ..., 2n} of R such that µn(Ik) = µn−1(Ik)

where the measure µn has distribution Φn. The endpoints of intervals come

from the equivalence

Φn(x) = Φn−1(x)⇔ Hn(x)Hn−1(x) = 0.

They are singular points of density of measures µn and µn−1 respectively for

n ≥ 2. It is convenient to consider the unit interval instead of R, therefore

we use the map Φn−1 : R→ (0, 1). Φn−1 arise as the distribution function of

the Lebesgue measure on the unit interval and Φn as F (n) = Φn ◦Φ−1
n−1. The

last one has been considered in [3]. Here Φ−1
n−1 is the inverse function of Φn−1.

The jump from n− 1 to n-quantum state i.e. from Φn−1 to Φn changes the

structure of particles and their dynamics. In section 2 we describe the step

skew product transformation which is determined by F (n) for n ≥ 2 and is

stationary one. This dynamical system has interpretation as a random walk

on the interval on the basis of coin tossing with p ∈ (1
2
, 1

3√2
] which is the

probability of head. Namely, F (n) determines the random walk on [0, 1] −
Φn−1(I1 ∪ I2n) under assumption of symmetry i.e. the Lebesgue measure is

stationary for symmetric coin (see Corollary 2.6). The walk is carried by

Φ−1
n−1 on R − (I1 ∪ I2n) to random walk where x goes with probability p

to h0(x) and probability 1 − p to h1(x) and µn is stationary measure.The

self-homeomorphisms h0(x), h1(x) are determined in one way by F (n) and

p and by assumption of stationarity of µn−1 in the case of walking as above

under tossing of symmetric coin.

According to the author, the possible physical interpretation of this walk is

description of the oscillator in the nonequilibrium state at the moment of

jump from n− 1 to n-quantum state. Here the n− 1-particle state changes
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to n-particle state by adding one particle ( see [1], chapter 1.5 ).

In section 3 we construct numerically the random walk for 2 and 3- quantum

state (see Figures 2 and 4). Section 4 is devoted to the equilibrium states,

where we additionally analyze the moment of jump from n+1 to n-quantum

state.

2 n-quantum state

We will apply Theorem 2.5 i.e. Theorem 6.6 [3] for our purposes. At first

we observe the following symmetry properties.

Lemma 2.1. F (n)(1− u) = 1− F (n)(u) for u ∈ (0, 1).

Proof. By Φn(−x) = 1 − Φn(x) for x ∈ R we have Φ−1
n (1 − u) = −Φ−1

n (u)

for u ∈ (0, 1). Therefore

F (n)(1− u) = Φn(Φ−1
n−1(1− u)) = Φn(−Φ−1

n−1))

= 1− Φn(Φ−1
n−1(u) = 1− F (n)(u).

We will denote F (n) by F as n is fixed. We extend F to [0, 1] by putting

F (0) = 0 and F (1) = 1. Let p ∈ (0, 1). Define

Fp(u, v) = pF (2u− v) + (1− p)F (v)− F (u) for (u, v) ∈ [0, 1]× [0, 1]

such that the right hand side of the equality make sense.

Lemma 2.2. If F (1 − u) = 1 − F (u) and g is an implicit function on

[a, b] ⊂ [0, 1] i.e. Fp(u, g(u)) = 0 for u ∈ [a, b] then 1 − g(1 − u) is the

implicit function on [1− b, 1− a].

Proof. By assumption we have

pF (2u− g(u)) + (1− p)F (g(u))− F (u) = 0 for u ∈ [a, b].

For u ∈ [1− b, 1− a] we get

pF (2u− (1− g(1− u)) + (1− p)F (1− g(1− u))− F (u) =

pF (1− (2(1− u)− g(1− u)) + (1− p)F (1− g(1− u))− F (u) =

−[pF ((2(1− u)− g(1− u)) + (1− p)F (g(1− u))− F (1− u)] = 0

as 1− u ∈ [a, b].
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From now on we will assume that n ≥ 2. Let ak be the left endpoint

of interval Ik+1 and bk = Φn−1(ak) be the left endpoint of interval Jk+1 =

Φn−1(Ik+1) for k = 1, ..., 2n− 1. The sequence ak is symmetric with respect

to 0 and the sequence bk is the set of fix points of F and it is symmetric

with respect to 1
2
. Denote by int(Jk+1) the interval (bk, bk+1).

Lemma 2.3. If Hn−1(ak) = 0 for some 1 ≤ k ≤ 2n− 1 then F ′(b+
k ) = ∞,

F ′(b−k+1) = 0 and F ′′(u) < 0 for u ∈ int(Jk+1). Similarly, if Hn(ak) = 0 for

some 1 ≤ k ≤ 2n − 1 then F ′(b+
k ) = 0 and F ′(b−k+1) = ∞, and F ′′(u) > 0

for u ∈ int(Jk+1).

Proof. By using the definitions of Hn(x), Φn(x) and F (x) we get

d

du
F (u) = F ′(u) =

1

2n

( Hn(x)

Hn−1(x)

)2

|x=Φ−1
n−1(u) =

1

2n

( (exp(−x2)(n)

(exp(−x2)(n−1)

)2

|x=Φ−1
n−1(u)

and

F ′′(u) =

√
π2n−1(n− 1)!

n
exp(x2)

Hn(x)

H5
n−1(x)

(H2
n(x)−Hn+1(x)Hn−1(x))|x=Φ−1

n−1(u).

Moreover, ( Hn

Hn−1

)′
(x) =

H2
n(x)−Hn+1(x)Hn−1(x)

H2
n−1(x)

> 0

by Turan’s inequality. We only show the first part of the lemma. The roots of

Hn and Hn−1 lie alternately. Therefore, if Hn−1(ak) = 0 then Hn(ak+1) = 0.

Hence F ′(b+
k ) =∞ and F ′(b−k+1) = 0 and

sgn(F ′′(u)) = sgn
( Hn

Hn−1

◦ Φ−1
n−1(u)

)
< 0.

Let us denote F ′ = F ′|Jk for some k. Then F ′−1 : (0,∞) → Jk. We

define

ϕp(u) = 2u− F ′−1
( 1

2p
F ′(u)

)
for u ∈ int(Jk), k = 1, ..., 2n− 1,

as in [3] and extend ϕp on ∪2n−1
k=1 Jk to the continuous function by putting

ϕp(bk) = bk for k = 1, ..., 2n− 1.

Denote

ϕ′p(x) = ϕ′p ◦ Φn−1(x) and F ′(x) = F ′ ◦ Φn−1(x), F ′′(x) = F ′′ ◦ Φn−1(x).



Quantum harmonic oscillator 5

So

ϕ′p(x) = 2− 1

2p

F ′′(x)

F ′′(F ′−1( 1
2p
F ′(x)))

for x ∈ int(Ik), k = 1, ..., 2n− 1.

Theorem 2.4. If Hn(ak) = 0 then

lim
x→ak

ϕ′p(x) = 2− 1√
2p

and if Hn−1(ak) = 0 then

lim
x→ak

ϕ′p(x) = 2− (2p)
3
2

for k = 1, ..., 2n− 1.

Proof. Let us assume that Hn(ak) = 0. Then

F ′(x) ≈ cn(x− ak)2 and F ′′(x) ≈ dn(x− ak) for x→ ak.

Hence

F ′−1(x) ≈ ak ±
√
x

cn
for x→ a±k .

Here cn, dn are the nonzero constants. Therefore

F ′−1
( 1

2p
F ′(x)

)
≈ ak ±

1√
2p
|x− ak| for x→ a±k .

By definition of ϕ′p(x) we have

ϕ′p(ak) = 2− 1

2p
lim
x→a±k

x− ak
± 1√

2p
|x− ak|

= 2− 1√
2p
.

For case Hn−1(ak) = 0 we have

F ′(x) ≈ cn−1

(x− ak)2
for x→ ak, cn−1 6= 0.

Then we proceed as before.

Theorem 2.5. ([3]). Let F ∈ C2(0, 1)∩C[0, 1], F (0) = 0, F (1) = 1, F ′(0+) =

∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). Moreover, let p ∈ (1
2
, 1) be

such that ϕp and ϕ1−p are increasing functions. Then there exists exactly

one implicit function y = g(x) such that g(x) < x for x ∈ (0, 1). The func-

tion g is a homeomorphism of I and g ∈ C1(0, 1). Moreover 2x− g(x) is a

homeomorphism too.
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Corollary 2.6. By Lemma 2.3 assumptions of Theorem 2.5 are satisfied for

F on invariant intervals Jk+1 for k such that Hn−1(ak) = 0 and ϕ′p(u) > 0

and ϕ′1−p(u) > 0 for u ∈ int(Jk+1). Moreover, Theorem 2.4 implies that

p ∈ (1
2
, 1

3√2
].

Let us denote by gp the self-homeomorphism given by Corollary 2.6 for

some 1 ≤ k ≤ 2n− 1.

Theorem 2.7. If 1
2
< p < q ≤ 1

3√2
then gq(u) < gp(u) for every u ∈

int(Jk+1).

Proof. If p < q then Fp(u, v) < Fq(u, v) for 0 < v < u. Therefore

0 = Fq(u, gq(u)) = Fp(u, gp(u)) < Fq(u, gp(u)).

By Lemma 6.3 [3]

∂Fq(u, v)

∂v
> 0 for 0 < v < gq(u).

Hence gq(u) < gp(u) for u ∈ int(Jk+1).

.

Let Ω be the space {0, 1}N, N = {0, 1, 2, ...}, with the (p, 1−p)-Bernoulli

measure µp on (Ω,B), where B is the Borel product σ-algebra. We denote

by A the Borel σ-algebra of subsets of R and by Λ the Lebesgue measure.

Let σ be the one-sided shift on Ω i.e. σ(ω)(i) = ω(i + 1). Let us assume

that conditions of Corollary 2.6 hold for some p ∈ (1
2
, 1

3√2
] and for some

1 ≤ k ≤ 2n−1. By Theorem 2.5 we get the step skew product transformation

in the space Ω× Jk+1 as follows

Sp(ω, u) =

{
(σ(ω), (2u− g(u))−1) for ω0 = 0 and

(σ(ω), g−1(u)) for ω0 = 1.

Here g(u) and 2u − g(u) are the increasing self-homeomorphisms of Jk+1.

The skew product as above preserves the measure µp×µF on Ω×Jk+1 where

µF has the distribution F. The formula (2u − g(u))−1 for the first homeo-

morphism is equivalent to Sp invariance of the measure µ 1
2
× Λ. Moreover,

its natural extension to automorphism is Bernoulli one (see Corollary 5.2

[4]) and ∫
|µp(S

j
p(·, u) ∈ A)− µF (A)

µF (Jk+1)
|dµF (u)→ 0

as j →∞ for any measurable set A ⊂ Jk+1 by [3].
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Remark 2.8. By Lemma 2.2 we get the similar skew product with the same

properties for symmetric interval Ĵk+1 = [1 − bk+1, 1 − bk]. We put above

h(u) = 1− g(1− u) instead of g(u). Such skew products are called random

dynamical systems or random walks.

The interval symmetric to Ik+1 i.e. Îk+1 is [−ak+1,−ak] = Φ−1
n−1(Ĵk+1)

by Φ−1
n−1(1− u) = −Φ−1

n−1(u) for u ∈ (0, 1). Let

Hg(x) = Φ−1
n−1(g(Φn−1(x)) for x ∈ Ik+1.

Lemma 2.9.

H1−g(1−u)(x) = −Hg(−x) and H2u−(1−g(1−u))(x) = −H2u−g(u)(−x)

for x ∈ Îk+1.

Proof. We only show the first equality .

H1−g(1−u)(x) = Φ−1
n−1(1− g(1− Φn−1(x)) = −Φ−1

n−1(g(1− Φn−1(x)) =

−Φ−1
n−1(g(Φn−1(−x)) = −Hg(−x) for x ∈ Îk+1.

We define the skew product transformation Ŝp(ω, x) in the space Ω×Ik+1

by putting Hg and H2u−g(u) instead of g and 2u − g(u) in the definition of

Sp(ω, u). This skew product preserves the measure µp×µn on Ω×Ik+1 where

µn has distribution Φn. Moreover, its natural extension to automorphism is

Bernoulli one and∫
|µp(Ŝ

j
p(·, x) ∈ A)− µn(A)

µn(Ik+1)
|dµn(x)→ 0

as j →∞ for any measurable set A ⊂ Ik+1. We also have by [3] that

1

m

m−1∑
j=0

1Ω×J(Ŝj
p(ω, x))→ µn(J)

µn(Ik+1)

as m→∞ for µp-almost every ω ∈ Ω, every x ∈ int(Ik+1) and any interval

J ⊂ Ik+1. By Lemma 2.9 we get the similar skew product with the same

properties for symmetric interval Îk+1.

Let us denote by X̂m(ω, x) the random walk on Ik+1 defined as

X̂0(ω, x) = x and X̂m(ω, x) = π(Ŝm
p (ω, x))

for m = 1, 2, ... . Here π(ω, x) = x for x ∈ R.

Proposition 2.10. X̂m(ω, x) is the Markov process with measure µp × µn

where µn is the stationary one.

For p = 1
2

the Markov measure is µ0,5 × µn−1 with µn−1 as the stationary

measure.
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3 2 and 3-quantum states

We use the following formula

Φn(x) = Φ0(x)− 1

n!2n
√
π
e−x

2
n−1∑
l=0

(
n

l

)2

2ll!H2(n−l)−1.

Here

Φ0(x) =
1

2
(1 + erf(x)), for x ≥ 0.

We extend the above to R by putting

Φn(x) = 1− Φn(−x) for x < 0 and n ≥ 0.

For erf we use the rational approximation (see [2]) as follows

erf(x) ≈ 1− 1

(1 + a1x+ · · ·+ a6x6)16

where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 =

0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638. The maximum error

is 3 · 10−7. Let us consider the case n = 2. The partition of R on four inter-

vals is given by zeros of H1(x) = 2x and H2(x) = 4x2 − 2 i.e. {−
√

2
2
, 0,

√
2

2
}.

For our aims consider intervals I2 and I3 i.e. I2 = Î3, I3 = [0,
√

2
2

] and

J3 = [1
2
,Φ1(

√
2

2
)], Ĵ3 = [1 − Φ1(

√
2

2
), 1

2
]. Just restrict our considerations to

J3. Denote Φ1(
√

2
2

) by a and put F (u) = F (2)(u) = Φ2(Φ−1
1 (u)). Here

F ′(u) = (
1

2x
− x)2|x=Φ−1

1 (u) for u ∈ J3,

F ′−1(x) = Φ1(
1

2
(
√
x+ 2−

√
x)) for x ∈ [0,∞)

and

ϕp(u) = 2u− F ′−1(
1

2p
F ′(u)).

Since we have

ϕ′p(x) = 2− (8p)−
3
2h2(x)x−2e(x2−h2(x)(8p)−1)(1 +

1

2x2
)·

(1−
1

2x
− x√

( 1
2x
− x)2 + 4p

),

where

h(x) =
4p√

( 1
2x
− x)2 + 4p+ ( 1

2x
− x)

.
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Here x ∈ I3. The numerical calculation shows that ϕ′p > 0 on (0,
√

2
2

] for

p = 1
3√2

and p = 1− 1
3√2

. In this situation we use Lemmas 6.1, 6.3, 6.4 from

[3] and Theorem 2.5 to construct numerically g(u) as follows.

For u0 = 1
2

+ h, where h =
a− 1

2

1000
, we find the first k0 ∈ N such that for

v0 = 1
2

+ k0
h

1000
we have F (u0, v0) > 0. Here

F (u, v) =
1
3
√

2
F (2u− v) + (1− 1

3
√

2
)F (v)− F (u).

Next, we put un+1 = un + h, vn+1 = vn + kn+1
h

1000
, where kn+1 ∈ N is the

smallest number such that F (un+1, vn+1) > 0, n = 0, ..., 998.

The solution v = g(u) satisfies vn − h
1000

< g(un) < vn for n = 0, ..., 998 by

Lemma 6.4 ([3]). In Figure 1 we present the point graphs of (un, vn) and

(un, 2un − vn) which approximate g(u) and 2u − g(u) respectively on the

interval [1− a, a]. The quantum justification for g(1
2
) = 1

2
is that the value

of the density of the distribution function in 1
2

is F ′(1
2
) = ∞. Similarly,

g(a) = a because F ′(a) = 0.

Let us denote

h0(x) = H−1
2u−g(u)(x) = Φ−1

1 ((2u− g(u))−1 ◦ Φ1(x)) for x ∈ I2 ∪ I3

and

h1(x) = H−1
g (x) = Φ−1

1 (g−1(Φ1(x)) for x ∈ I2 ∪ I3.

In Figure 2 we present the approximate graphs of self-homeomorphisms

h0 and h1.

Now, we consider the case n = 3. Here F (u) = F (3)(u) = Φ3(Φ−1
2 (u)).

The partition of R on six intervals is given by zeros of H2(x) = 4x2 − 2

and H3(x) = 4x(2x2 − 3) i.e. {−
√

6
2
,−
√

2
2
, 0,

√
2

2
,
√

6
2
}. For our aims consider

intervals I2, I3, I4, I5 i.e. I4 = [0,
√

2
2

], I5 = [
√

2
2
,
√

6
2

] and I2 = Î5, I3 = Î4.

Let b = Φ2(
√

2
2

) and c = Φ2(
√

6
2

). Then J4 = [1
2
, b], J5 = [b, c], J2 = Ĵ5 and

J3 = Ĵ4. The numerical calculation shows that ϕ′p(x) > 0 on [0,
√

2
2

)∪(
√

2
2
,
√

6
2

]

for p = 0, 785 and p = 0, 215. Moreover ϕ′p(x) > 0 on (
√

2
2
,
√

6
2

] for p = 1
3√2

and p = 1− 1
3√2

. We numerically construct g(u) on J3 and J5 in the similar

way as in the case n = 2. In Figure 3 we present the point graphs of (un, vn)

and (un, 2un − vn) which approximate g(u) and 2u − g(u) respectively on

the interval [1− c, c]. Similarly, in Figure 4 we get the approximate graphs

of self-homeomorphisms h0 and h1 on interval [−
√

6
2
,
√

6
2

].
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Figure 1: The approximate plot of implicit function v = g(u) and v =

2u− g(u) on interval [1− Φ1(
√

2
2

),Φ1(
√

2
2

)]
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Figure 2: The approximate plot of self-homeomorphisms y = h0(x) and

y = h1(x) for p = 1
3√2

on interval [−
√

2
2
,
√

2
2

].
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Figure 3: The approximate plot of implicit function v = g(u) and v =

2u− g(u) on interval [1− Φ2(
√

6
2

),Φ2(
√

6
2

)]
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Figure 4: The approximate plot of self-homeomorphisms y = h0(x) and

y = h1(x) for p = 0, 785 on interval [−
√

6
2
,
√

6
2

]
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4 Equilibrium position of n-quantum state

We consider a random walk description of the oscillator in the equilibrium

position of n-quantum state. Therefore , let us consider additionally the

passage from n + 1 to n-quantum state for n ≥ 1. In this case we consider

the function G(n) = Φn◦Φ−1
n+1 = (F (n+1))−1. The fixed points for G(n) are the

same as for F (n+1) and we can also use Theorem 2.5 for G(n). For example

we take p = 0, 675 for n = 1. Therefore we obtain the random walk of the

same complexity as in the case F (n+1). But now the n + 1-particle state

changes to n-particle one by annihilation of one particle ( see [1], chapter

1.5 ). Here the oscillator starts from the above walk but with p = 1
2

(i.e.

under tossing of symmetric coin ) which is its an equilibrium n + 1-state.

Similarly we obtain another equilibrium n + 1-state as the starting walk

for the passage from n + 1 to n + 2-quantum state. The above walks have

the same stationary measure µn+1 and have Bernoulli property on their

invariant components. By Proposition 2.10 we see that the above random

walks as stochastic processes have the same basic properties as diffusion

processes in stochastic quantum physics.

Remark 4.1. The description of an equilibrium position in 1-quantum state

i.e for n = 0 is more complicated. We get one equilibrium state by passage

from 1 to 2-quantum state (see Figure 2 with p = 1
2
). But in the case of

passage from 1 to 0-state the function G(0) fulfills neither the assumptions

of Theorem 2.5 nor of Hypothesis 6.11 [3]. The description of equilibrium

position in 1-quantum state by diffusion process can be found in [5] p. 109.

This process has two invariant ergodic components which are the same as

ones given by Theorem 4.1 [3] for n = 0.
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