STABILITY OF SMOOTH EXTENSIONS OF BERNOULLI SHIFTS

Abstract. Let $S_{i}, i=0,1$, be homeomorphisms of $I=[0,1]$ such that $S_{i}^{-1}(x)=\left(1-\epsilon_{i}\right) x+\epsilon_{i} g(x), i=0,1$, for some reals $\epsilon_{0}<0$ and $\epsilon_{1}>0$. Here g is a $C^{1}(0,1)$ homeomorphism and $g(x)<x$ for $x \in(0,1)$. Let $\left(\Omega, \mathcal{B}, \mu_{p}, \sigma\right)$ be the one-sided Bernoulli shift where $\Omega=\{0,1\}^{\mathbb{N}}$ and μ_{p} is the (p, q) measure for some $p \in I$. In the space $\Omega \times I$ we define the skew product $S(\omega, x)=\left(\sigma(\omega), S_{\omega(0)}(x)\right)$. For some class of distribution functions $F \in C^{2}(0,1)$ of probability measures and all $\epsilon_{0}<0, \epsilon_{1}>0$, and $p \in\left(\epsilon_{1} /\left(\epsilon_{1}-\epsilon_{0}\right), 1\right)$, we give sufficient conditions for existence of exactly one pair of homeomorphisms as above such that $\mu_{p} \times \mu_{F}$ is S-invariant. Here μ_{F} is the measure determined by F. For example, as a consequence of the above, we show that if $S_{0}^{-1}(x)=1.307 x-0.307 x^{2}$ and $S_{1}^{-1}(x)=0.26 x+0.74 x^{2}$, then for every $p \in[0.706781, \sqrt{2} / 2), S$ possesses ergodic invariant measure $\mu_{p} \times \mu_{G_{p}}$ which is a kind of Sinai-Ruelle-Bowen measure. We apply the above results to the quantum harmonic oscillator and a binomial model for asset prices.

1. Introduction. Let us consider two increasing homeomorphisms S_{0}, S_{1} of the interval $I=[0,1]$ into itself such that $S_{0}(x)<x$ and $S_{1}(x)>x$ for $x \in$ $(0,1)$ and let (p, q) be a probability vector. They determine a random walk on I as follows: x goes to $S_{0}(x)$ with probability p and to $S_{1}(x)$ with probability q.

Random walks on I may be realized as transformations of a larger space. Let Ω be the space $\{0,1\}^{\mathbb{N}}, \mathbb{N}=\{0,1,2, \ldots\}$, with the (p, q)-Bernoulli measure μ_{p} on (Ω, \mathcal{B}), where \mathcal{B} is the Borel product σ-algebra. We denote by \mathcal{A}

[^0]the Borel σ-algebra of subsets of I, and by Λ the Lebesgue measure on I. Let σ be the one-sided shift on Ω. In the space $\Omega \times I$ we define the skew product
\[

$$
\begin{equation*}
S(\omega, x)=\left(\sigma(\omega), S_{\omega(0)}(x)\right) \tag{1}
\end{equation*}
$$

\]

and call it the random walk (S, p). Let us assume for the moment that S_{0} and S_{1} commute and $\mu_{p} \times \nu$ is an S-invariant measure for every $p \in(0,1)$, where ν is σ-finite and equivalent to Λ. Then by [1, Corollary 8.15] there exists exactly one $p_{0} \in(0,1)$ such that $\left(S, \mu_{p_{0}} \times \nu\right)$ is conservative and $\left(S, \mu_{p} \times \nu\right)$ is totally dissipative for $p \neq p_{0}$ (for example see [8, Theorem 4]).

Definition 1.1. We say that a property P of random walk $\left(S, p_{0}\right)$ is physically essential if there exists an interval $J \subset I$ with $\Lambda(J)>0$ and $p_{0} \in J$ such that the random walk (S, p) has the property P for every $p \in J$.

We see that conservativity is not physically essential for commuting S_{0}, S_{1}. Now, let $S_{i}, i=0,1$ be as in the abstract. At the beginning of Section 3, without loss of generality we assume that $\epsilon_{0}=-1$ and $\epsilon_{1}=1$. Then $\mu_{0.5} \times \Lambda$ is S-invariant. We show that the property of having an invariant Sinai-Ruelle-Bowen measure $\mu_{p} \times \nu$ for $p \neq 1 / 2$ can be physically essential (see Theorem 3.1). As an example, we construct a family of skew products such that if S is from this family then $\mu_{0.5} \times \Lambda$ is S-invariant and simultaneously $\mu_{p^{*}} \times \nu_{p^{*}}$ is S-invariant for some $p^{*}>1 / 2$ and $\nu_{p^{*}}$. Here $\nu_{p^{*}}$ is a probability measure equivalent to Λ. The construction is presented in Sections 3 and 6. Moreover, it appears (see Theorem 3.1) that for every $p \in\left[1 / 2, p^{*}\right]$ there exists a continuous measure ν_{p} on I such the $\mu_{p} \times \nu_{p}$ is S-invariant and ergodic. Additionally

$$
\frac{1}{n} \sum_{k=0}^{n-1} 1_{B \times J}\left(S^{k}(\omega, x)\right) \rightarrow \mu_{p}(B) \nu_{p}(J) \quad \text { as } n \rightarrow \infty
$$

for $\mu_{p^{-}}$-almost every $\omega \in \Omega$, every $x \in(0,1)$, any cylinder set $B \subset \Omega$ and any interval $J \subset I$. So the last property is physically essential for the above walk. Moreover the walk S is uniquely determined by $\nu_{p^{*}}$.

Let S be a random walk as in the abstract and let $M_{p}(S)$ denote the set of S-invariant probability measures m on $\Omega \times I$ such that $m \mid \mathcal{B} \times\{\emptyset, I\}=\mu_{p}$. In Section 2 we present more general conditions describing $M_{p}(S)$ than those in [7, Theorem 1], and as a consequence we get asymptotic properties of random walks. For S as in Section 3 we show that $\left(S, \mu_{0,5} \times \Lambda\right),\left(S, \mu_{p^{*}} \times \nu_{p^{*}}\right)$ have natural extensions to K-automorphisms. In Section 4 we interpret our construction in terms of a quantum simple harmonic oscillator. The solution of the Schrödinger equation contains a distribution function which characterizes the motion of a particle in n-quantum state. If we assume that the random walk of a particle on \mathbb{R} comes from a physically essential random
walk on I then it is partially determined by two successive distributions for $n-1$ - and n-quantum states, $n \geq 1$. We apply the above to describe the motion of the particle in 0 -, 1 - and 2 -quantum state. Section 5 is devoted to a binomial model for asset prices. We conclude that circumstances when the asset prices change in chaotic way may be persistent. In Section 7 we present a numerical construction of S and apply it to obtain an explicit, given by parabolic maps, skew product for which the property of having an invariant Sinai-Ruelle-Bowen measure is physically essential.
2. Ergodic properties. Let us denote by \mathcal{D} the set of distribution functions of probability measures on I. Let ν_{G} denote the measure determined by $G \in \mathcal{D}$. We also add new assumptions about $S_{i}, i=0,1$. Namely

$$
S_{i}^{-1}(x)=\left(1-\epsilon_{i}\right) x+\epsilon_{i} g(x), \quad i=0,1
$$

for some reals $\epsilon_{0}<0$ and $\epsilon_{1}>0$. Here g is a $C^{1}(0,1)$ homeomorphism of I and $g(x)<x$ for $x \in(0,1)$.
[7, Theorem 1] has the following extension.
Theorem 2.1. If $\mu_{p} \times \mu \in M_{p}(S)$ with $\mu(\{0\})=\mu(\{1\})=0$ then $\mu=\mu_{G}$ where G is a homeomorphism of I. Moreover $\mu_{p} \times \mu_{G}$ is ergodic and

$$
M_{p}(S)=\operatorname{conv}\left\{\mu_{p} \times \delta_{\{0\}}, \mu_{p} \times \delta_{\{1\}}, \mu_{p} \times \mu_{G}\right\}
$$

Proof. By ergodic decomposition [5, Theorem 1.1, p. 193] of $\mu_{p} \times \mu$ there exists $G \in \mathcal{D}$ such that $\mu_{p} \times \nu_{G}$ is ergodic and

$$
\nu_{G} \notin \operatorname{conv}\left\{\delta_{\{0\}}, \delta_{\{1\}}\right\}
$$

Therefore by [8, Lemma 3], G is continuous and increasing. An application of [7, Theorem 1] completes the proof.

We also have

$$
\frac{1}{n} \sum_{k=0}^{n-1} 1_{B \times J}\left(S^{k}(\omega, x)\right) \rightarrow \mu_{p}(B) \mu(J) \quad \text { as } n \rightarrow \infty
$$

for μ_{p}-almost every $\omega \in \Omega$, every $x \in(0,1)$, any cylinder set $B \subset \Omega$ and any interval $J \subset I$, by repeating the reasoning in [10, proof of Theorem 2]. So $\mu_{p} \times \mu$ is a kind of Sinai-Ruelle-Bowen measure. In particular

$$
\frac{1}{n} \sum_{k=0}^{n-1} \mu_{p}\left\{\omega: S_{\omega(k)} \circ \cdots \circ S_{\omega(0)}(x) \in J\right\} \rightarrow \mu(J) \quad \text { as } n \rightarrow \infty
$$

for every $x \in(0,1)$ and any interval $J \subset I$.
Corollary 2.2. If $\mu_{p} \times \Lambda \in M_{p}(S)$, i.e.

$$
p=\frac{\epsilon_{1}}{\epsilon_{1}-\epsilon_{0}}
$$

then $\left(S, \mu_{p} \times \Lambda\right)$ is ergodic.

To obtain the ergodicity of $\left(S, \mu_{p} \times \Lambda\right)$ in previous papers, we have assumed that $S_{0} \in C^{2}(I)$ and there exists exactly one $x_{0} \in I$ such that $S_{0}^{\prime}\left(x_{0}\right)=1$.

In the current mathematical literature, $\mu_{p} \times \Lambda$ is the only known product measure $\mu_{p} \times \mu \in M_{p}(S)$ such that μ is absolutely continuous with respect to Λ. Theorem 6.6 below changes this situation and that is why we have to present the results such as the following.

Let us denote by $\left(\bar{S}, \overline{\mu_{p} \times \mu}\right)$ the natural extension of $\left(S, \mu_{p} \times \mu\right)$ to an automorphism.

Definition 2.3. $\left(S, \mu_{p} \times \mu\right)$ is said to have the K-property if $\left(\bar{S}, \overline{\mu_{p} \times \mu}\right)$ is a K-automorphism, i.e. there exists a sub- σ-algebra $\overline{\mathcal{D}}$ of $\overline{\mathcal{B} \times \mathcal{A}}$ such that

$$
\bigvee_{n=-\infty}^{\infty} \bar{S}^{n}(\overline{\mathcal{D}})=\overline{\mathcal{B} \times \mathcal{A}} \quad \text { and } \quad \bigwedge_{n=-\infty}^{\infty} \bar{S}^{n}(\overline{\mathcal{D}})=\overline{\mathcal{R}}
$$

where $\overline{\mathcal{R}}$ is trivial in the sense that it contains only sets of measure 0 or 1 .
Theorem 2.4. If $\mu_{p} \times \mu \in M_{p}(S)$ and $\mu \equiv \Lambda$ then $\left(S, \mu_{p} \times \mu\right)$ has the K-property.

Proof. If

$$
p=p_{0}=\frac{\epsilon_{1}}{\epsilon_{1}-\epsilon_{0}}
$$

then by ergodicity of ($S, \mu_{p_{0}} \times \Lambda$) and by using the reasoning from the proof of [6, Theorem 2] we get the K-property of $\left(S, \mu_{p_{0}} \times \Lambda\right)$. Now, let $\mu_{p} \times \mu \in M_{p}(S)$ and $\mu \equiv \Lambda$. To get prove the K-property of $\mu_{p} \times \mu$ it is enough to prove the total ergodicity of $\left(S, \mu_{p} \times \mu\right)$ by [6, Theorem 1]. Let $f \circ S=a f \mu_{p} \times \mu$-a.e. for $f \in L_{1}\left(\mu_{p} \times \mu\right)$ and $|a|=1$. Then $f(\omega, x)=f(x) \mu_{p} \times \mu$ a.e. by [12, Theorem 3.2]. Therefore $f \circ S_{i}=a f$ for $i=0,1 \mu$-a.e. or Λ-a.e. Hence $f \circ S=a f$ $\mu_{p_{0}} \times \Lambda$ a.e. The K-property of $\mu_{p_{0}} \times \Lambda$ implies $f=$ const Λ-a.e., which yields $f=$ const $\mu_{p} \times \mu$-a.e.

Let us consider the random walk $X_{0}=x_{0}, X_{1}=S_{\omega(0)}\left(x_{0}\right), X_{2}=S_{\omega(1)} \circ$ $S_{\omega(0)}\left(x_{0}\right), \ldots$, inductively

$$
X_{n+1}=S_{\omega(n)}\left(X_{n}\right)
$$

We apply the dual skew product method for $\left(S, \mu_{p} \times \mu\right)$, where $\mu \equiv \Lambda$, much as for $\left(S, \mu_{p_{0}} \times \Lambda\right)$ in [9]. As a consequence we get

$$
\int\left|\mu_{p}\left\{X_{n}(\omega, x) \in A\right\}-\mu(A)\right| d \mu(x) \rightarrow 0
$$

as $n \rightarrow \infty$ for $A \in \mathcal{A}$.
3. Construction. Assume for simplicity that $\epsilon_{0}=-1$ and $\epsilon_{1}=1$. Let g be a homeomorphism of I such that $g \in C^{1}(0,1), g(x)<x$ for $x \in(0,1)$, and $2 x-g(x)$ is a homeomorphism too. Then g determines S where

$$
S_{0}^{-1}(x)=2 x-g(x) \quad \text { and } \quad S_{1}^{-1}(x)=g(x)
$$

We also introduce the operator $\mathcal{A}_{p}: \mathcal{D} \rightarrow \mathcal{D}$ for $p \in(0,1)$ such that

$$
\mathcal{A}_{p} F(x)=p F\left(S_{0}^{-1}(x)\right)+(1-p) F\left(S_{1}^{-1}(x)\right) .
$$

It is easy to see that the measure $\mu_{p} \times \mu_{F}$ is S-invariant if and only if $\mathcal{A}_{p} F$ $=F$. Obviously $\mu_{0.5} \times \Lambda$ is S-invariant. Assume that F is a homeomorphism of $I, x<F(x)$ for $x \in(0,1)$ and $\mathcal{A}_{p^{*}} F=F$ for some $p^{*} \in(1 / 2,1)$.

Theorem 3.1. For every $p \in\left[1 / 2, p^{*}\right]$ there exists an S-invariant measure $\mu_{p} \times \mu_{G}$ such that $\left(S, \mu_{p} \times \mu_{G}\right)$ is ergodic and G is a homeomorphism of I.

Proof. Let

$$
F_{p}(x, y)=p F(2 x-y)+(1-p) F(y)-F(x)
$$

for $(x, y) \in I \times I$ such that $2 x-1 \leq y \leq x$. Then

$$
F_{p}(x, y)<F_{p^{*}}(x, y) \quad \text { for } p<p^{*} \text { and }(x, y) \in I \times I, 2 x-1<y<x .
$$

Therefore
$\mathcal{A}_{p} F(x)-F(x)=F_{p}(x, g(x))<F_{p^{*}}(x, g(x))=0$ for $p<p^{*}$ and $x \in(0,1)$.
Simultaneously $\mathcal{I} \leq F$, where \mathcal{I} denotes the identity function. Hence

$$
\mathcal{I} \leq \mathcal{A}_{p} \mathcal{I} \leq \mathcal{A}_{p} F \leq F \quad \text { for } p \in\left(1 / 2, p^{*}\right) .
$$

Therefore

$$
\mathcal{I} \leq \mathcal{A}_{p}^{n} \mathcal{I} \leq F,
$$

and the sequence $\mathcal{A}_{p}^{n} \mathcal{I}(x)$ is non-decreasing for $x \in I, n=1,2, \ldots$. Let

$$
G(x)=\lim _{n \rightarrow \infty} \mathcal{A}_{p}^{n} \mathcal{I}(x)
$$

and $\bar{G}(x)=G\left(x^{-}\right)$for every $x \in(0,1)$. Then $\mu_{p} \times \mu_{\bar{G}}$ is S-invariant since $\mathcal{A}_{p} \bar{G}=\bar{G}$. Moreover $\mu_{\bar{G}}(0)=\mu_{\bar{G}}(1)=0$ since $\mathcal{I} \leq \bar{G} \leq F$. Now we are in a position to use Theorem 2.1.

Taking into consideration the results of Section 2 we see that the Sinai-Ruelle-Bowen measure $\mu_{p^{*}} \times \mu_{F}$ for (S, p^{*}) is physically essential.

As in Section 2 we consider

$$
T_{i}^{-1}(x)=\left(1-\epsilon_{i}\right) x+\epsilon_{i} h(x), \quad i=0,1,
$$

for some reals $\epsilon_{0}<0$ and $\epsilon_{1}>0$. It is known that $\mathcal{I} \leq \mathcal{A}_{p} \mathcal{I}$ for $p \geq$ $\epsilon_{1} /\left(\epsilon_{1}-\epsilon_{0}\right)$. Here \mathcal{A}_{p} is determined by T. Therefore we can apply the reasoning from the proof of Theorem 3.1 to get:

Corollary 3.2. If $T_{0}^{-1}(x) \leq 2 x-g(x)$ and $T_{1}^{-1}(x) \leq g(x)$ for $x \in[0,1]$ then for every

$$
p \in\left[\epsilon_{1} /\left(\epsilon_{1}-\epsilon_{0}\right), p^{*}\right]
$$

there exists a T-invariant measure $\mu_{p} \times \mu_{G}$ such that $\left(T, \mu_{p} \times \mu_{G}\right)$ is ergodic and G is a homeomorphism of I.

Set

$$
\|f\|=\sup \{|f(x)|: x \in I\}
$$

and let G_{p} be the distribution function G given by Theorem 3.1 for $p \in\left[\frac{1}{2}, p^{*}\right]$.
Proposition 3.3. Let $p_{0} \in\left[1 / 2, p^{*}\right]$. Then

$$
\lim _{p \rightarrow p_{0}}\left\|G_{p}-G_{p_{0}}\right\|=0
$$

Proof. Let us consider $G_{n}=G_{p_{n}}$ such that $\lim _{n \rightarrow \infty} p_{n}=p_{0}$. Then by Helly's Theorem there exists a subsequence $G_{n_{k}}$ and a non-decreasing function G such that

$$
\lim _{k \rightarrow \infty}\left|G_{n_{k}}(x)-G(x)\right|=0 \quad \text { for every } x \in I
$$

It is easy to see that $\mathcal{A}_{p_{0}} G=G$. Moreover $\mathcal{I} \leq G \leq F$ by the proof of Theorem 3.1. Let $\bar{G}(x)=G\left(x^{-}\right)$for every $x \in(0,1)$. Then $\bar{G} \in \mathcal{D}$ and $\bar{G}=G_{p_{0}}$ by Theorem 2.1. Continuity of $G_{p_{0}}$ implies uniform convergence of $G_{n_{k}}$ to $G_{p_{0}}$.

Let $F \in C^{2}(0,1)$ with $F(0)=0, F(1)=1, F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}(1)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. We will find g as above such that $\mathcal{A}_{p} F=F$ for some $p \in(0,1)$. In other words, we will find the implicit function given by $F_{p}(x, y)=0$ where

$$
F_{p}(x, y)=p F(2 x-y)+(1-p) F(y)-F(x)
$$

or we solve the equivalent differential equation. The detailed description and examples are contained in Section 6. Let S be the skew product determined by g which is given by Theorem 6.6 for some $p^{*} \in(1 / 2,1)$. Then the conclusions of Theorem 3.1 and Proposition 3.3 hold for $\left(S, p^{*}\right)$.

There is another way to obtain S which possesses two invariant probability measures, namely, such that $\mu_{p} \times \Lambda \in M_{p}(S)$ for some $p \neq 1 / 2$ and $\nu^{*} \in M_{0.5}(S)$, where ν^{*} is non-trivial, i.e. $\nu^{*} \notin \operatorname{conv}\left\{\mu_{0.5} \times \delta \nu_{\{0\}}, \mu_{0.5} \times \delta_{\{1\}}\right\}$, by using results of [3] and [2] (see also [4]). To get this we consider

$$
S_{i}^{-1}(x)=\left(1-\epsilon_{i}\right) x+\epsilon_{i} x^{2}, \quad i=0,1,
$$

where $\epsilon_{0}+\epsilon_{1} \neq 0,\left(1-\epsilon_{0}\right)\left(1-\epsilon_{1}\right)<1$ and $\left(1+\epsilon_{0}\right)\left(1+\epsilon_{1}\right)<1$. Then S has a non-trivial measure $\nu^{*} \in M_{0.5}(S)$ by [3, Theorem 5.1]. Moreover ν^{*} is a product measure by [2, Theorem 4.2], i.e. $\nu^{*}=\mu_{0.5} \times \nu$, where ν is a probability measure on $(0,1)$. Therefore S has invariant measures $\mu_{p} \times \Lambda$ for $p=\epsilon_{1} /\left(\epsilon_{1}-\epsilon_{0}\right)$ and $\mu_{0.5} \times \nu$ for $p=1 / 2$. But we do not know when ν is an absolutely continuous measure.
4. Quantum harmonic oscillator. Results of the Appendix (Section 6) show that the shape of the distribution function uniquely determines a random walk which is physically essential. This is the justification for applying the above to the quantum harmonic oscillator. A one-dimensional
quantum harmonic oscillator Ψ satisfies the Schrödinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi
$$

where $H=\frac{1}{2}\left(P^{2}+Q^{2}\right)$ is the Hamiltonian. Here $P=-i \frac{d}{d x}$ and Q is multiplication by x. Let us consider the ground state solution

$$
\Psi_{0}(x, t)=\frac{1}{\sqrt[4]{\pi}} \exp \left(-\frac{i}{2 \hbar} t\right) \exp \left(-\frac{x^{2}}{2}\right)
$$

The quantum interpretation of $\left|\Psi_{0}(x, t)\right|^{2}=\frac{1}{\sqrt{\pi}} \exp \left(-x^{2}\right)$ is the following: The probability that a particle is in the set $A \subset \mathbb{R}$ at time t is

$$
\frac{1}{\sqrt{\pi}} \int_{A} \exp \left(-x^{2}\right) d x
$$

We construct a discrete time random walk $\tilde{X}_{n}(\omega, x)$ on \mathbb{R} which asymptotically imitates the motion of a particle in the ground state.

Let S be the skew product determined by $g(x)$ given by Theorem 6.6 for some $p^{*} \in(1 / 2,1)$. By using the map $\Xi: \Omega \times \mathbb{R} \rightarrow \Omega \times I$ where $\Xi(\omega, x)=\left(\omega, \phi_{0}(x)\right)$ and

$$
\phi_{0}(x)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} \exp \left(-t^{2}\right) d t
$$

we define

$$
\tilde{S}(\omega, x)=\left(\sigma(\omega), \tilde{S}_{\omega(0)}(x)\right),
$$

a skew product on $\Omega \times \mathbb{R}$. Here $\tilde{S}_{i}(x)=\phi_{0}^{-1}\left(S_{i}\left(\phi_{0}(x)\right)\right)$ for $i=0,1$. The map \tilde{S} preserves the measures $\mu_{0.5} \times \tilde{\mu}_{\Lambda}$ and $\mu_{p^{*}} \times \tilde{\mu}_{F}$ where $\tilde{\mu}_{\Lambda}$ has the normal distribution with density $\frac{1}{\sqrt{\pi}} \exp \left(-x^{2}\right)$ and $\tilde{\mu}_{F}$ has distribution $F\left(\phi_{0}(x)\right)$. Moreover \tilde{S} preserves the ergodic measures $\mu_{p} \times \tilde{\mu}_{G_{p}}$ for $p \in\left(1 / 2, p^{*}\right)$ where $\tilde{\mu}_{G_{p}}$ has distribution $G_{p}\left(\phi_{0}(x)\right)$. The distributions G_{p} are provided by Theorem 3.1. Denote by $\tilde{X}_{n}(\omega, x)$ the random walk determined by \tilde{S}, i.e. $\tilde{X}_{0}\left(\omega, x_{0}\right)=x_{0}, \tilde{X}_{1}\left(\omega, x_{0}\right)=\tilde{S}_{\omega(0)}\left(x_{0}\right), \ldots$, inductively

$$
\tilde{X}_{n+1}\left(\omega, x_{0}\right)=\tilde{S}_{\omega(n)}\left(\tilde{X}_{n}\left(\omega, x_{0}\right)\right) .
$$

Here $\tilde{X}_{n}(\omega, x)=\phi_{0}^{-1}\left(X_{n}\left(\omega, \phi_{0}(x)\right)\right)$. The real p^{*} and the distribution F uniquely determine the random walk \tilde{X}_{n} by Theorem 6.6. The convergences

$$
\mu_{0.5}\left\{X_{n}(\omega, x) \in A\right\} \rightarrow \Lambda(A) \quad \text { in } L_{1}(\Lambda)
$$

and

$$
\mu_{p^{*}}\left\{X_{n}(\omega, x) \in A\right\} \rightarrow \mu_{F}(A) \quad \text { in } L_{1}\left(\mu_{F}\right)
$$

for $A \in \mathcal{A}$, as has been observed in Section 2, imply

$$
\mu_{0.5}\left\{\tilde{X}_{n}(\omega, x) \in B\right\} \rightarrow \tilde{\mu}_{\Lambda}(B) \quad \text { in } L_{1}\left(\tilde{\mu}_{\Lambda}\right)
$$

and

$$
\mu_{p^{*}}\left\{\tilde{X}_{n}(\omega, x) \in B\right\} \rightarrow \tilde{\mu}_{F}(B) \quad \text { in } L_{1}\left(\tilde{\mu}_{F}\right)
$$

for $B \in \mathcal{B}(\mathbb{R})$.
The random walk for the nth quantum state solution where $n>0$ is more complicated. Let us consider the case $n=1$. The 1 -state solution

$$
\Psi_{1}(x, t)=\frac{\sqrt{2}}{\sqrt[4]{\pi}} \exp \left(-\frac{3 i}{2 \hbar} t\right) x \exp \left(-\frac{x^{2}}{2}\right)
$$

gives the distribution function

$$
\phi_{1}(x)=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} t^{2} \exp \left(-t^{2}\right) d t
$$

We obtain a physically essential random walk S on I determined by ϕ_{1} as follows. By the equality

$$
\phi_{1}(x)=\phi_{0}(x)-\frac{1}{\sqrt{\pi}} x \exp \left(-x^{2}\right) \quad \text { for } x \in \mathbb{R}
$$

we get

$$
F^{(1)}(x)=x-\frac{1}{\sqrt{\pi}} \phi_{0}^{-1}(x) \exp \left(-\left[\phi_{0}^{-1}(x)\right]^{2}\right) \quad \text { for } x \in I
$$

Here $F^{(1)}\left(\phi_{0}(x)\right)=\phi_{1}(x)$ for $x \in \mathbb{R}$. The function $F^{(1)}$ is an increasing homeomorphism of $I, F^{(1)}(1 / 2)=1 / 2, F^{(1)}$ is concave on $[0,1 / 2]$ and convex on $[1 / 2,1]$. Moreover $\left(F^{(1)^{\prime}}\right)(0)=\left(F^{(1)^{\prime}}\right)(1)=\infty$ and $\left(F^{(1)^{\prime}}\right)(1 / 2)=0$ as $\left(F^{(1)^{\prime}}\right)(x)=2\left[\phi_{0}^{-1}(x)\right]^{2}$. In fact $F^{(1)}(x)=1-F^{(1)}(1-x)$ for $x \in[0,1]$. Moreover $F^{(1)}$ satisfies the assumptions of Hypothesis 6.11 for the interval $[0,1 / 2]$ instead of $[0,1]$. By hypothesis we can modify $F^{(1)}$ to $\check{F}^{(1)}$ for every $\epsilon>0$ such that $\left\|F^{(1)}-\check{F}^{(1)}\right\|<\epsilon$. The equality $\check{F}_{p^{*}}^{(1)}(x, y)=0$, where

$$
\check{F}_{p^{*}}^{(1)}(x, y)=p^{*} \check{F}^{(1)}(2 x-y)+\left(1-p^{*}\right) \check{F}^{(1)}(y)-\check{F}^{(1)}(x)
$$

and $p^{*} \in(1 / 2,1 / \sqrt[3]{4})$, determines an increasing homeomorphism $h(x)$ of I such that

$$
h(x)= \begin{cases}g(x) & \text { for } x \in[0,1 / 2] \\ 1-g(1-x) & \text { for } x \in(1 / 2,1]\end{cases}
$$

Here $g(x)$ is given by Theorem 6.8 for $\check{F}^{(1)}$ restricted to $[0,1 / 2]$. The random walk S determined by $h(x)$ has the following properties: $\mu_{0.5} \times \Lambda \in M_{0.5}(S)$ and $\mu_{p^{*}} \times \mu_{\check{F}(1)} \in M_{p^{*}}(S)$. It is easy to see that S is not ergodic. There are two ergodic components, $\Omega \times[0,1 / 2]$ and $\Omega \times[1 / 2,1]$. Set $S^{(1)}=S \mid \Omega \times[0,1 / 2]$ and $S^{(2)}=S \mid \Omega \times[1 / 2,1]$. The walks $S^{(1)}$ and $S^{(2)}$ move in the opposite directions, i.e. $S_{\omega(0)}^{(1)}(x)-x$ has opposite sign to $S_{\omega(0)}^{(2)}(y)-y$ for $x \in(0,1 / 2)$ and $y \in(1 / 2,1)$. Moreover, $S^{(i)}, i=1,2$, have the properties given by

Theorems 2.4 and 3.1. Hence the property that

$$
\begin{aligned}
\frac{1}{n} \sum_{k=0}^{n-1} \mu_{p^{*}}\left\{X_{k}(\omega, x) \in J\right\} \rightarrow & 2 \mu_{\check{F}^{(1)}}(J \cap[0,1 / 2]) 1_{[0,1 / 2]}(x) \\
& +2 \mu_{\check{F}^{(1)}}(J \cap[1 / 2,1]) 1_{[1 / 2,1]}(x)
\end{aligned}
$$

as $n \rightarrow \infty$ for every $x \in(0,1)$ and any interval $J \subset[0,1]$ is physically essential. By using the map $\Xi_{1}: \Omega \times \mathbb{R} \rightarrow \Omega \times I$ where $\Xi_{1}(\omega, x)=\left(\omega, \phi_{0}(x)\right)$ we define

$$
\tilde{S}(\omega, x)=\left(\sigma(\omega), \tilde{S}_{\omega(0)}(x)\right)
$$

a skew product on $\Omega \times \mathbb{R}$. Then \tilde{S} preserves the measures $\mu_{0.5} \times \tilde{\mu}_{\Lambda}$ and $\mu_{p^{*}} \times$ $\tilde{\mu}_{\check{F}^{(1)}}$ where $\tilde{\mu}_{\Lambda}$ has distribution $\phi_{0}(x)$ and $\tilde{\mu}_{\check{F}^{(1)}}$ has distribution $\check{F}^{(1)}\left(\phi_{0}(x)\right)$. Since $\check{F}^{(1)}\left(\phi_{0}(x)\right) \approx \phi_{1}(x)$, we have

$$
\phi_{1}(x) \approx p^{*} \phi_{1}\left(\tilde{S}_{0}(x)\right)+\left(1-p^{*}\right) \phi_{1}\left(\tilde{S}_{1}(x)\right) \quad \text { for } x \in \mathbb{R}
$$

The process \tilde{X}_{n} determined by \tilde{S} has the property

$$
\begin{aligned}
\mu_{p^{*}}\left\{\tilde{X}_{n}(\omega, x) \in B\right\} \rightarrow & 2 \tilde{\mu}_{\breve{F}^{(1)}}(B \cap(-\infty, 0]) 1_{(-\infty, 0]}(x) \\
& +2 \tilde{\mu}_{\check{F}^{(1)}}(B \cap[0, \infty)) 1_{[0, \infty)}(x)
\end{aligned}
$$

as $n \rightarrow \infty$ in $L_{1}\left(\tilde{\mu}_{\breve{F}^{(1)}}\right)$ for $B \in \mathcal{B}(\mathbb{R})$.
The above suggests the physical interpretation of the 1-quantum state as existence of two particles which move in the opposite directions towards each other or one particle which consists of two components as above.

For $n=2$ the distribution function

$$
\phi_{2}(x)=\frac{1}{2 \sqrt{\pi}} \int_{-\infty}^{x}\left(2 t^{2}-1\right)^{2} \exp \left(-t^{2}\right) d t
$$

satisfies the equation

$$
\phi_{2}(x)=\phi_{1}(x)-\frac{1}{\sqrt{\pi}}\left(x^{3}-\frac{1}{2} x\right) \exp \left(-x^{2}\right) \quad \text { for } x \in \mathbb{R}
$$

Hence

$$
F^{(2)}(x)=x-\frac{1}{\sqrt{\pi}} \phi_{1}^{-1}(x)\left(\left[\phi_{1}^{-1}(x)\right]^{2}-1 / 2\right) \exp \left(-\left[\phi_{1}^{-1}(x)\right]^{2}\right) \quad \text { for } x \in I
$$

and $F^{(2)}\left(\phi_{1}(x)\right)=\phi_{2}(x)$. Here $F^{(2)}\left(x_{1}\right)=x_{1}, F^{(2)}(1 / 2)=1 / 2$ and $F^{(2)}(1-$ $\left.x_{1}\right)=1-x_{1}$ where $\phi_{1}^{-1}\left(x_{1}\right)=-\sqrt{2} / 2$. Equivalently $\phi_{1}(-\sqrt{2} / 2)=\phi_{2}(-\sqrt{2} / 2)$ $=x_{1}, \phi_{1}(0)=\phi_{2}(0)=1 / 2$ and $\phi_{1}(\sqrt{2} / 2)=\phi_{2}(\sqrt{2} / 2)=1-x_{1}$.

We repeat the reasoning similar to the case $n=1$ and finish with the interpretation via the existence of four particles or two particles which consist of two opposite components. Here we use $\Xi_{2}(\omega, x)=\left(\omega, \phi_{1}(x)\right)$.

Let us consider the general case. Here

$$
\phi_{n}(x)=\frac{1}{n!2^{n} \sqrt{\pi}} \int_{-\infty}^{x} H_{n}^{2}(t) e^{-t^{2}} d t
$$

where H_{n} is the nth Hermite polynomial, i.e.

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}},
$$

and $F^{(n+1)}(x)=\phi_{n+1}\left(\phi_{n}^{-1}(x)\right)$ for $n=0,1, \ldots$. Let

$$
C_{n}=\left\{x: \phi_{n}(x)=\phi_{n+1}(x)\right\} .
$$

Theorem 4.1. The cardinality of C_{n} is $2 n+1$ and $\varphi_{n}\left(C_{n}\right)$ is the set of inflexion points of $F^{(n+1)}$ for $n=0,1, \ldots$.

Proof. We start with the identity (see [13])

$$
H_{m} H_{n}=\sum_{l=0}^{\min (m, n)}\binom{m}{l}\binom{n}{l} 2^{l} l!H_{m+n-2 l} .
$$

Hence

$$
H_{n}^{2}=\sum_{l=0}^{n}\binom{n}{l}^{2} 2^{l} l!H_{2(n-l)} .
$$

Therefore

$$
\begin{aligned}
\phi_{n}(x)= & \phi_{n+1}(x) \\
& \Leftrightarrow \sum_{l=0}^{n}\binom{n+1}{l}^{2} 2^{l} l!H_{2(n-l)+1}(x)=2(n+1) \sum_{l=0}^{n}\binom{n}{l}^{2} 2^{l} l!H_{2(n-l)-1} \\
& \Leftrightarrow H_{n+1}(x) H_{n}(x)=0 .
\end{aligned}
$$

Hence the cardinality of C_{n} is $2 n+1$. The second part of the conclusion follows by calculating $\frac{d^{2}}{d x^{2}} F^{(n+1)}$ and using Turán's inequality

$$
H_{n}^{2}-H_{n-1} H_{n+1}>0
$$

To end this section we present some ideas which lead to this example. The set C_{n} determines a partition of \mathbb{R} into $2(n+1)$ intervals with measures given by ϕ_{n+1} the same as those given by ϕ_{n}. We postulate that every interval is occupied by a particle or every pair of neighboring intervals is occupied by a compound particle. The dynamics of these particles is determined by intervals of convexity and concavity of $F^{(n+1)}$ and by the shape of ϕ_{n+1}. Moreover the direction of motion of a particle depends on probability. If p^{*} is less than $1 / 2$ then the direction is reversed (see Remark 6.7).
5. Binomial model for asset prices. The existence of a random walk described in Section 3 indicates a new property of a one-asset binomial model
considered in [9]. For the convenience of the reader we recall the description of the model.

At each time there are two possibilities: the security price may go up by a factor of $u(x)$ or it may go down by a factor of $d(x)$. The factors u and d are functions of the prices, $u:(0,1) \rightarrow(1, \infty)$ and $d:(0,1) \rightarrow(0,1)$. Given the functions $u(x), d(x)$ and the probabilities $p=p_{d}, q=p_{u}=1-p_{d}$, we can construct a random map S which consists of the transformations S_{d}, S_{u} given by

$$
S_{d}(x)=d(x) x \quad \text { and } \quad S_{u}(x)=u(x) x .
$$

Here $S_{d}, S_{u}:[0,1] \rightarrow[0,1]$ are continuous maps with

$$
\forall_{x \in[0,1]} S_{d}(x) \leq x \text { and } S_{u}(x) \geq x .
$$

We will assume that S_{d} and S_{u} are homeomorphisms, so S is given by (1). The subscript u of S_{u} indicates that S_{u} is the law which moves the price up, and similarly S_{d} moves the price down. The process determined by the random walk S and starting from $x_{0} \in(0,1)$ can be written as $X_{n}\left(\omega, x_{0}\right)$. If S_{u} and S_{d} commute, then there exists exactly one $p \in(0,1)$ such that X_{n} has chaotic behavior (see [9, Example 1]). By uniqueness of p this behavior is not physically essential, and so is not observed in practice. If the random walk S is determined by g given by Theorems 6.6 and 6.8 then X_{n} has chaotic behavior for $p \in[1 / 2,1 / \sqrt[3]{4}]$. See also Corollary 3.2.

Corollary 5.1. The state when asset prices behave chaotically can be persistent.
6. Appendix. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. Here F^{\prime} denotes $\frac{d}{d x} F$. We will consider the implicit equation $F_{p}(x, y)=0$ where

$$
F_{p}(x, y)=p F(2 x-y)+(1-p) F(y)-F(x) .
$$

We are looking for solutions $y=g(x)$ in the set $D=\{(x, y): 0<y<x$ for $x \in(0,1 / 2]$ and $2 x-1<y<x$ if $x \in(1 / 2,1)\}$ and for $p \in(1 / 2,1)$ by concavity of F. Simultaneously $h(x)=2 x-g(x)$ is the implicit function for $1-p$ and its graph lies in

$$
\{(x, y): x<y<2 x \text { for } x \in(0,1 / 2] \text { and } x<y<1 \text { if } x \in(1 / 2,1)\} .
$$

From now on we assume that p is fixed and denote $F_{p}(x, y)$ by $F(x, y)$. We will write

$$
F_{x}=\frac{\partial F}{\partial x} \quad \text { and } \quad F_{y}=\frac{\partial F}{\partial y} .
$$

Then

$$
F_{x}=2 p F^{\prime}(2 x-y)-F^{\prime}(x), \quad F_{y}=-p F^{\prime}(2 x-y)+(1-p) F^{\prime}(y) .
$$

Hence

$$
F_{y}=0 \Leftrightarrow x=\psi_{p}(y)=\frac{1}{2} y+\frac{1}{2} F^{\prime-1}\left(\frac{1-p}{p} F^{\prime}(y)\right)
$$

Here $F^{\prime-1}$ is the inverse function to F^{\prime}. We will denote $\psi_{p}(y)$ by $\psi(y)$ throughout this section. By the definition of ψ we see that ψ is increasing, $\psi(0)=0, \psi(1)=1$, and $(\psi(y), y) \in D$ for $y \in(0,1)$. Next,

$$
F_{x}=0 \Leftrightarrow y=\varphi_{p}(x)=2 x-F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)
$$

In this section we will also denote $\varphi_{p}(x)$ by $\varphi(x)$. Here $\varphi(0)=0, \varphi(1)=1$, and $(x, \varphi(x)) \in D$ for $x \in(1 / 2,1)$. It remains to check that $\varphi(x)>0$ for $x \in(0,1 / 2)$, which is true when φ is an increasing function. If we change p to $1-p$ then we need to check $\varphi_{1-p}(x)<1$ for $x \in(1 / 2,1)$. Denote

$$
\chi_{1}(x)=\min \left\{\varphi(x), \psi^{-1}(x)\right\}, \quad \chi_{0}(x)=\max \{0,2 x-1\} \quad \text { for } x \in(0,1)
$$

LEMMA 6.1. Assume that φ and φ_{1-p} are increasing functions. Then $F\left(x, \psi^{-1}(x)\right)>0$ and $F\left(x, \chi_{0}(x)\right)<0$ for $x \in(0,1)$.

Proof. Observe that $F\left(x, \psi^{-1}(x)\right)>0$ for $x \in(0,1)$ since $F(x, x)=0$ and $F_{y}(x, y)<0$ for $\psi^{-1}(x)<y<x$. Simultaneously $F\left(x, \chi_{0}(x)\right)<0$ became $2 p F^{\prime}(2 x)<F^{\prime}(x)$ for $x \in(0,1 / 2)$ and by $2(1-p) F^{\prime}(2 x-1)>F^{\prime}(x)$ for $x \in(1 / 2,1)$, which follows from the assumptions about φ and φ_{1-p}.

REMARK 6.2. The conclusion of Lemma 6.1 is true when we replace p by $1-p$. Here

$$
\chi_{1}(x)=\max \left\{\varphi_{1-p}(x), \psi_{1-p}^{-1}(x)\right\}, \quad \chi_{0}(x)=\min \{1,2 x\} \quad \text { for } x \in(0,1)
$$

Lemma 6.3.

$$
F_{y}(x, y)<0 \text { for } \psi^{-1}(x)<y<x, \quad F_{y}(x, y)>0 \quad \text { for } 0<y<\psi^{-1}(x)
$$

Similarly

$$
F_{x}(x, y)>0 \text { for } \varphi(x)<y<x, \quad F_{x}(x, y)<0 \quad \text { for } 0<y<\varphi(x)
$$

Proof. This is easy to see from $F_{x}(x, x)>0, F_{y}(x, x)<0$, and

$$
F_{y y}(x, y)<0 \text { and } F_{x y}(x, y)>0 \quad \text { for } 0<y<x
$$

Lemma 6.4. For every $x \in(0,1)$ there exists exactly one y such that $F(x, y)=0$. Here $\chi_{0}(x)<y<\psi^{-1}(x)$. Moreover there exists $\left(x_{0}, y_{0}\right)$ such that $F\left(x_{0}, y_{0}\right)=0$ and $\chi_{0}\left(x_{0}\right)<y_{0}<\chi_{1}\left(x_{0}\right)$.

Proof. Fix $x \in(0,1)$. Since $F(x, x)=0$ and $F_{y}(x, y)<0$ for $\psi^{-1}(x)<$ $y<x$ with $x \in(0,1)$, we see that $F(x, y)>0$ for $\psi^{-1}(x) \leq y<x$. Moreover $F\left(x, \chi_{0}(x)\right)<0$. So there exists $y \in\left(\chi_{0}(x), \psi^{-1}(x)\right)$ such that $F(x, y)=0$. The uniqueness of y follows from Lemma 6.3.

To prove the "moreover" part, it is enough to show that there exists $x_{0} \in$ $(0,1)$ such that $\varphi\left(x_{0}\right)=\psi^{-1}\left(x_{0}\right)$. Observe that $F(0, \varphi(0))=F(1, \varphi(1))=0$.

Therefore there exists $x_{0} \in(0,1)$ such that $\left.\frac{d}{d x} F(x, \varphi(x))\right|_{x=x_{0}}=0$. Let us compute

$$
\frac{d}{d x} F(x, \varphi(x))=F_{x}(x, \varphi(x))+F_{y}(x, \varphi(x)) \frac{d \varphi}{d x}(x)=F_{y}(x, \varphi(x)) \frac{d \varphi}{d x}(x) .
$$

Hence $F_{y}(x, \varphi(x))=0$ at some point x_{0} since $\frac{d \varphi}{d x}(x)>0$ for $x \in(0,1)$.
REMARK 6.5. The conclusion of Lemma 6.4 is true when we replace p by $1-p$.

THEOREM 6.6. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. Moreover, let $p^{*} \in(1 / 2,1)$ be such that φ and $\varphi_{1-p^{*}}$ are increasing functions. Then there exists exactly one implicit function $y=g(x)$ solving $F(x, y)=0$ such that $g(x)<x$ for $x \in(0,1)$. The function g is a homeomorphism of I and $g \in C^{1}(0,1)$. Moreover $2 x-g(x)$ is a homeomorphism too.

Proof. Let

$$
f(x, y)=-\frac{F_{x}(x, y)}{F_{y}(x, y)} \quad \text { for } x \neq \psi(y)
$$

To determine the implicit function given by $F(x, y)=0$ let us take $\left(x_{0}, y_{0}\right)$ given by Lemma 6.4 and solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

Let (a, b) denote the maximal interval in which the function $y(x)$ is defined. We show that $(a, b)=(0,1)$. Firstly we prove that $a=0$. We consider three cases.
(I) There exist $\delta>0$ and x such that $y(s) \in\left(\varphi(s), \psi^{-1}(s)\right)$ for $s \in$ $(x, x+\delta) \subset(a, b)$ and $y(x)=\varphi(x)$. Then $y(s)$ is decreasing on $(x, x+\delta)$ by Lemma 6.3 (here $f(s, y(s))<0)$. This contradicts $\varphi(s)$ being strictly increasing.
(II) $y(s) \in\left(\varphi(s), \psi^{-1}(s)\right)$ for $s \in(x-\delta, x) \subset(a, b)$ and $y(x)=\varphi(x)$. Then by (I), $y(s) \in\left(\varphi(s), \psi^{-1}(s)\right)$ for $s \in(a, x)$. Therefore $y(s)$ is decreasing on (a, x).
(III) $\chi_{0}(x)<y(x) \leq \chi_{1}(x)$ for every $x \in(a, b)$. Then $y(x)$ is strictly increasing on (a, b) as $f(x, y)>0$ for $\chi_{0}(x)<y<\chi_{1}(x)$ (by Lemma 6.3) and since $\varphi(x)$ is strictly increasing.

Hence $\lim _{x \rightarrow a^{+}} y(x)=y\left(a^{+}\right)$exists. We have $F\left(a, y\left(a^{+}\right)\right)=0$ and $\chi_{0}(a)<$ $y\left(a^{+}\right)<\psi^{-1}(a)$ as $F\left(a, \chi_{0}(a)\right)<0$ and $F\left(a, \psi^{-1}(a)\right)>0$. Therefore there exists a solution of $\frac{d y}{d x}=f(x, y)$ with $y(a)=y\left(a^{+}\right)$on the interval $(a-\delta, a+\delta)$ for some $\delta>0$. This contradicts the maximality of (a, b). Therefore $a=0$. The case $b=1$ is similar. We extend the definition of $y(x)$ on $[0,1]$ by setting

$$
y(1)=\lim _{x \rightarrow 1^{-}} y(x) \quad \text { and } \quad y(0)=\lim _{x \rightarrow 0^{+}} y(x)
$$

Then $y(0)=0$ as $F(0, y(0))=0$, and $y(1)=1$ because $F(1, y(1))=0$.

We see that case (II) does not hold, as $y(0)=\varphi(0)=0$. Hence by (III) $g(x)=y(x)$ is homeomorphism, $g \in C^{1}(0,1)$ and $g(x)<x$. Moreover g is a unique implicit function by Lemma 6.4. We next show that $h(x)=2 x-g(x)$ is increasing. As h is an implicit function given by $F_{1-p^{*}}(x, y)=0$, by using Remarks 6.2 and 6.5 we can apply the reasoning as for p^{*}.

If we consider the symmetrical case with respect to the diagonal then $y=1-g(1-x)$ satisfies $H_{p}(x, 1-g(1-x))=0$ for $x \in[0,1]$ where $H(x)=1-F(1-x)$.

The assumptions of Theorem 6.6 are not satisfied for $F=F^{(1)}$ (see Section 4 for the definition of $F^{(1)}$). Namely φ_{1-p} is increasing for every $p \in(1 / 2,7 / 8)$ but φ is not $1-1$ for any $p \in(1 / 2,1)$. Here we consider the interval $[0,1 / 2]$ instead of $[0,1]$.

REmARK 6.7. Assume that G is an increasing homeomorphism of I. Moreover, suppose $G\left(x_{0}\right)=x_{0}$ for some $x_{0} \in(0,1)$ and G is concave on $\left(0, x_{0}\right)$ and convex on $\left(x_{0}, 1\right)$. If $y=g(x)$ is an increasing homeomorphism such that $g(x) \neq x$ for $x \notin\left\{0, x_{0}, 1\right\}$ and

$$
p G(2 x-g(x))+(1-p) G(g(x))-G(x)=0
$$

for some $p \neq 1 / 2$ and every $x \in I$ then $g\left(x_{0}\right)=x_{0}$. Moreover $g(x)<x$ for $x \in\left(0, x_{0}\right)$ and $g(x)>x$ for $x \in\left(x_{0}, 1\right)$ if $p \in(1 / 2,1)$.

Proof. Let $p \in(1 / 2,1)$ and $x \in\left(0, x_{0}\right)$. We have

$$
1 / 2<p=\frac{G(x)-G(g(x))}{G(2 x-g(x))-G(g(x))}<1
$$

If $x<g(x)<x_{0}$ then

$$
G(x)<1 / 2 G(2 x-g(x))+1 / 2 G(g(x))<G(x)
$$

as G is concave on $\left(0, x_{0}\right)$. But this is impossible. Let $x_{1}=\sup \left\{x<x_{0}\right.$: $g(x)<x\}$. Then $x_{0}=x_{1}$ under our assumptions. Hence $g(x)<x$ for $x \in\left(0, x_{0}\right)$. Similarly we show that $g(x)>x$ for $x \in\left(x_{0}, 1\right)$. This implies that $g\left(x_{0}\right)=x_{0}$. For $p \in(0,1 / 2)$ the reasoning is analogous.

Example. We apply Theorem 6.6 to $F(x)=\left(1-(1-x)^{\alpha}\right)^{1 / \alpha}$, where $\alpha>1$. We have $F^{\prime}(x)=\left((1-x)^{-\alpha}-1\right)^{(1-\alpha) / \alpha}$ and $F^{\prime-1}(x)=1-$ $\left(1+x^{\alpha /(1-\alpha)}\right)^{-1 / \alpha}$ for $x \in(0,1)$. Obviously $F \in C^{2}(0,1), F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}(1)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. To show that

$$
\begin{aligned}
\varphi(x) & =2 x-F^{\prime-1}\left(b^{-1} F^{\prime}(x)\right) \\
& =2 x-1+\left(1+b^{\alpha /(\alpha-1)}\left((1-x)^{-\alpha}-1\right)\right)^{-1 / \alpha}
\end{aligned}
$$

is increasing for $b=2 p$ and $b=2(1-p)$, we check the inequality $\varphi^{\prime}(x)>0$
for $x \in(0,1)$. By simple computation we get

$$
2^{-1}<p<\min \left\{1-2^{-\alpha}, 2^{-1 / \alpha}\right\} \Rightarrow \varphi^{\prime}(x)>0
$$

for $x \in(0,1)$. For example if $\alpha=2$ then $1 / 2<p<\sqrt{2} / 2$.
It appears that regularity of $F^{\prime \prime}$ at 0 and 1 ensures that the assumptions of Theorem 6.6 hold.

THEOREM 6.8. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. If $F^{\prime \prime}$ is strictly increasing on $(0,1), F^{\prime \prime}\left(1^{-}\right)<0,0<\left(F^{-1}\right)^{\prime \prime}\left(0^{+}\right)<\infty$ then there exists $p^{*} \in(1 / 2,1 / \sqrt[3]{4})$ such that φ and φ_{1-p} are strictly increasing on $[0,1]$ for $p \in\left(1 / 2, p^{*}\right)$.

The proof is preceded by two lemmas.
Lemma 6.9. If $F^{\prime \prime}$ is strictly increasing on $(0,1)$ then φ_{1-p} is strictly increasing on $[0,1]$ for $p \in(1 / 2,3 / 4)$.

Proof. The strict increasing of φ_{1-p} is equivalent to

$$
4(1-p) F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2(1-p)} F^{\prime}(x)\right)\right)<F^{\prime \prime}(x) \quad \text { for } x \in(0,1)
$$

An analogous condition holds for $\varphi=\varphi_{p}$. Note that $F^{\prime}(x)<\frac{1}{2(1-p)} F^{\prime}(x)$ implies $F^{\prime-1}\left(\frac{1}{2(1-p)} F^{\prime}(x)\right)<x$. Hence

$$
F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2(1-p)} F^{\prime}(x)\right)\right)<F^{\prime \prime}(x)
$$

and consequently

$$
4(1-p) F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2(1-p)} F^{\prime}(x)\right)\right)<F^{\prime \prime}(x) \quad \text { for } p<3 / 4
$$

LEMmA 6.10. If $F^{\prime \prime}$ is strictly increasing on $(0,1)$ and $F^{\prime \prime}\left(1^{-}\right)<0$ then

$$
\forall_{\epsilon \in(0,1)} \exists_{p_{0} \in(1 / 2,1)} \forall_{p \in\left(1 / 2, p_{0}\right)} \forall_{x \in[\epsilon, 1)} F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)<\frac{1}{2} F^{\prime \prime}(x) .
$$

Proof. Fix $\epsilon \in(0,1)$. If we define $F^{\prime \prime}(1)=F^{\prime \prime}\left(1^{-}\right)$then $F^{\prime \prime} \in C[\epsilon, 1]$. Observe that

$$
\lim _{p \rightarrow(1 / 2)^{+}} F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)=x
$$

uniformly as $F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)$ is strictly increasing. Therefore

$$
\lim _{p \rightarrow(1 / 2)^{+}} F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)=F^{\prime \prime}(x)
$$

uniformly too. Hence there exists $p_{0} \in(1 / 2,1)$ such that

$$
\forall_{x \in[\epsilon, 1)} F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)<F^{\prime \prime}(x)-\frac{1}{2} F^{\prime \prime}(1)<\frac{1}{2} F^{\prime \prime}(x) .
$$

Hence the inequality above holds for every $p \in\left(1 / 2, p_{0}\right)$ and $x \in[\epsilon, 1)$.
Proof of Theorem 6.8. Let $\left(F^{-1}\right)^{\prime \prime}\left(0^{+}\right)=a$. Then

$$
\lim _{x \rightarrow 0^{+}}\left(F^{-1}\right)^{\prime \prime}(x)=\lim _{x \rightarrow 0^{+}}-\frac{F^{\prime \prime}\left(F^{-1}(x)\right)}{\left[F^{\prime}\left(F^{-1}(x)\right)\right]^{3}}=\lim _{u \rightarrow 0^{+}}-\frac{F^{\prime \prime}(u)}{\left[F^{\prime}(u)\right]^{3}}=a .
$$

Hence

$$
\lim _{x \rightarrow 0^{+}} \frac{F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)}{\left[F^{\prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)\right]^{3}}=\lim _{x \rightarrow 0^{+}} \frac{F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)}{F^{\prime \prime}(x)} \frac{F^{\prime \prime}(x)}{\left(\frac{1}{2 p}\right)^{3}\left[F^{\prime}(x)\right]^{3}}=-a .
$$

Therefore

$$
\lim _{x \rightarrow 0^{+}} \frac{F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)}{F^{\prime \prime}(x)}=\frac{1}{(2 p)^{3}} .
$$

Here $1 /(2 p)^{3}>1 / 2 \Leftrightarrow p<1 / \sqrt[3]{4}$. Let $p_{1} \in(1 / 2,1 / \sqrt[3]{4})$. We take $\epsilon \in(0,1)$ such that

$$
\forall_{x \in(0, \epsilon]} F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)<\frac{1}{2} F^{\prime \prime}(x) .
$$

Hence the above inequality holds for every $p \in\left(1 / 2, p_{1}\right)$. Let $p^{*}=\min \left\{p_{1}, p_{0}\right\}$ where p_{0} is given by Lemma 6.10 for ϵ. Then

$$
4 p F^{\prime \prime}\left(F^{\prime-1}\left(\frac{1}{2 p} F^{\prime}(x)\right)\right)<2 p F^{\prime \prime}(x)<F^{\prime \prime}(x)
$$

for $p \in\left(1 / 2, p^{*}\right)$ and every $x \in(0,1)$. By Lemma 6.9 this finishes the proof.
It seems that the following hypothesis is true.
Hypothesis 6.11. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0, F^{\prime \prime}(x)<0$ for $x \in(0,1)$ and $F^{\prime \prime}$ strictly increasing on $(0,1)$. Then for every $\epsilon>0$ there exists a function H satisfying the assumptions of Theorem 6.8 such that $\|F-H\|<\epsilon$.

The last hypothesis is valid for $F=F^{(1)}$ in the case of the interval $[0,1 / 2]$ instead of $[0,1]$ (see Section 4 for the definition of $F^{(1)}$).

By using the Example it is easy to see that the assumptions: $F^{\prime \prime}$ is strictly increasing on $(0,1), F^{\prime \prime}\left(1^{-}\right)<0$ and $0<\left(F^{-1}\right)^{\prime \prime}\left(0^{+}\right)<\infty$, are not necessary. To see this, set $F_{\alpha}(x)=\left(1-(1-x)^{\alpha}\right)^{1 / \alpha}$ for $\alpha>1$. Then $F_{\alpha}^{\prime \prime}$ is not monotonic for $1<\alpha<2, F_{\alpha}^{\prime \prime}\left(1^{-}\right)=0$ for $\alpha>2$ and $\left(F_{\alpha}^{-1}\right)^{\prime \prime}\left(0^{+}\right)=\infty$ for $1<\alpha<2$.

To end this section we present some necessary conditions for F to determine g such as in Theorem 6.6 for some $p \in(1 / 2,1)$.

Lemma 6.12. Let $F \in C^{1}(0,1) \cap C[0,1]$ with $F(0)=0$ and $F(1)=1$, and suppose $F^{\prime}\left(0^{+}\right)$and $F^{\prime}\left(1^{-}\right)$exist and $F^{\prime}(x)>0$ for $x \in(0,1)$. If $A_{p} F=F$
for some $p \in(1 / 2,1)$ and some homeomorphism g such that $g(x)<x$ for $x \in(0,1)$ and $g \in C^{1}[0,1]$ then $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F(x)>x$ for $x \in(0,1)$.

Proof. Let P be the Frobenius-Perron operator for $\left(S, \mu_{p} \times \Lambda\right)$. Here S is determined by g. The measure $\mu_{p} \times \nu_{F} \equiv \mu_{p} \times \Lambda$ is S-invariant and ergodic (see Theorem 2.1). Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} P^{k} f=F^{\prime}
$$

with L^{1} convergence for every $0 \leq f \in L^{1}(\Lambda)$ and $\int_{0}^{1} f d x=1$ (see [11, Theorem 5.2.2]). In particular

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} P^{k} 1=F^{\prime} \quad \text { in } L^{1}
$$

From the equality $\int_{0}^{x} P^{n} 1 d x=\mathcal{A}_{p}^{n} \mathcal{I}(x)$ and the inequality $\mathcal{I}(x)<\mathcal{A}_{p} \mathcal{I}(x)$ for $x \in(0,1)$ we get

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{p}^{n} \mathcal{I}(x)=F(x) \quad \text { for } x \in[0,1]
$$

Therefore $x<F(x)$ for $x \in(0,1)$. Hence $F^{\prime}\left(0^{+}\right)>0$. We also have $0<$ $g^{\prime}(0)<1$. Since $P F^{\prime}(x)=F^{\prime}(x)$ for $x \in[0,1]$ we get $F^{\prime}\left(0^{+}\right)=(2 p+$ $\left.(1-2 p) g^{\prime}(0)\right) F^{\prime}\left(0^{+}\right)$, which implies $F^{\prime}\left(0^{+}\right)=\infty$. Similarly, we prove that $F^{\prime}\left(1^{-}\right)=0$.

In view of Corollary 3.2 we consider more general random walks:

$$
\begin{equation*}
S_{0}^{-1}(x)=(1+\epsilon) x-\epsilon g(x), \quad S_{1}^{-1}(x)=g(x) \quad \text { for } \epsilon>0 \tag{3}
\end{equation*}
$$

It is easy to see that the pair of homeomorphisms

$$
T_{i}^{-1}(x)=\left(1-\epsilon_{i}\right) x+\epsilon_{i} h(x), \quad i=0,1
$$

where $\epsilon_{0}<0, \epsilon_{1}>0$ can be written as in (3) for $\epsilon=-\epsilon_{0} / \epsilon_{1}$ and $g=T_{1}^{-1}$.
For $p>\frac{1}{1+\epsilon}$ we consider

$$
F_{p}^{\epsilon}(x, y)=p F((1+\epsilon) x-\epsilon y)+(1-p) F(y)-F(x)
$$

for

$$
\begin{aligned}
(x, y) \in & \left\{(x, y): 0<y<x \text { for } x \in\left(0, \frac{1}{1+\epsilon}\right]\right\} \\
& \cap\left\{\frac{1+\epsilon}{\epsilon} x-\frac{1}{\epsilon}<y<x \text { for } x \in\left(\frac{1}{1+\epsilon}, 1\right)\right\}
\end{aligned}
$$

and

$$
F_{1-p}^{\epsilon}(x, y)=(1-p) F\left(\frac{1+\epsilon}{\epsilon} x-\frac{1}{\epsilon} y\right)+p F(y)-F(x)
$$

for

$$
\begin{aligned}
(x, y) \in & \left\{(x, y): x<y<(1+\epsilon) x \text { for } x \in\left(0, \frac{1}{1+\epsilon}\right]\right\} \\
& \cap\left\{x<y<1 \text { for } x \in\left(\frac{1}{1+\epsilon}, 1\right)\right\}
\end{aligned}
$$

The conditions $\frac{\partial F_{p}^{\epsilon}}{\partial x}=0, \frac{\partial F_{1-p}^{\epsilon}}{\partial x}=0$ determine the functions

$$
\varphi_{p}^{\epsilon}(x)=\frac{1+\epsilon}{\epsilon} x-\frac{1}{\epsilon} F^{\prime-1}\left(\frac{1}{(1+\epsilon) p} F^{\prime}(x)\right)
$$

and

$$
\varphi_{1-p}^{\epsilon}(x)=(1+\epsilon) x-\epsilon F^{\prime-1}\left(\frac{\epsilon}{(1+\epsilon)(1-p)} F^{\prime}(x)\right)
$$

By using much the same reasoning as in the proofs of Theorems 6.6 and 6.8 we get

Theorem 6.13. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. Moreover, let $p^{*} \in(1 /(1+\epsilon), 1)$ be such that $\varphi_{p^{*}}^{\epsilon}$ and $\varphi_{1-p^{*}}^{\epsilon}$ are increasing functions. Then there exists exactly one implicit function $y=g(x)$ such that $g(x)<x$ for $x \in(0,1)$. The function g is a homeomorphism of I and $g \in C^{1}(0,1)$. Moreover $(1+\epsilon) x-\epsilon g(x)$ is a homeomorphism too.

Theorem 6.14. Let $F \in C^{2}(0,1) \cap C[0,1]$ with $F(0)=0, F(1)=1$, $F^{\prime}\left(0^{+}\right)=\infty, F^{\prime}\left(1^{-}\right)=0$ and $F^{\prime \prime}(x)<0$ for $x \in(0,1)$. If $F^{\prime \prime}$ is strictly increasing on $(0,1), F^{\prime \prime}\left(1^{-}\right)<0$, and $0<\left(F^{-1}\right)^{\prime \prime}\left(0^{+}\right)<\infty$ then there exists p^{*} where

$$
\frac{1}{1+\epsilon}<p^{*}<\min \left\{\frac{1}{(1+\epsilon)^{2 / 3}}, \frac{1+2 \epsilon}{(1+\epsilon)^{2}}\right\}
$$

such that φ_{p}^{ϵ} and φ_{1-p}^{ϵ} are strictly increasing on $[0,1]$ for $p \in\left(\frac{1}{1+\epsilon}, p^{*}\right)$.
7. Numerical solution. We apply the Runge-Kutta method of rank 4 to solve (2) for $F(x)=\left(1-(1-x)^{2}\right)^{1 / 2}$. Let $p=0.6, x_{0}=0.01$ and $y_{0} \in\left(y_{1}, y_{2}\right)$ where $y_{1}=0.00297, y_{2}=0.002975$. Here $F\left(x_{0}, y_{1}\right)<0$ and $F\left(x_{0}, y_{2}\right)>0$. We start at $\left(x_{0}, y_{1}\right)$ and next at $\left(x_{0}, y_{2}\right)$ respectively. After 990 steps with step $h=0.001$ we get two sequences of points $\left(x_{n}, y_{n}^{1}\right)$ and $\left(x_{n}, y_{n}^{2}\right)$. It appears that $F\left(x_{n}, y_{n}^{1}\right)<0$ and $F\left(x_{n}, y_{n}^{2}\right)>0$ for $n=0, \ldots, 989$ and

$$
\max \left\{y_{n}^{2}-y_{n}^{1}: n=0, \ldots, 990\right\}=0.007282
$$

The solution $y=g(x)$ of (2) satisfies $y_{n}^{1}<g\left(x_{n}\right)<y_{n}^{2}$ for $n=0, \ldots, 989$ by Theorem 6.6. Below we present the point graphs of $\left(x_{n}, y_{n}^{1}\right)$ and $\left(x_{n}, 2 x_{n}-y_{n}^{1}\right)$ which approximate $g(x)$ and $2 x-g(x)$ respectively.

Now we are in a position to apply Corollary 3.2. Let S be given by

$$
S_{0}^{-1}(x)=1.307 x-0.307 x^{2} \quad \text { and } \quad S_{1}^{-1}(x)=0.26 x+0.74 x^{2} .
$$

Then $S_{1}^{-1}(0.01)<0.00297<g(0.01)$ and $F_{0.6}\left(x, S_{1}^{-1}(x)\right)<0$ for $x \in(0,1)$. Therefore $S_{1}^{-1}(x)<g(x)$ for every $x \in(0,1)$. Similarly $S_{0}^{-1}(0.01)<0.02-$ $0.002975<0.02-g(0.01)$ and $F_{0.4}\left(x, S_{0}^{-1}(x)\right)>0$ for $x \in(0,1)$. Hence $S_{0}^{-1}(x)<2 x-g(x)$ for every $x \in(0,1)$. Then for every $p \in[0.706781, \sqrt{2} / 2)$, S possesses ergodic invariant measure $\mu_{p} \times \mu_{G}$ by Corollary 3.2.

References

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., 1997.
[2] L. Alsedà and M. Misiurewicz, Random interval homeomorphisms, Publ. Mat. 58 (2014), suppl., 15-36.
[3] A. Bonifant and J. Milnor, Schwarzian derivatives and cylinder maps, in: Holomorphic Dynamics and Renormalization, Fields Inst. Comm. 53, Amer. Math. Soc., Providence, RI, 2008, 1-21.
[4] M. Gharaei and A. J. Homburg, Random interval diffeomorphisms, Discrete Contin. Dynam. Systems Ser. S 10 (2017), 241-272.
[5] Y. Kifer, Ergodic Theory of Random Transformations, Progr. Probab. Statist. 10, Birkhäuser, Boston, 1986.
[6] Z. S. Kowalski, The exactness of generalized skew products, Osaka J. Math. 30 (1993), 57-61.
[7] Z. S. Kowalski, Invariant measures for smooth extensions of Bernoulli shifts, Bull. Polish Acad. Sci. Math. 51 (2003), 261-267.
[8] Z. S. Kowalski, Iterations of the Frobenius-Perron operators for parabolic random maps, Fund. Math. 202 (2009), 241-250.
[9] Z. S. Kowalski, Dual skew products, genericity of the exactness property and finance, Int. J. Bifurcation Chaos 21 (2011), 545-550.
[10] Z. S. Kowalski and P. Liardet, Genericity of the K-property for a class of transformations, Proc. Amer. Math. Soc. 128 (2000), 2981-2988.
[11] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, 1994.
[12] T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29.
[13] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.9 of 2014-08-29.

Zbigniew S. Kowalski
Faculty of Pure and Applied Mathematics
Wrocław University of Science and Technology
50-370 Wrocław, Poland
E-mail: Zbigniew.Kowalski@pwr.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 37 A05; Secondary 81Q05, 91G80.
 Key words and phrases: homeomorphic extension of one-sided Bernoulli shift, invariant product measure, random walk, quantum harmonic oscillator, binomial model.
 Received 12 March 2016; revised 22 October 2016 and 1 February 2017.
 Published online 3 March 2017.

