ALGEBRA

List 4.

Matrices and linear mappings

1. Let A, B, C be matrices defined by

$$
A=\left(\begin{array}{cc}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 5 & 2 \\
-1 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
2 & 2 \\
0 & 1
\end{array}\right) .
$$

Which of the matrices: $A+B, A+C, 2 A, A B, B A, A C, C A, A^{2}, B^{2}$ are well defined? Compute the matrices which are well defined.
2. Let A, B be matrices defined by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right) .
$$

Compute and compare $A B$ and $B A$.
3. The linear mapping of \mathbb{R}^{2} transforms the vector $(1,1)$ to $(-1,2)$, and the vector $(1,0)$ to $(1,3)$. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
4. Let the linear mapping of \mathbb{R}^{2} be given by $T(x, y)=(x+y, 3 x-y)$. Find its matrices in the standard basis $B=\left\{e_{1}, e_{2}\right\}$ and in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ given by $v_{1}=(1,1), v_{2}=(1,-1)$.
5. Define the linear mapping of \mathbb{R}^{2} which corresponds to rotation counter-clockwise around the origin by the angle α. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
6. Define the linear mapping of \mathbb{R}^{2} which corresponds to reflection with respect to
(a) the $O x$ axis;
(b) the line $y=x$;
(c) the line $y+2 x=0$.

Write the matrices of these mappings in the standard basis in \mathbb{R}^{2}.
7. Define the linear mapping of \mathbb{R}^{3} which corresponds to reflection with respect to
(a) the $O x$ axis;
(b) the $O x y$ plane;
(c) the plane $y+2 x+z=0$.

Write the matrices of these mappings in the standard basis in \mathbb{R}^{3}.
8. Define the linear mapping of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O x$ axis by the angle α. Write the matrix of this mapping in the standard basis in \mathbb{R}^{3}.
9. Let T be the linear mapping of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O y$ axis by the angle $\frac{\pi}{3}$, and U be the linear mapping of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O z$ axis by the angle $\frac{\pi}{6}$. Write the matrices of these mappings in the standard basis in \mathbb{R}^{3}. Verify, whether the composition mappings $T \circ U$ and $U \circ T$ are equal or not.

