ALGEBRA
Homework List 1.
Analytic geometry on the plane

1. Straight line ℓ and a point M on the plane are given. Write the parametric and the normal forms of equation for a line which contains M and is
(1) parallel to ℓ;
(2) orthogonal to ℓ
in the following cases:
a) $M(2,-3), \quad \ell: 2 x-3 y+5=0$;
b) $M(1,-2), \quad \ell: 5 x-y+3=0$;
c) $M(4,-1), \quad \ell:-3 x+y+2=0$.
2. Straight line ℓ and a point P on the plane are given. Find the point Q, which is the projection of P on ℓ, and the point R, which is symmetric to P w.r.t. ℓ
a) $P(-6,4), \quad \ell: 4 x-5 y+3=0$;
b) $P(-5,13), \quad \ell: 2 x-3 y-3=0$;
c) $P(-8,12), \quad \ell$ contains $M_{1}(2,-3), M_{2}(-5,1)$;
d) $P(8,-9), \quad \ell$ contains $M_{1}(3,-4), M_{2}(-1,-2)$.
3. For the triangle $A B C$ with $A(-2,3), B(4,1), C(6,-5)$, write the the parametric and the normal forms of equation for a line which contains
a) the median;
b) the bisector;
c) the altitude
containing the vertex A.
4. The middle points of the sides of a triangle are $M_{1}(2,3), M_{2}(-1,2)$ i $M_{3}(4,5)$. Find equations of the sides of the triangle.
5. Write an equation of the line such that the point $P(2,3)$ is the projection of the origin on this line.
6. The lengths of vectors \vec{v} and \vec{w} are equal to 2 and 3, respectively. Knowing that $\vec{v} \circ \vec{w}=-1$
a) $(\vec{v}+2 \vec{w}) \circ(2 \vec{v}-\vec{w})$;
b) cosine of the angle between $\vec{v}+\vec{w}$ and $\vec{v}-\vec{w}$.
7. Check if the lines ℓ_{1} and ℓ_{2} are parallel. For parallel lines find the distance between them. For non-parallel lines find the acute angle between them.
a) $\ell_{1}: x+y+3=0, \ell_{2}:\left\{\begin{array}{l}x=1-t, \\ y=2+t,\end{array} \quad ;\right.$
b) $\ell_{1}: 2 x-y+1=0, \ell_{2}:\left\{\begin{array}{l}x=1+t, \\ y=2-t,\end{array}\right.$.
