ALGEBRA

Homework List 2.
Analytic geometry in the 3d space

1. Find the values of the parameters t, s for which the vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-s, 1)$ are parallel.
2. Find the values of the parameter t for which vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-t, 1)$ are perpendicular.
3. Compute the area of the parallelogram spanned by vectors $\vec{v}=(2,2,-1)$ and $\vec{w}=(1,3,2)$.
4. Compute the area of the triangle with vertices $A=(1,0,1), B=(2,0,4)$ and $C=(0,1,1)$.
5. For the triangle from the previous problem calculate all altitudes.
6. Compute the volume of the parallelepiped spanned by vectors $\vec{u}=(2,2,-4) \vec{v}=(1,2,0)$ and $\vec{w}=(1,3,1)$.
7. Compute the volume of the tetrahedron with vertices $A=(0,1,0), B=(1,1,2), C=(0,2,1)$ and $D=(3,2,-1)$.
8. For the tetrahedron from the previous problem compute the altitude through the vertex D.
9. Find normal and parametric equations of the plane
(a) through the points $P=(1,2,1), Q=(2,1,5)$ and $C=(3,0,1)$;
(b) through the point $P=(-2,3,2)$ and including the $O x$ axis;
(c) through the point $P=(1,0,1)$ and perpendicular to the $O y$ axis.
10. Do the parameteric equations

$$
\left\{\begin{array} { l }
{ x = 2 + 3 t + s } \\
{ y = 1 + t + 2 s } \\
{ z = - 1 + t - s }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=5+4 t+2 s \\
y=2+3 t+4 s \\
z=-2 s
\end{array}\right.\right.
$$

describe the same plane? Justify your answer.
11. Find a parametric equation of the plane given by the equation $x+2 y-z+5=0$.
12. Find a normal equation of the plane given by the parametric equation

$$
\left\{\begin{array}{l}
x=2+t+2 s \\
y=1+2 t+s \\
z=3+t-s
\end{array}\right.
$$

13. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 2 + t } \\
{ y = 1 + t } \\
{ z = - 1 + 3 t }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x=2 t \\
y=-1+2 t \\
z=-7+6 t
\end{array}\right.\right.
$$

describe the same line.
14. Find a parametric equation of the line in which two planes

$$
\left\{\begin{array}{l}
x+2 y+z+3=0 \\
2 x-y+z+5=0
\end{array}\right.
$$

intersect each other.
15. Find the intersection point of the line $l: x=t, y=1+2 t, z=3+t$ and the plane $\pi: x+2 y-z-3=0$.
16. For the point $P=(1,0,1)$ and the plane $\pi: x+2 y-z+3=0$, find
(a) the projection of P on π;
(b) the distance from P to π;
(c) the point, symmetric to P with respect to π.
17. For the point $P=(1,2,3)$ and the line $l: x=2 t, y=1-t, z=-2+3 t$, find
(a) the projection of P on l;
(b) the distance from P to l;
(c) the point, symmetric to P with respect to l.
18. Find the distance between two parallel lines

$$
\left\{\begin{array} { l }
{ x + y + z + 2 = 0 } \\
{ 2 x - y + z + 5 = 0 }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x+y+z+2=0 \\
2 x-y+z+7=0
\end{array}\right.\right.
$$

