ALGEBRA
 Homework List 4.
 Matrices and linear mappings

1. Let A, B, C be matrices defined by

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
-1 & 2 & 0 \\
1 & 1 & -1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 0 & 1 \\
4 & 3 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
-1 & 1
\end{array}\right) .
$$

Which of the matrices: $A+B, A+C, 2 A, A B, B A, A C, C A, A^{2}, C^{2}$ are well defined? Compute the matrices which are well defined.
2. Let A, B be matrices defined by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right) .
$$

Compute and compare $A B$ and $B A$.
3. The linear mapping of \mathbb{R}^{2} transforms the vector $(1,2)$ to $(-1,1)$, and the vector $(2,1)$ to $(3,1)$. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
4. Let the linear mapping of \mathbb{R}^{2} be given by $T(x, y)=(2 x+y, x-y)$. Find its matrices in the standard basis $B=\left\{e_{1}, e_{2}\right\}$ and in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ given by $v_{1}=(1,1), v_{2}=(1,-1)$.
5. Define the linear mapping of \mathbb{R}^{2} which corresponds to rotation clockwise around the origin by the angle α composed with the reflection with respect to $O x$ axis. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
6. Define the linear mapping of \mathbb{R}^{2} which corresponds to reflection with respect to
(a) the $O y$ axis;
(b) the line $y+x=0$;
(c) the line $3 y-4 x=0$.

Write the matrices of these mappings in the standard basis in \mathbb{R}^{2}.
7. Define the linear mapping of \mathbb{R}^{3} which corresponds to reflection with respect to
(a) the $O z$ axis;
(b) the $O y z$ plane;
(c) the plane $x+2 y-3 z=0$.

Write the matrices of these mappings in the standard basis in \mathbb{R}^{3}.
8. Define the linear mappings of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O y$ and $O z$ axes by the angle α. Write the matrices of these mappings in the standard basis in \mathbb{R}^{3}. For which values of α these mappings commute?

