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BERNOULLI PROPERTY OF SMOOTH EXTENSIONS OF
BERNOULLI SHIFTS

Abstract. The paper gives a characterization of smooth extensions of
Bernoulli shifts which have the Bernoulli property, i.e. their natural exten-
sions to automorphisms are Bernoulli.

1. Introduction. Let Ti, i = 0, 1, be homeomorphisms of I = [0, 1] and
let (Ω,B, µp, σ) be the one-sided Bernoulli shift where Ω = {0, 1}N and µp
is the (p, q) measure. We denote by A the Borel σ-algebra of subsets of I
and by Λ the Lebesgue measure on I. In the space Ω× I we define the skew
products

T (ω, x) = (σ(ω), Tω(0)(x)),

S(ω, x) = (σ(ω), Sω(0)(x)) where Si = T−1i , i = 0, 1.

Let us denote by Mp(S) the set of S-invariant probability measures m on
Ω × I such that m|B × {∅, I} = µp. We define Mp(T ) in the same manner.
The paper is motivated by the question of Benjamin Weiss about Bernoulli
properties of extensions as above, posed during the conference: Dynamical
Systems, Prague, 2015. The reason for this question is the open problem
about existence of smooth K-automorphisms which are non-Bernoulli in
dimension 3. We give a sufficient condition for the Bernoulli property to
hold by using negativity of Lyapunov exponents (Theorem 2.3) and then
by using the median method (Theorem 5.1). The main role in the proofs is
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played by homeomorphisms defined below. Let

T̄ ($,x) = (σ̄($), T$(0)(x)),

S̄($,x) = (σ̄($), S$(0)(x)).

Here Ω̄ = {0, 1}Z and σ̄ is the two-sided (p, q)-Bernoulli shift. Then T̄ and
S̄−1 are topologically conjugate by [8, Theorem 1]. The conjugating trans-
formation χ defines the map ∗ : Mp(T )→Mp(S) by

µ∗(A) = µ̄(χ(P−1(A)) = P ◦ χ−1 ◦ µ̄(A) for A ∈ B ×A.

Here P ($,x) = (ω, x) and µ̄ is the measure such that (T̄ , µ̄) is the natural
extension of (T, µ) to an automorphism. The inverse map to ∗ has the same
properties. For a detailed description see [8].

Definition 1.1. We say that a measure preserving transformation has
the Bernoulli property if its natural extension to an automorphism is Ber-
noulli.

Theorem 1.2. Let Ti, i = 0, 1, be homeomorphisms of I and ν ∈Mp(T ).
Then (T, ν) has the Bernoulli property if and only if (S, ν∗) does.

Proof. Let (T̄ , ν̄) be a Bernoulli automorphism. Hence (S̄−1, χ−1 ◦ ν̄)
is Bernoulli by topological conjugation of T̄ with S̄−1 via χ. Therefore
(S̄, χ−1 ◦ ν̄) is Bernoulli too and it is the natural extension of (S, ν∗) to
an automorphism by the properties of the inverse map to ∗.

Corollary 1.3. Let ϕ : Ω → I be a measurable function which is T -in-
variant, i.e.

Tω(0)(ϕ(ω)) = ϕ(σ(ω)) for µp-a.e. ω.

Let ν ∈Mp(T ) be given by

ν(B ×A) = µp(B ∩ ϕ−1(A)) for B ∈ B, A ∈ A.

Then (S, ν∗) has the Bernoulli property.

Proof. (T, ν) is measure-theoretically isomorphic to the one-sided (p, q)-
Bernoulli shift. Here the isomorphic transformation ψ is given by ψ(ω, ϕ(ω))
= ω. Hence (T̄ , ν) is a Bernoulli automorphism and therefore (S, ν∗) has the
Bernoulli property by Theorem 1.2.

We will apply the above to transformations from [9]. We also consider
asymptotic properties of such skew products. Therefore the following result
will be useful.

Lemma 1.4.Let Ti, i = 0, 1, be homeomorphisms of I such that T0(x)>x
and T1(x) < x for x ∈ (0, 1). If µp × µ ∈Mp(S) where µ({0}) = µ({1}) = 0
then (µp × µ)∗ is not a product measure.
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Proof. Assume on the contrary that (µp × µ)∗ = µp × ν for some mea-
sure ν. Then

µp × ν(Ai ×B) = piν(B) = µp × µ(Ai × Si(B)) = piµ(Si(B)), i = 0, 1.

Here Ai = {ω : ω(0) = i} and B ∈ B. Hence µ(B) = µ(T−11 ◦ T0(B)) for
every B ∈ B. Therefore µ = δ{0} or µ = δ{1}, which yields a contradiction.

2. Lyapunov exponents method. Let Ti, i = 0, 1, be homeomor-
phisms of I such that

Ti = (1− εi)x+ εig(x), i = 0, 1,

for some reals ε0 < 0, ε1 > 0. Here g is a C1[0, 1] homeomorphism of I
with g(x) < x for x ∈ (0, 1). The following result characterizes Mp(S) [9,
Theorem 2.1].

Theorem 2.1. If µp×µ ∈Mp(S) is such that µ({0}) = µ({1}) = 0 then
the distribution function of µ is a homeomorphism of I. Moreover µp× µ is
ergodic and

Mp(S) = conv{µp × δ{0}, µp × δ{1}, µp × µ}.
Let us denote

Λi = p log(T ′0(i)) + (1− p) log(T ′1(i)) for i = 0, 1,

and let π be the projection map π(ω, x) = x. Here we assume that T ′0(i) > 0
and T ′1(i) > 0 for i = 0, 1. By using [2, Theorem 2.5] we get

Theorem 2.2. Assume Λi < 0 for i = 0, 1. Then there exist measurable
functions ϕi : Ω → I, i = 1, 2, which are T -invariant, 0 < ϕ1(ω) ≤ ϕ2(ω)
< 1 and for µp-a.e. ω,

• if x < ϕ1(ω), then limn→∞ π(Tn(ω, x)) = 0,
• if x > ϕ2(ω), then limn→∞ π(Tn(ω, x)) = 1.

Now we obtain the following result.

Theorem 2.3. Assume Λi < 0 for i = 0, 1. Then:

(1) There exists a measurable function ϕ : Ω → I which is T -invariant,
0 < ϕ(ω) < 1 and for µp-a.e. ω,
• if x < ϕ(ω), then limn→∞ π(Tn(ω, x)) = 0,
• if x > ϕ(ω), then limn→∞ π(Tn(ω, x)) = 1.

(2) S has an invariant measure µp× ν such that the distribution function of
ν is a homeomorphism of I and the natural extension of (S, µp × ν) to
an automorphism is Bernoulli.

Proof. Since Λi < 0 for i = 0, 1, there exist measures

νi(B ×A) = µp(B ∩ ϕ−1i (A)) for B ∈ B, A ∈ A, i = 1, 2.
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Here νi ∈ Mp(T ) and νi(Ω × {0}) = νi(Ω × {1}) = 0 for i = 1, 2. The
measures ν∗i ∈ Mp(S), i = 1, 2, have the same property. If we show that
ϕ1(ω) = ϕ2(ω) for µp-a.e. ω then by Corollary 1.3 we get the assertion.

Therefore, we repeat the reasoning as above for S̄−1 instead of T. Then
there exist two measures γ̄i analogous to νi by Theorem 2.2 as Λ̄i = Λi
< 0 for i = 0, 1. These measures are S̄−1-invariant and hence S̄-invariant.
By using [2, Theorem 4.2] we get S-invariant measures µp × ηi such that
ηi({0}) = ηi({1}) = 0 and

µp × ηi(C) = γ̄i(P
−1(C)) for C ∈ B ×A, i = 1, 2.

Consequently, µp × η1 = µp × η2 = ν∗1 = ν∗2 by Theorem 2.1. Therefore
ν1 = ν2 by the injectivity of ∗. Hence ϕ1(ω) = ϕ2(ω) for µp-a.e. ω.

Corollary 2.4. If Λ0 < 0 and ϕ1(ω) < 1 for µp-a.e. ω then conclusion
(2) of Theorem 2.3 holds.

In order to prove (1) we do not need the negativity of the Schwarzian
derivative of Ti, i = 0, 1, which is assumed in [4], and we do not use the
essential contraction property of S assumed in [2]. The above results have
been presented during the conference: New Developments around × 2 × 3
Conjecture and other Classical Problems in Ergodic Theory, Cieplice, 2016.

3. Conclusions and examples. We give some examples which satisfy
the assumptions of Theorem 2.3.

Corollary 3.1. If µp × Λ is S-invariant and g′(0) < 1, g′(1) > 1 then
(S, µp × Λ) has the Bernoulli property.

Proof. µp × Λ is S-invariant ⇔ pε0 + (1− p)ε1 = 0. Hence

Λi = p log(1− ε0 + ε0g
′(i)) + (1− p) log(1− ε1 + ε1g

′(i))

< log 1 = 0 for i = 0, 1.

Let us consider a more general situation. We know that if µp × ν for
ν ≈ Λ is S-invariant then (S, µp× ν) has the K-property (see [8]). Below we
show by an example that the Bernoulli property is possible for ν 6= Λ.

Example 3.2. Let

T0(x) = 2x− g(x) and T1(x) = g(x)

where g is given by [9, Theorem 6.6] for F (x) = (1− (1− x)2)1/2 and some
p ∈ (1/2,

√
2/2). Then µp × ν, where dν/dΛ = F ′, is S-invariant. We show

that g ∈ C1[0, 1] and Λi < 0 for i = 0, 1. Let us consider the continuity of g′
at 0+. By [9, proof of Theorem 6.6] we have

0 < g(x) < ϕ(x) = 2x− F ′−1
(

1

2p
F ′(x)

)
for x ∈ (0, 1).
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Since ϕ′+(0) = 2− (2p)2 we have

(1) 0 ≤ lim inf
x→0+

g(x)

x
≤ lim sup

x→0+

g(x)

x
≤ 2− (2p)2.

Simultaneously, by the identity

(2) F (x) = pF (2x− g(x)) + (1− p)F (g(x)) for x ∈ [0, 1]

we get

lim
x→0+

[
p

(
2− g(x)

x

)1/2

+ (1− p)
(
g(x)

x

)1/2]
= 1.

Therefore lim infx→0+
g(x)
x and lim supx→0+

g(x)
x are solutions of the equation

(3) p(2− a)1/2 + (1− p)a1/2 = 1.

The solutions are

a1 = 1 and a2 =

(
1− 2p2

1− 2p+ 2p2

)2

< 1.

Hence g′+(0) = a2 by (1). Moreover, by (2) we have

lim
x→0+

g′(x) =
(2− g′+(0))1/2 − 2p

(1− p)
(

2
g′+(0)

− 1
)1/2 − p,

which together with (3) implies limx→0+ g
′(x) = g′+(0).

We also obtain Λ0 < 0:
1

2
Λ0 = p log(2− a2)1/2 + (1− p) log a

1/2
2

< log(p(2− a2)1/2 + (1− p)a1/22 ) = log 1 = 0.

The proof of continuity of g′ at 1− is similar. We use the inequality

2x− 1 < g(x) < ϕ(x) for x ∈ (1/2, 1)

and the identity

1− F (x) = p(1− F (2x− g(x))) + (1− p)(1− F (g(x))) for x ∈ [0, 1].

Finally, we get g′−(1) = 4p− 1, limx→1− g
′(x) = g′−(1) and Λ1 < 0.

Remark 3.3. A similar result can be achieved by replacing F by

Fα(x) = (1− (1− x)α)1/α for α > 1.

The same is also true for F satisfying the assumptions of [9, Theorem 6.8].

4. The case of Lyapunov exponents Λ0Λ1 ≤ 0. It remains to analyse
the case Λ0Λ1 ≤ 0. First assume that Λ0Λ1 < 0.
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Theorem 4.1. If Λ0 < 0 and Λ1 > 0 then for every x ∈ (0, 1),

lim
n→∞

π(Tn(ω, x)) = 0 and lim
n→∞

π(Sn(ω, x)) = 1 for µp-a.e. ω.

Consequently,

Mp(T ) = Mp(S) = conv{µp × δ{0}, µp × δ{1}}.

Proof. By T -invariance of graph ϕ1 and ergodicity of µp, ϕ1(ω) < 1
for a.e. ω or ϕ1(ω) = 1 for a.e. ω. We consider only the first case. By
Corollary 2.4,

Mp(S) = conv{µp × δ{0}, µp × δ{1}, µp × µ}
for some measure µ. By repeating the same reasoning for S we get

Mp(T ) = conv{µp × δ{0}, µp × δ{1}, µp × ν}
where µp × ν = (µp × µ)∗, which contradicts Lemma 1.4.

For Λ0Λ1 = 0 we apply martingale methods as in [5, proof of Theo-
rem 5.1]. Let x ∈ (0, 1). Define two processes:

x0 = x, xn+1 = Tω(n)(xn) and un = − ln(xn) for n = 0, 1, . . . .

Theorem 4.2. Assume Λ0 = 0. If T p0 (x)T 1−p
1 (x) ≥ x for every x ∈ I

then the process un is a supermartingale and hence

lim
n→∞

xn = 1 for µp-a.e. ω.

Proof. Write Ti(x) = cix(1+ ti(x))−1 where T ′i (0) = ci for i = 0, 1. Then

un+1 = − ln(cω(n)) + un + ln(1 + tω(n)(e
−un)).

As un is a Markov process it suffices to show that E(un+1 | un = u) ≤ u for
every u ≥ 0. Indeed,

E(un+1 | un = u)− u =
�

Ω

− ln(cω(n)) + ln(1 + tω(n)(e
−u)) dµp

=
�

Ω

ln(1 + tω(n)(e
−u)) dµp

= p ln(1 + t0(e
−u)) + (1− p) ln(1 + t1(e

−u) ≤ 0

because T p0 (x)T 1−p
1 (x) ≥ x for every x ∈ I. Here we use the equality

�

Ω

ln(cω(n)) dµp = 0 since Λ0 = 0.

Hence un is a nonnegative supermartingale and by Doob’s supermartingale
convergence theorem (see [10, Section VII.4])

lim
n→∞

un <∞ for µp-a.e. ω.
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If un → u∞ then xn → x∞ ∈ (0, 1]. From Ti(x∞) = x∞ for i = 0, 1 we get
x∞ = 1.

In the case Λ1 = 0 we define the process

vn = − ln(1− xn) for n = 0, 1, . . . .

Theorem 4.3. Assume Λ1 = 0. If (1 − T0(x))p(1 − T1(x))1−p ≥ 1 − x
for every x ∈ I then the process vn is a supermartingale and hence

lim
n→∞

xn = 0 for µp-a.e. ω.

Proof. Write Ti(x) = 1− ai(1− x)(1 + ri(1− x))−1 where T ′i (1) = ai for
i = 0, 1 and repeat the reasoning in the proof of Theorem 4.2.

Corollary 4.4. If Λ0 = 0, p = 1/2 and g′(0) = inf{g′(x) : x ∈ I} then
(1) for every x ∈ (0, 1], limn→∞ π(Tn(ω, x)) = 1 for µ0.5-a.e. ω.
(2) M0.5(T ) = M0.5(S) = conv{µp × δ{0}, µp × δ{1}}.

Proof. Let T0 = (1 + ε0)x− ε0g(x) and T1 = (1− ε1)x+ ε1g(x) for some
ε0, ε1 > 0. Since Λ0 = 0, p = 1/2 we have

1 + ε0(1− g′(0)) =
1

1− ε1(1− g′(0))
.

Hence

T0(x)T1(x) = (x+ ε0(x− g(x))(x− ε1(x− g(x))

= x2 + (ε0 − ε1)x(x− g(x))− ε0ε1(x− g(x))2 ≥ x2

if and only if

g′(0) ≤ g(x)

x

for every x ∈ (0, 1). The assumptions of the theorem and the results of
Theorem 4.2 give the conclusion.

By using the same reasoning we get

Corollary 4.5. If Λ1 = 0, p = 1/2 and g′(1) = sup{g′(x) : x ∈ I}
then
(1) for every x ∈ [0, 1) limn→∞ π(Tn(ω, x)) = 0 for µ0.5-a.e. ω,
(2) M0.5(T ) = M0.5(S) = conv{µp × δ{0}, µp × δ{1}}.

For a continuous family of fiber maps where Λ0 = 0 or Λ1 = 0, the
sequence π(Tn(ω, x)) can be more complicated (see [7]).

5. Median method. By using the median method of Hans Crauel as
in [3, proof of Theorem 1.8.4(iv)] we get
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Theorem 5.1. Let Ti be homeomorphisms of I such that Ti(0) = 0 and
Ti(1) = 1 for i = 0, 1. If ν̄ ∈ Mp(T̄ ) is an ergodic measure then there exists
a measurable function ϕ : Ω̄ → I which is T̄ -invariant and

ν̄(B ×A) = µ̄p(B ∩ ϕ−1(A)) for B ∈ B̄, A ∈ A.
Therefore (T̄ , ν̄) is a Bernoulli automorphism.

The same conclusion can be obtained under weaker assumptions. In [1],
the Ti are logistic maps (therefore not invertible). In [6], I is a compact
manifold.

Corollary 5.2. If Ti are homeomorphisms of I such that Ti(0) = 0
and Ti(1) = 1 for i = 0, 1 and ν ∈ Mp(T ) is an ergodic measure then (T, ν)
has the Bernoulli property.

Corollary 5.2 can be directly applied to skew products considered in [2],
[4], [5] and in our paper. Theorem 5.1 gives a partial positive answer to the
question of Benjamin Weiss.
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