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STABILITY OF SMOOTH EXTENSIONS OF
BERNOULLI SHIFTS

Abstract. Let Si, i = 0, 1, be homeomorphisms of I = [0, 1] such that
S−1
i (x) = (1 − εi)x + εig(x), i = 0, 1, for some reals ε0 < 0 and ε1 > 0.

Here g is a C1(0, 1) homeomorphism and g(x) < x for x ∈ (0, 1). Let
(Ω,B, µp, σ) be the one-sided Bernoulli shift where Ω = {0, 1}N and µp
is the (p, q) measure for some p ∈ I. In the space Ω × I we define the
skew product S(ω, x) = (σ(ω), Sω(0)(x)). For some class of distribution func-
tions F ∈ C2(0, 1) of probability measures and all ε0 < 0, ε1 > 0, and
p ∈ (ε1/(ε1 − ε0), 1), we give sufficient conditions for existence of exactly one
pair of homeomorphisms as above such that µp×µF is S-invariant. Here µF
is the measure determined by F. For example, as a consequence of the above,
we show that if S−1

0 (x) = 1.307x − 0.307x2 and S−1
1 (x) = 0.26x + 0.74x2,

then for every p ∈ [0.706781,
√

2/2), S possesses ergodic invariant measure
µp×µGp which is a kind of Sinai–Ruelle–Bowen measure. We apply the above
results to the quantum harmonic oscillator and a binomial model for asset
prices.

1. Introduction. Let us consider two increasing homeomorphisms S0, S1

of the interval I = [0, 1] into itself such that S0(x) < x and S1(x) > x for x ∈
(0, 1) and let (p, q) be a probability vector. They determine a random walk on
I as follows: x goes to S0(x) with probability p and to S1(x) with probability q.

Random walks on I may be realized as transformations of a larger space.
Let Ω be the space {0, 1}N, N = {0, 1, 2, . . .}, with the (p, q)-Bernoulli mea-
sure µp on (Ω,B), where B is the Borel product σ-algebra. We denote by A
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the Borel σ-algebra of subsets of I, and by Λ the Lebesgue measure on I.
Let σ be the one-sided shift on Ω. In the space Ω × I we define the skew
product

(1) S(ω, x) = (σ(ω), Sω(0)(x))

and call it the random walk (S, p). Let us assume for the moment that S0 and
S1 commute and µp×ν is an S-invariant measure for every p ∈ (0, 1), where
ν is σ-finite and equivalent to Λ. Then by [1, Corollary 8.15] there exists
exactly one p0 ∈ (0, 1) such that (S, µp0 × ν) is conservative and (S, µp × ν)
is totally dissipative for p 6= p0 (for example see [8, Theorem 4]).

Definition 1.1. We say that a property P of random walk (S, p0) is
physically essential if there exists an interval J ⊂ I with Λ(J) > 0 and
p0 ∈ J such that the random walk (S, p) has the property P for every p ∈ J.

We see that conservativity is not physically essential for commuting
S0, S1. Now, let Si, i = 0, 1 be as in the abstract. At the beginning of
Section 3, without loss of generality we assume that ε0 = −1 and ε1 = 1.
Then µ0.5 × Λ is S-invariant. We show that the property of having an in-
variant Sinai–Ruelle–Bowen measure µp × ν for p 6= 1/2 can be physically
essential (see Theorem 3.1). As an example, we construct a family of skew
products such that if S is from this family then µ0.5 × Λ is S-invariant and
simultaneously µp∗ × νp∗ is S-invariant for some p∗ > 1/2 and νp∗ . Here
νp∗ is a probability measure equivalent to Λ. The construction is presented
in Sections 3 and 6. Moreover, it appears (see Theorem 3.1) that for every
p ∈ [1/2, p∗] there exists a continuous measure νp on I such the µp × νp is
S-invariant and ergodic. Additionally

1

n

n−1∑
k=0

1B×J(Sk(ω, x))→ µp(B)νp(J) as n→∞

for µp-almost every ω ∈ Ω, every x ∈ (0, 1), any cylinder set B ⊂ Ω and
any interval J ⊂ I. So the last property is physically essential for the above
walk. Moreover the walk S is uniquely determined by νp∗ .

Let S be a random walk as in the abstract and let Mp(S) denote the set
of S-invariant probability measures m on Ω× I such that m|B×{∅, I} = µp.
In Section 2 we present more general conditions describingMp(S) than those
in [7, Theorem 1], and as a consequence we get asymptotic properties of
random walks. For S as in Section 3 we show that (S, µ0,5×Λ), (S, µp∗ ×νp∗)
have natural extensions to K-automorphisms. In Section 4 we interpret our
construction in terms of a quantum simple harmonic oscillator. The solution
of the Schrödinger equation contains a distribution function which charac-
terizes the motion of a particle in n-quantum state. If we assume that the
random walk of a particle on R comes from a physically essential random
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walk on I then it is partially determined by two successive distributions for
n − 1- and n-quantum states, n ≥ 1. We apply the above to describe the
motion of the particle in 0-, 1- and 2-quantum state. Section 5 is devoted to
a binomial model for asset prices. We conclude that circumstances when the
asset prices change in chaotic way may be persistent. In Section 7 we present
a numerical construction of S and apply it to obtain an explicit, given by
parabolic maps, skew product for which the property of having an invariant
Sinai–Ruelle–Bowen measure is physically essential.

2. Ergodic properties. Let us denote by D the set of distribution func-
tions of probability measures on I. Let νG denote the measure determined
by G ∈ D. We also add new assumptions about Si, i = 0, 1. Namely

S−1
i (x) = (1− εi)x+ εig(x), i = 0, 1,

for some reals ε0 < 0 and ε1 > 0. Here g is a C1(0, 1) homeomorphism of I
and g(x) < x for x ∈ (0, 1).

[7, Theorem 1] has the following extension.

Theorem 2.1. If µp×µ ∈Mp(S) with µ({0}) = µ({1}) = 0 then µ = µG
where G is a homeomorphism of I. Moreover µp × µG is ergodic and

Mp(S) = conv{µp × δ{0}, µp × δ{1}, µp × µG}.
Proof. By ergodic decomposition [5, Theorem 1.1, p. 193] of µp×µ there

exists G ∈ D such that µp × νG is ergodic and
νG /∈ conv{δ{0}, δ{1}}.

Therefore by [8, Lemma 3], G is continuous and increasing. An application
of [7, Theorem 1] completes the proof.

We also have

1

n

n−1∑
k=0

1B×J(Sk(ω, x))→ µp(B)µ(J) as n→∞

for µp-almost every ω ∈ Ω, every x ∈ (0, 1), any cylinder set B ⊂ Ω and any
interval J ⊂ I, by repeating the reasoning in [10, proof of Theorem 2]. So
µp × µ is a kind of Sinai–Ruelle–Bowen measure. In particular

1

n

n−1∑
k=0

µp{ω : Sω(k) ◦ · · · ◦ Sω(0)(x) ∈ J} → µ(J) as n→∞

for every x ∈ (0, 1) and any interval J ⊂ I.
Corollary 2.2. If µp × Λ ∈Mp(S), i.e.

p =
ε1

ε1 − ε0
,

then (S, µp × Λ) is ergodic.
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To obtain the ergodicity of (S, µp×Λ) in previous papers, we have assumed
that S0 ∈ C2(I) and there exists exactly one x0 ∈ I such that S′0(x0) = 1.

In the current mathematical literature, µp×Λ is the only known product
measure µp × µ ∈ Mp(S) such that µ is absolutely continuous with respect
to Λ. Theorem 6.6 below changes this situation and that is why we have to
present the results such as the following.

Let us denote by (S̄, µp × µ) the natural extension of (S, µp × µ) to an
automorphism.

Definition 2.3. (S, µp×µ) is said to have the K-property if (S̄, µp × µ)
is a K-automorphism, i.e. there exists a sub-σ-algebra D̄ of B ×A such that

∞∨
n=−∞

S̄n(D̄) = B ×A and
∞∧

n=−∞
S̄n(D̄) = R̄,

where R̄ is trivial in the sense that it contains only sets of measure 0 or 1.

Theorem 2.4. If µp × µ ∈ Mp(S) and µ ≡ Λ then (S, µp × µ) has the
K-property.

Proof. If
p = p0 =

ε1
ε1 − ε0

then by ergodicity of (S, µp0×Λ) and by using the reasoning from the proof of
[6, Theorem 2] we get the K-property of (S, µp0×Λ). Now, let µp×µ ∈Mp(S)
and µ ≡ Λ. To get prove the K-property of µp × µ it is enough to prove the
total ergodicity of (S, µp×µ) by [6, Theorem 1]. Let f ◦S = af µp×µ-a.e. for
f ∈ L1(µp×µ) and |a| = 1. Then f(ω, x) = f(x) µp×µ a.e. by [12, Theorem
3.2]. Therefore f ◦ Si = af for i = 0, 1 µ-a.e. or Λ-a.e. Hence f ◦ S = af
µp0×Λ a.e. The K-property of µp0×Λ implies f = constΛ-a.e., which yields
f = const µp × µ-a.e.

Let us consider the random walk X0 = x0, X1 = Sω(0)(x0), X2 = Sω(1) ◦
Sω(0)(x0), . . . , inductively

Xn+1 = Sω(n)(Xn).

We apply the dual skew product method for (S, µp×µ), where µ ≡ Λ, much
as for (S, µp0 × Λ) in [9]. As a consequence we get�

|µp {Xn(ω, x) ∈ A} − µ(A)| dµ(x)→ 0

as n→∞ for A ∈ A.

3. Construction. Assume for simplicity that ε0 = −1 and ε1 = 1. Let
g be a homeomorphism of I such that g ∈ C1(0, 1), g(x) < x for x ∈ (0, 1),
and 2x− g(x) is a homeomorphism too. Then g determines S where

S−1
0 (x) = 2x− g(x) and S−1

1 (x) = g(x).
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We also introduce the operator Ap : D → D for p ∈ (0, 1) such that

ApF (x) = pF (S−1
0 (x)) + (1− p)F (S−1

1 (x)).

It is easy to see that the measure µp × µF is S-invariant if and only if ApF
= F . Obviously µ0.5×Λ is S-invariant. Assume that F is a homeomorphism
of I, x < F (x) for x ∈ (0, 1) and Ap∗F = F for some p∗ ∈ (1/2, 1).

Theorem 3.1. For every p ∈ [1/2, p∗] there exists an S-invariant mea-
sure µp × µG such that (S, µp × µG) is ergodic and G is a homeomorphism
of I.

Proof. Let

Fp(x, y) = pF (2x− y) + (1− p)F (y)− F (x)

for (x, y) ∈ I × I such that 2x− 1 ≤ y ≤ x. Then
Fp(x, y) < Fp∗(x, y) for p < p∗ and (x, y) ∈ I × I, 2x− 1 < y < x.

Therefore

ApF (x)− F (x) = Fp(x, g(x)) < Fp∗(x, g(x)) = 0 for p < p∗ and x ∈ (0, 1).

Simultaneously I ≤ F , where I denotes the identity function. Hence

I ≤ ApI ≤ ApF ≤ F for p ∈ (1/2, p∗).

Therefore
I ≤ AnpI ≤ F,

and the sequence AnpI(x) is non-decreasing for x ∈ I, n = 1, 2, . . . . Let

G(x) = lim
n→∞

AnpI(x)

and Ḡ(x) = G(x−) for every x ∈ (0, 1). Then µp × µḠ is S-invariant since
ApḠ = Ḡ. Moreover µḠ(0) = µḠ(1) = 0 since I ≤ Ḡ ≤ F. Now we are in a
position to use Theorem 2.1.

Taking into consideration the results of Section 2 we see that the Sinai–
Ruelle–Bowen measure µp∗ × µF for (S, p∗) is physically essential.

As in Section 2 we consider

T−1
i (x) = (1− εi)x+ εih(x), i = 0, 1,

for some reals ε0 < 0 and ε1 > 0. It is known that I ≤ ApI for p ≥
ε1/(ε1 − ε0). Here Ap is determined by T . Therefore we can apply the rea-
soning from the proof of Theorem 3.1 to get:

Corollary 3.2. If T−1
0 (x) ≤ 2x−g(x) and T−1

1 (x) ≤ g(x) for x ∈ [0, 1]
then for every

p ∈ [ε1/(ε1 − ε0), p∗]

there exists a T -invariant measure µp×µG such that (T, µp×µG) is ergodic
and G is a homeomorphism of I.



6 Z. S. Kowalski

Set
‖f‖ = sup{|f(x)| : x ∈ I}

and letGp be the distribution functionG given by Theorem 3.1 for p ∈ [1
2 , p
∗].

Proposition 3.3. Let p0 ∈ [1/2, p∗]. Then

lim
p→p0

‖Gp −Gp0‖ = 0.

Proof. Let us consider Gn = Gpn such that limn→∞ pn = p0. Then by
Helly’s Theorem there exists a subsequence Gnk and a non-decreasing func-
tion G such that

lim
k→∞

|Gnk(x)−G(x)| = 0 for every x ∈ I.

It is easy to see that Ap0G = G. Moreover I ≤ G ≤ F by the proof of
Theorem 3.1. Let Ḡ(x) = G(x−) for every x ∈ (0, 1). Then Ḡ ∈ D and
Ḡ = Gp0 by Theorem 2.1. Continuity of Gp0 implies uniform convergence of
Gnk to Gp0 .

Let F ∈ C2(0, 1) with F (0) = 0, F (1) = 1, F ′(0+) = ∞, F ′(1) = 0 and
F ′′(x) < 0 for x ∈ (0, 1). We will find g as above such that ApF = F for
some p ∈ (0, 1). In other words, we will find the implicit function given by
Fp(x, y) = 0 where

Fp(x, y) = pF (2x− y) + (1− p)F (y)− F (x),

or we solve the equivalent differential equation. The detailed description and
examples are contained in Section 6. Let S be the skew product determined
by g which is given by Theorem 6.6 for some p∗ ∈ (1/2, 1). Then the conclu-
sions of Theorem 3.1 and Proposition 3.3 hold for (S, p∗).

There is another way to obtain S which possesses two invariant proba-
bility measures, namely, such that µp × Λ ∈ Mp(S) for some p 6= 1/2 and
ν∗ ∈M0.5(S), where ν∗ is non-trivial, i.e. ν∗ /∈ conv{µ0.5×δν{0}, µ0.5×δ{1}},
by using results of [3] and [2] (see also [4]). To get this we consider

S−1
i (x) = (1− εi)x+ εix

2, i = 0, 1,

where ε0 + ε1 6= 0, (1 − ε0)(1 − ε1) < 1 and (1 + ε0)(1 + ε1) < 1. Then S
has a non-trivial measure ν∗ ∈ M0.5(S) by [3, Theorem 5.1]. Moreover ν∗
is a product measure by [2, Theorem 4.2], i.e. ν∗ = µ0.5 × ν, where ν is a
probability measure on (0, 1). Therefore S has invariant measures µp×Λ for
p = ε1/(ε1 − ε0) and µ0.5 × ν for p = 1/2. But we do not know when ν is an
absolutely continuous measure.

4. Quantum harmonic oscillator. Results of the Appendix (Sec-
tion 6) show that the shape of the distribution function uniquely determines
a random walk which is physically essential. This is the justification for ap-
plying the above to the quantum harmonic oscillator. A one-dimensional
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quantum harmonic oscillator Ψ satisfies the Schrödinger equation

i~
∂Ψ

∂t
= HΨ

where H = 1
2(P 2 +Q2) is the Hamiltonian. Here P = −i ddx and Q is multi-

plication by x. Let us consider the ground state solution

Ψ0(x, t) =
1
4
√
π

exp

(
− i

2~
t

)
exp

(
−x

2

2

)
.

The quantum interpretation of |Ψ0(x, t)|2 = 1√
π

exp(−x2) is the following:
The probability that a particle is in the set A ⊂ R at time t is

1√
π

�

A

exp(−x2) dx.

We construct a discrete time random walk X̃n(ω, x) on R which asymptoti-
cally imitates the motion of a particle in the ground state.

Let S be the skew product determined by g(x) given by Theorem 6.6
for some p∗ ∈ (1/2, 1). By using the map Ξ : Ω × R → Ω × I where
Ξ(ω, x) = (ω, φ0(x)) and

φ0(x) =
1√
π

x�

−∞
exp(−t2) dt,

we define
S̃(ω, x) = (σ(ω), S̃ω(0)(x)),

a skew product on Ω×R. Here S̃i(x) = φ−1
0 (Si(φ0(x))) for i = 0, 1. The map

S̃ preserves the measures µ0.5 × µ̃Λ and µp∗ × µ̃F where µ̃Λ has the normal
distribution with density 1√

π
exp(−x2) and µ̃F has distribution F (φ0(x)).

Moreover S̃ preserves the ergodic measures µp × µ̃Gp for p ∈ (1/2, p∗)
where µ̃Gp has distribution Gp(φ0(x)). The distributions Gp are provided
by Theorem 3.1. Denote by X̃n(ω, x) the random walk determined by S̃, i.e.
X̃0(ω, x0) = x0, X̃1(ω, x0) = S̃ω(0)(x0), . . . , inductively

X̃n+1(ω, x0) = S̃ω(n)(X̃n(ω, x0)).

Here X̃n(ω, x) = φ−1
0 (Xn(ω, φ0(x))). The real p∗ and the distribution F

uniquely determine the random walk X̃n by Theorem 6.6. The convergences

µ0.5{Xn(ω, x) ∈ A} → Λ(A) in L1(Λ)

and
µp∗{Xn(ω, x) ∈ A} → µF (A) in L1(µF )

for A ∈ A, as has been observed in Section 2, imply

µ0.5{X̃n(ω, x) ∈ B} → µ̃Λ(B) in L1(µ̃Λ)
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and
µp∗{X̃n(ω, x) ∈ B} → µ̃F (B) in L1(µ̃F )

for B ∈ B(R).

The random walk for the nth quantum state solution where n > 0 is
more complicated. Let us consider the case n = 1. The 1-state solution

Ψ1(x, t) =

√
2

4
√
π

exp

(
− 3i

2~
t

)
x exp

(
−x

2

2

)
gives the distribution function

φ1(x) =
2√
π

x�

−∞
t2 exp(−t2) dt.

We obtain a physically essential random walk S on I determined by φ1 as
follows. By the equality

φ1(x) = φ0(x)− 1√
π
x exp(−x2) for x ∈ R

we get

F (1)(x) = x− 1√
π
φ−1

0 (x) exp(−[φ−1
0 (x)]2) for x ∈ I.

Here F (1)(φ0(x)) = φ1(x) for x ∈ R. The function F (1) is an increasing
homeomorphism of I, F (1)(1/2) = 1/2, F (1) is concave on [0, 1/2] and convex
on [1/2, 1]. Moreover (F (1)′)(0) = (F (1)′)(1) = ∞ and (F (1)′)(1/2) = 0 as
(F (1)′)(x) = 2[φ−1

0 (x)]2. In fact F (1)(x) = 1 − F (1)(1 − x) for x ∈ [0, 1].
Moreover F (1) satisfies the assumptions of Hypothesis 6.11 for the interval
[0, 1/2] instead of [0, 1]. By hypothesis we can modify F (1) to F̌ (1) for every
ε > 0 such that ‖F (1) − F̌ (1)‖ < ε. The equality F̌ (1)

p∗ (x, y) = 0, where

F̌
(1)
p∗ (x, y) = p∗F̌ (1)(2x− y) + (1− p∗)F̌ (1)(y)− F̌ (1)(x)

and p∗ ∈ (1/2, 1/ 3
√

4), determines an increasing homeomorphism h(x) of I
such that

h(x) =

{
g(x) for x ∈ [0, 1/2],
1− g(1− x) for x ∈ (1/2, 1].

Here g(x) is given by Theorem 6.8 for F̌ (1) restricted to [0, 1/2]. The random
walk S determined by h(x) has the following properties: µ0.5 ×Λ ∈M0.5(S)
and µp∗×µF̌ (1) ∈Mp∗(S). It is easy to see that S is not ergodic. There are two
ergodic components, Ω × [0, 1/2] and Ω × [1/2, 1]. Set S(1) = S|Ω × [0, 1/2]
and S(2) = S|Ω × [1/2, 1]. The walks S(1) and S(2) move in the opposite
directions, i.e. S(1)

ω(0)(x)− x has opposite sign to S(2)
ω(0)(y)− y for x ∈ (0, 1/2)

and y ∈ (1/2, 1). Moreover, S(i), i = 1, 2, have the properties given by
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Theorems 2.4 and 3.1. Hence the property that

1

n

n−1∑
k=0

µp∗{Xk(ω, x) ∈ J} → 2µF̌ (1)(J ∩ [0, 1/2])1[0,1/2](x)

+ 2µF̌ (1)(J ∩ [1/2, 1])1[1/2,1](x)

as n → ∞ for every x ∈ (0, 1) and any interval J ⊂ [0, 1] is physically
essential. By using the map Ξ1 : Ω×R→ Ω×I where Ξ1(ω, x) = (ω, φ0(x))
we define

S̃(ω, x) = (σ(ω), S̃ω(0)(x)),

a skew product on Ω×R. Then S̃ preserves the measures µ0.5×µ̃Λ and µp∗×
µ̃F̌ (1) where µ̃Λ has distribution φ0(x) and µ̃F̌ (1) has distribution F̌ (1)(φ0(x)).

Since F̌ (1)(φ0(x)) ≈ φ1(x), we have

φ1(x) ≈ p∗φ1(S̃0(x)) + (1− p∗)φ1(S̃1(x)) for x ∈ R.

The process X̃n determined by S̃ has the property

µp∗{X̃n(ω, x) ∈ B} → 2µ̃F̌ (1)(B ∩ (−∞, 0])1(−∞,0](x)

+ 2µ̃F̌ (1)(B ∩ [0,∞))1[0,∞)(x)

as n→∞ in L1(µ̃F̌ (1)) for B ∈ B(R).

The above suggests the physical interpretation of the 1-quantum state
as existence of two particles which move in the opposite directions towards
each other or one particle which consists of two components as above.

For n = 2 the distribution function

φ2(x) =
1

2
√
π

x�

−∞
(2t2 − 1)2 exp(−t2) dt

satisfies the equation

φ2(x) = φ1(x)− 1√
π

(
x3 − 1

2
x

)
exp(−x2) for x ∈ R.

Hence

F (2)(x) = x− 1√
π
φ−1

1 (x)([φ−1
1 (x)]2 − 1/2) exp(−[φ−1

1 (x)]2) for x ∈ I

and F (2)(φ1(x)) = φ2(x). Here F (2)(x1) = x1, F
(2)(1/2) = 1/2 and F (2)(1−

x1) = 1−x1 where φ−1
1 (x1) = −

√
2/2.Equivalently φ1(−

√
2/2)=φ2(−

√
2/2)

= x1, φ1(0) = φ2(0) = 1/2 and φ1(
√

2/2) = φ2(
√

2/2) = 1− x1.

We repeat the reasoning similar to the case n = 1 and finish with the
interpretation via the existence of four particles or two particles which consist
of two opposite components. Here we use Ξ2(ω, x) = (ω, φ1(x)).
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Let us consider the general case. Here

φn(x) =
1

n!2n
√
π

x�

−∞
H2
n(t)e−t

2
dt

where Hn is the nth Hermite polynomial, i.e.

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

and F (n+1)(x) = φn+1(φ−1
n (x)) for n = 0, 1, . . . . Let

Cn = {x : φn(x) = φn+1(x)}.
Theorem 4.1. The cardinality of Cn is 2n+ 1 and ϕn(Cn) is the set of

inflexion points of F (n+1) for n = 0, 1, . . . .

Proof. We start with the identity (see [13])

HmHn =

min(m,n)∑
l=0

(
m

l

)(
n

l

)
2ll!Hm+n−2l.

Hence

H2
n =

n∑
l=0

(
n

l

)2

2ll!H2(n−l).

Therefore

φn(x) = φn+1(x)

⇔
n∑
l=0

(
n+ 1

l

)2

2ll!H2(n−l)+1(x) = 2(n+ 1)
n∑
l=0

(
n

l

)2

2ll!H2(n−l)−1

⇔ Hn+1(x)Hn(x) = 0.

Hence the cardinality of Cn is 2n + 1. The second part of the conclusion
follows by calculating d2

dx2
F (n+1) and using Turán’s inequality

H2
n −Hn−1Hn+1 > 0.

To end this section we present some ideas which lead to this example.
The set Cn determines a partition of R into 2(n+ 1) intervals with measures
given by φn+1 the same as those given by φn.We postulate that every interval
is occupied by a particle or every pair of neighboring intervals is occupied
by a compound particle. The dynamics of these particles is determined by
intervals of convexity and concavity of F (n+1) and by the shape of φn+1.
Moreover the direction of motion of a particle depends on probability. If p∗
is less than 1/2 then the direction is reversed (see Remark 6.7).

5. Binomial model for asset prices. The existence of a random walk
described in Section 3 indicates a new property of a one-asset binomial model
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considered in [9]. For the convenience of the reader we recall the description
of the model.

At each time there are two possibilities: the security price may go up by
a factor of u(x) or it may go down by a factor of d(x). The factors u and d
are functions of the prices, u : (0, 1)→ (1,∞) and d : (0, 1)→ (0, 1). Given
the functions u(x), d(x) and the probabilities p = pd, q = pu = 1 − pd, we
can construct a random map S which consists of the transformations Sd, Su
given by

Sd(x) = d(x)x and Su(x) = u(x)x.

Here Sd, Su : [0, 1]→ [0, 1] are continuous maps with

∀x∈[0,1] Sd(x) ≤ x and Su(x) ≥ x.
We will assume that Sd and Su are homeomorphisms, so S is given by (1).
The subscript u of Su indicates that Su is the law which moves the price
up, and similarly Sd moves the price down. The process determined by the
random walk S and starting from x0 ∈ (0, 1) can be written as Xn(ω, x0). If
Su and Sd commute, then there exists exactly one p ∈ (0, 1) such that Xn has
chaotic behavior (see [9, Example 1]). By uniqueness of p this behavior is not
physically essential, and so is not observed in practice. If the random walk
S is determined by g given by Theorems 6.6 and 6.8 then Xn has chaotic
behavior for p ∈ [1/2, 1/ 3

√
4]. See also Corollary 3.2.

Corollary 5.1. The state when asset prices behave chaotically can be
persistent.

6. Appendix. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) =∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). Here F ′ denotes d

dxF.
We will consider the implicit equation Fp(x, y) = 0 where

Fp(x, y) = pF (2x− y) + (1− p)F (y)− F (x).

We are looking for solutions y = g(x) in the set

D = {(x, y) : 0 < y < x for x ∈ (0, 1/2] and 2x− 1 < y < x if x ∈ (1/2, 1)}
and for p ∈ (1/2, 1) by concavity of F. Simultaneously h(x) = 2x − g(x) is
the implicit function for 1− p and its graph lies in

{(x, y) : x < y < 2x for x ∈ (0, 1/2] and x < y < 1 if x ∈ (1/2, 1)}.
From now on we assume that p is fixed and denote Fp(x, y) by F (x, y). We
will write

Fx =
∂F

∂x
and Fy =

∂F

∂y
.

Then

Fx = 2pF ′(2x− y)− F ′(x), Fy = −pF ′(2x− y) + (1− p)F ′(y).
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Hence
Fy = 0 ⇔ x = ψp(y) =

1

2
y +

1

2
F ′−1

(
1− p
p

F ′(y)

)
.

Here F ′−1 is the inverse function to F ′. We will denote ψp(y) by ψ(y)
throughout this section. By the definition of ψ we see that ψ is increasing,
ψ(0) = 0, ψ(1) = 1, and (ψ(y), y) ∈ D for y ∈ (0, 1). Next,

Fx = 0 ⇔ y = ϕp(x) = 2x− F ′−1

(
1

2p
F ′(x)

)
.

In this section we will also denote ϕp(x) by ϕ(x). Here ϕ(0) = 0, ϕ(1) = 1,
and (x, ϕ(x)) ∈ D for x ∈ (1/2, 1). It remains to check that ϕ(x) > 0 for
x ∈ (0, 1/2), which is true when ϕ is an increasing function. If we change p
to 1− p then we need to check ϕ1−p(x) < 1 for x ∈ (1/2, 1). Denote

χ1(x) = min{ϕ(x), ψ−1(x)}, χ0(x) = max{0, 2x− 1} for x ∈ (0, 1).

Lemma 6.1. Assume that ϕ and ϕ1−p are increasing functions. Then
F (x, ψ−1(x)) > 0 and F (x, χ0(x)) < 0 for x ∈ (0, 1).

Proof. Observe that F (x, ψ−1(x)) > 0 for x ∈ (0, 1) since F (x, x) = 0
and Fy(x, y) < 0 for ψ−1(x) < y < x. Simultaneously F (x, χ0(x)) < 0
became 2pF ′(2x) < F ′(x) for x ∈ (0, 1/2) and by 2(1−p)F ′(2x−1) > F ′(x)
for x ∈ (1/2, 1), which follows from the assumptions about ϕ and ϕ1−p.

Remark 6.2. The conclusion of Lemma 6.1 is true when we replace p
by 1− p. Here
χ1(x) = max{ϕ1−p(x), ψ−1

1−p(x)}, χ0(x) = min{1, 2x} for x ∈ (0, 1).

Lemma 6.3.

Fy(x, y) < 0 for ψ−1(x) < y < x, Fy(x, y) > 0 for 0 < y < ψ−1(x).

Similarly

Fx(x, y) > 0 for ϕ(x) < y < x, Fx(x, y) < 0 for 0 < y < ϕ(x).

Proof. This is easy to see from Fx(x, x) > 0, Fy(x, x) < 0, and

Fyy(x, y) < 0 and Fxy(x, y) > 0 for 0 < y < x.

Lemma 6.4. For every x ∈ (0, 1) there exists exactly one y such that
F (x, y) = 0. Here χ0(x) < y < ψ−1(x). Moreover there exists (x0, y0) such
that F (x0, y0) = 0 and χ0(x0) < y0 < χ1(x0).

Proof. Fix x ∈ (0, 1). Since F (x, x) = 0 and Fy(x, y) < 0 for ψ−1(x) <
y < x with x ∈ (0, 1), we see that F (x, y) > 0 for ψ−1(x) ≤ y < x. Moreover
F (x, χ0(x)) < 0. So there exists y ∈ (χ0(x), ψ−1(x)) such that F (x, y) = 0.
The uniqueness of y follows from Lemma 6.3.

To prove the “moreover” part, it is enough to show that there exists x0 ∈
(0, 1) such that ϕ(x0) = ψ−1(x0). Observe that F (0, ϕ(0)) = F (1, ϕ(1)) = 0.
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Therefore there exists x0 ∈ (0, 1) such that d
dxF (x, ϕ(x))

∣∣
x=x0

= 0. Let us
compute

d

dx
F (x, ϕ(x)) = Fx(x, ϕ(x)) + Fy(x, ϕ(x))

dϕ

dx
(x) = Fy(x, ϕ(x))

dϕ

dx
(x).

Hence Fy(x, ϕ(x)) = 0 at some point x0 since dϕ
dx (x) > 0 for x ∈ (0, 1).

Remark 6.5. The conclusion of Lemma 6.4 is true when we replace p
by 1− p.

Theorem 6.6. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) = ∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). Moreover, let
p∗ ∈ (1/2, 1) be such that ϕ and ϕ1−p∗ are increasing functions. Then there
exists exactly one implicit function y = g(x) solving F (x, y) = 0 such that
g(x) < x for x ∈ (0, 1). The function g is a homeomorphism of I and
g ∈ C1(0, 1). Moreover 2x− g(x) is a homeomorphism too.

Proof. Let
f(x, y) = −Fx(x, y)

Fy(x, y)
for x 6= ψ(y).

To determine the implicit function given by F (x, y) = 0 let us take (x0, y0)
given by Lemma 6.4 and solve the differential equation

(2)
dy

dx
= f(x, y), y(x0) = y0.

Let (a, b) denote the maximal interval in which the function y(x) is defined.
We show that (a, b) = (0, 1). Firstly we prove that a = 0. We consider three
cases.

(I) There exist δ > 0 and x such that y(s) ∈ (ϕ(s), ψ−1(s)) for s ∈
(x, x + δ) ⊂ (a, b) and y(x) = ϕ(x). Then y(s) is decreasing on (x, x + δ)
by Lemma 6.3 (here f(s, y(s)) < 0). This contradicts ϕ(s) being strictly
increasing.

(II) y(s) ∈ (ϕ(s), ψ−1(s)) for s ∈ (x − δ, x) ⊂ (a, b) and y(x) = ϕ(x).
Then by (I), y(s) ∈ (ϕ(s), ψ−1(s)) for s ∈ (a, x). Therefore y(s) is decreasing
on (a, x).

(III) χ0(x) < y(x) ≤ χ1(x) for every x ∈ (a, b). Then y(x) is strictly
increasing on (a, b) as f(x, y) > 0 for χ0(x) < y < χ1(x) (by Lemma 6.3)
and since ϕ(x) is strictly increasing.

Hence limx→a+ y(x) = y(a+) exists.We haveF (a, y(a+)) = 0 and χ0(a) <
y(a+) < ψ−1(a) as F (a, χ0(a)) < 0 and F (a, ψ−1(a)) > 0. Therefore there
exists a solution of dydx = f(x, y) with y(a) = y(a+) on the interval (a−δ, a+δ)
for some δ > 0. This contradicts the maximality of (a, b). Therefore a = 0.
The case b = 1 is similar. We extend the definition of y(x) on [0, 1] by setting

y(1) = lim
x→1−

y(x) and y(0) = lim
x→0+

y(x).

Then y(0) = 0 as F (0, y(0)) = 0, and y(1) = 1 because F (1, y(1)) = 0.
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We see that case (II) does not hold, as y(0) = ϕ(0) = 0. Hence by (III)
g(x) = y(x) is homeomorphism, g ∈ C1(0, 1) and g(x) < x. Moreover g is a
unique implicit function by Lemma 6.4. We next show that h(x) = 2x−g(x)
is increasing. As h is an implicit function given by F1−p∗(x, y) = 0, by using
Remarks 6.2 and 6.5 we can apply the reasoning as for p∗.

If we consider the symmetrical case with respect to the diagonal then
y = 1 − g(1 − x) satisfies Hp(x, 1 − g(1 − x)) = 0 for x ∈ [0, 1] where
H(x) = 1− F (1− x).

The assumptions of Theorem 6.6 are not satisfied for F = F (1) (see
Section 4 for the definition of F (1)). Namely ϕ1−p is increasing for every
p ∈ (1/2, 7/8) but ϕ is not 1 − 1 for any p ∈ (1/2, 1). Here we consider the
interval [0, 1/2] instead of [0, 1].

Remark 6.7. Assume that G is an increasing homeomorphism of I.
Moreover, suppose G(x0) = x0 for some x0 ∈ (0, 1) and G is concave on
(0, x0) and convex on (x0, 1). If y = g(x) is an increasing homeomorphism
such that g(x) 6= x for x /∈ {0, x0, 1} and

pG(2x− g(x)) + (1− p)G(g(x))−G(x) = 0

for some p 6= 1/2 and every x ∈ I then g(x0) = x0. Moreover g(x) < x for
x ∈ (0, x0) and g(x) > x for x ∈ (x0, 1) if p ∈ (1/2, 1).

Proof. Let p ∈ (1/2, 1) and x ∈ (0, x0). We have

1/2 < p =
G(x)−G(g(x))

G(2x− g(x))−G(g(x))
< 1.

If x < g(x) < x0 then

G(x) < 1/2G(2x− g(x)) + 1/2G(g(x)) < G(x)

as G is concave on (0, x0). But this is impossible. Let x1 = sup{x < x0 :
g(x) < x}. Then x0 = x1 under our assumptions. Hence g(x) < x for
x ∈ (0, x0). Similarly we show that g(x) > x for x ∈ (x0, 1). This implies
that g(x0) = x0. For p ∈ (0, 1/2) the reasoning is analogous.

Example. We apply Theorem 6.6 to F (x) = (1 − (1 − x)α)1/α, where
α > 1. We have F ′(x) = ((1 − x)−α − 1)(1−α)/α and F ′−1(x) = 1 −
(1+xα/(1−α))−1/α for x ∈ (0, 1).Obviously F ∈ C2(0, 1), F (0) = 0, F (1) = 1,
F ′(0+) =∞, F ′(1) = 0 and F ′′(x) < 0 for x ∈ (0, 1). To show that

ϕ(x) = 2x− F ′−1(b−1F ′(x))

= 2x− 1 +
(
1 + bα/(α−1)((1− x)−α − 1)

)−1/α

is increasing for b = 2p and b = 2(1− p), we check the inequality ϕ′(x) > 0
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for x ∈ (0, 1). By simple computation we get

2−1 < p < min{1− 2−α, 2−1/α} ⇒ ϕ′(x) > 0

for x ∈ (0, 1). For example if α = 2 then 1/2 < p <
√

2/2.

It appears that regularity of F ′′ at 0 and 1 ensures that the assumptions
of Theorem 6.6 hold.

Theorem 6.8. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) = ∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). If F ′′ is strictly
increasing on (0, 1), F ′′(1−) < 0, 0 < (F−1)′′(0+) < ∞ then there exists
p∗ ∈ (1/2, 1/ 3

√
4) such that ϕ and ϕ1−p are strictly increasing on [0, 1] for

p ∈ (1/2, p∗).

The proof is preceded by two lemmas.

Lemma 6.9. If F ′′ is strictly increasing on (0, 1) then ϕ1−p is strictly
increasing on [0, 1] for p ∈ (1/2, 3/4).

Proof. The strict increasing of ϕ1−p is equivalent to

4(1− p)F ′′
(
F ′−1

(
1

2(1− p)
F ′(x)

))
< F ′′(x) for x ∈ (0, 1).

An analogous condition holds for ϕ = ϕp. Note that F ′(x) < 1
2(1−p)F

′(x)

implies F ′−1
(

1
2(1−p)F

′(x)
)
< x. Hence

F ′′
(
F ′−1

(
1

2(1− p)
F ′(x)

))
< F ′′(x),

and consequently

4(1− p)F ′′
(
F ′−1

(
1

2(1− p)
F ′(x)

))
< F ′′(x) for p < 3/4.

Lemma 6.10. If F ′′ is strictly increasing on (0, 1) and F ′′(1−) < 0 then

∀ε∈(0,1) ∃p0∈(1/2,1) ∀p∈(1/2,p0) ∀x∈[ε,1) F
′′
(
F ′−1

(
1

2p
F ′(x)

))
<

1

2
F ′′(x).

Proof. Fix ε ∈ (0, 1). If we define F ′′(1) = F ′′(1−) then F ′′ ∈ C[ε, 1].
Observe that

lim
p→(1/2)+

F ′−1

(
1

2p
F ′(x)

)
= x

uniformly as F ′−1
(

1
2pF

′(x)
)
is strictly increasing. Therefore

lim
p→(1/2)+

F ′′
(
F ′−1

(
1

2p
F ′(x)

))
= F ′′(x)
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uniformly too. Hence there exists p0 ∈ (1/2, 1) such that

∀x∈[ε,1) F
′′
(
F ′−1

(
1

2p
F ′(x)

))
< F ′′(x)− 1

2
F ′′(1) <

1

2
F ′′(x).

Hence the inequality above holds for every p ∈ (1/2, p0) and x ∈ [ε, 1).

Proof of Theorem 6.8. Let (F−1)′′(0+) = a. Then

lim
x→0+

(F−1)′′(x) = lim
x→0+

− F ′′(F−1(x))

[F ′(F−1(x))]3
= lim

u→0+
− F ′′(u)

[F ′(u)]3
= a.

Hence

lim
x→0+

F ′′
(
F ′−1

(
1
2pF

′(x)
))[

F ′
(
F ′−1

(
1
2pF

′(x)
))]3 = lim

x→0+

F ′′
(
F ′−1

(
1
2pF

′(x)
))

F ′′(x)

F ′′(x)(
1
2p

)3
[F ′(x)]3

=−a.

Therefore

lim
x→0+

F ′′
(
F ′−1

(
1
2pF

′(x)
))

F ′′(x)
=

1

(2p)3
.

Here 1/(2p)3 > 1/2 ⇔ p < 1/ 3
√

4. Let p1 ∈ (1/2, 1/ 3
√

4). We take ε ∈ (0, 1)
such that

∀x∈(0,ε] F
′′
(
F ′−1

(
1

2p
F ′(x)

))
<

1

2
F ′′(x).

Hence the above inequality holds for every p ∈ (1/2, p1). Let p∗ = min{p1, p0}
where p0 is given by Lemma 6.10 for ε. Then

4pF ′′
(
F ′−1

(
1

2p
F ′(x)

))
< 2pF ′′(x) < F ′′(x)

for p ∈ (1/2, p∗) and every x ∈ (0, 1). By Lemma 6.9 this finishes the proof.

It seems that the following hypothesis is true.

Hypothesis 6.11. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) =∞, F ′(1−) = 0, F ′′(x) < 0 for x ∈ (0, 1) and F ′′ strictly increasing
on (0, 1). Then for every ε > 0 there exists a function H satisfying the
assumptions of Theorem 6.8 such that ‖F −H‖ < ε.

The last hypothesis is valid for F = F (1) in the case of the interval [0, 1/2]
instead of [0, 1] (see Section 4 for the definition of F (1)).

By using the Example it is easy to see that the assumptions: F ′′ is strictly
increasing on (0, 1), F ′′(1−) < 0 and 0 < (F−1)′′(0+) <∞, are not necessary.
To see this, set Fα(x) = (1−(1−x)α)1/α for α > 1. Then F ′′α is not monotonic
for 1 < α < 2, F ′′α(1−) = 0 for α > 2 and (F−1

α )′′(0+) =∞ for 1 < α < 2.
To end this section we present some necessary conditions for F to deter-

mine g such as in Theorem 6.6 for some p ∈ (1/2, 1).

Lemma 6.12. Let F ∈ C1(0, 1)∩C[0, 1] with F (0) = 0 and F (1) = 1, and
suppose F ′(0+) and F ′(1−) exist and F ′(x) > 0 for x ∈ (0, 1). If ApF = F
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for some p ∈ (1/2, 1) and some homeomorphism g such that g(x) < x for
x ∈ (0, 1) and g ∈ C1[0, 1] then F ′(0+) = ∞, F ′(1−) = 0 and F (x) > x for
x ∈ (0, 1).

Proof. Let P be the Frobenius–Perron operator for (S, µp×Λ). Here S is
determined by g. The measure µp × νF ≡ µp × Λ is S-invariant and ergodic
(see Theorem 2.1). Therefore

lim
n→∞

1

n

n−1∑
k=0

P kf = F ′

with L1 convergence for every 0 ≤ f ∈ L1(Λ) and
	1
0 f dx = 1 (see [11,

Theorem 5.2.2]). In particular

lim
n→∞

1

n

n−1∑
k=0

P k1 = F ′ in L1.

From the equality
	x
0 P

n1 dx = AnpI(x) and the inequality I(x) < ApI(x)
for x ∈ (0, 1) we get

lim
n→∞

AnpI(x) = F (x) for x ∈ [0, 1].

Therefore x < F (x) for x ∈ (0, 1). Hence F ′(0+) > 0. We also have 0 <
g′(0) < 1. Since PF ′(x) = F ′(x) for x ∈ [0, 1] we get F ′(0+) = (2p +
(1 − 2p)g′(0))F ′(0+), which implies F ′(0+) = ∞. Similarly, we prove that
F ′(1−) = 0.

In view of Corollary 3.2 we consider more general random walks:

(3) S−1
0 (x) = (1 + ε)x− εg(x), S−1

1 (x) = g(x) for ε > 0.

It is easy to see that the pair of homeomorphisms

T−1
i (x) = (1− εi)x+ εih(x), i = 0, 1,

where ε0 < 0, ε1 > 0 can be written as in (3) for ε = −ε0/ε1 and g = T−1
1 .

For p > 1
1+ε we consider

F εp(x, y) = pF ((1 + ε)x− εy) + (1− p)F (y)− F (x)

for

(x, y) ∈
{

(x, y) : 0 < y < x for x ∈
(

0,
1

1 + ε

]}
∩
{

1 + ε

ε
x− 1

ε
< y < x for x ∈

(
1

1 + ε
, 1

)}
,

and

F ε1−p(x, y) = (1− p)F
(

1 + ε

ε
x− 1

ε
y

)
+ pF (y)− F (x)
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for

(x, y) ∈
{

(x, y) : x < y < (1 + ε)x for x ∈
(

0,
1

1 + ε

]}
∩
{
x < y < 1 for x ∈

(
1

1 + ε
, 1

)}
.

The conditions ∂F εp
∂x = 0,

∂F ε1−p
∂x = 0 determine the functions

ϕεp(x) =
1 + ε

ε
x− 1

ε
F ′−1

(
1

(1 + ε)p
F ′(x)

)
and

ϕε1−p(x) = (1 + ε)x− εF ′−1

(
ε

(1 + ε)(1− p)
F ′(x)

)
.

By using much the same reasoning as in the proofs of Theorems 6.6 and 6.8
we get

Theorem 6.13. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) = ∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). Moreover, let
p∗ ∈ (1/(1 + ε), 1) be such that ϕεp∗ and ϕε1−p∗ are increasing functions. Then
there exists exactly one implicit function y = g(x) such that g(x) < x for
x ∈ (0, 1). The function g is a homeomorphism of I and g ∈ C1(0, 1). More-
over (1 + ε)x− εg(x) is a homeomorphism too.

Theorem 6.14. Let F ∈ C2(0, 1) ∩ C[0, 1] with F (0) = 0, F (1) = 1,
F ′(0+) = ∞, F ′(1−) = 0 and F ′′(x) < 0 for x ∈ (0, 1). If F ′′ is strictly
increasing on (0, 1), F ′′(1−) < 0, and 0 < (F−1)′′(0+) < ∞ then there
exists p∗ where

1

1 + ε
< p∗ < min

{
1

(1 + ε)2/3
,

1 + 2ε

(1 + ε)2

}
such that ϕεp and ϕε1−p are strictly increasing on [0, 1] for p ∈

(
1

1+ε , p
∗).

7. Numerical solution. We apply the Runge–Kutta method of rank 4
to solve (2) for F (x) = (1 − (1 − x)2)1/2. Let p = 0.6, x0 = 0.01 and
y0 ∈ (y1, y2) where y1 = 0.00297, y2 = 0.002975. Here F (x0, y1) < 0 and
F (x0, y2) > 0. We start at (x0, y1) and next at (x0, y2) respectively. After
990 steps with step h = 0.001 we get two sequences of points (xn, y

1
n) and

(xn, y
2
n). It appears that F (xn, y

1
n) < 0 and F (xn, y

2
n) > 0 for n = 0, . . . , 989

and
max{y2

n − y1
n : n = 0, . . . , 990} = 0.007282.

The solution y = g(x) of (2) satisfies y1
n < g(xn) < y2

n for n = 0, . . . , 989 by
Theorem 6.6. Below we present the point graphs of (xn, y

1
n) and (xn, 2xn−y1

n)
which approximate g(x) and 2x− g(x) respectively.
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Now we are in a position to apply Corollary 3.2. Let S be given by

S−1
0 (x) = 1.307x− 0.307x2 and S−1

1 (x) = 0.26x+ 0.74x2.

Then S−1
1 (0.01) < 0.00297 < g(0.01) and F0.6(x, S−1

1 (x)) < 0 for x ∈ (0, 1).
Therefore S−1

1 (x) < g(x) for every x ∈ (0, 1). Similarly S−1
0 (0.01) < 0.02 −

0.002975 < 0.02 − g(0.01) and F0.4(x, S−1
0 (x)) > 0 for x ∈ (0, 1). Hence

S−1
0 (x) < 2x−g(x) for every x ∈ (0, 1). Then for every p ∈ [0.706781,

√
2/2),

S possesses ergodic invariant measure µp × µG by Corollary 3.2.
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