ALGEBRA

List 7.

Polynomials, rational functions, partial fractions

1. Find all integer roots of the following real polynomials:

(a)
$$x^3 + 3x^2 - 4$$
; (b) $x^4 - 2x^3 - 8x - 12$; (c) $x^4 - x^2 - 2$.

2. Find all rational roots of the following real polynomials:

(a)
$$4x^4 + 4x^3 + 3x^2 - x - 1$$
; (b) $x^4 - 5x^2 + 4$; (c) $6x^4 + 7x^2 + 2$.

3. Find all roots of the following real polynomials:

(a)
$$x^4 + x^3 - 3x^2 - 4x - 4$$
; (b) $x^4 + x^3 + x^2 + 3x - 6$.

4. Find all roots of the following complex polynomials, knowing one of their roots:

(a)
$$z^4 - 4z^3 + 12z^2 - 16z + 15$$
, $z_1 = 1 + 2i$; (b) $z^4 - 4z^3 + 16z^2 - 12z + 39$, $z_1 = i\sqrt{3}$.

5. Perform the long division and find D(x), R(x) such that P(x) = D(x)Q(x) + R(x), $\deg(R) < \deg(Q)$ for

(a)
$$P(x) = x^{10} - 2x^7 + 3x$$
, $Q(x) = x^2 + 1$; (b) $P(x) = 2x^9 - 3x^5 + 5$, $Q(x) = x^3 + x^2 - 1$.

6. Factor the following real polynomials into irreducible real factors:

(a)
$$x^3 + x^2 + x + 1$$
; (b) $x^4 - 4x^3 + 8x$; (c) $x^4 + 5x^2 + 6$.

7. Factor the following complex polynomials into irreducible real factors:

(a)
$$z^3 + z^2 + z + 1$$
; (b) $z^4 + 5z^2 + 6$; (c) $z^6 + 8$.

8. Decompose the following real rational functions into real partial fractions:

(a)
$$\frac{x}{(x^2+1)(x-2)}$$
; (b) $\frac{x-1}{x^3-1}$; (c) $\frac{1}{(x^2+1)(x-1)(x+2)}$.

9. Decompose the following complex rational functions into complex partial fractions:

(a)
$$\frac{1}{z^3 - 2z^2 + z - 2}$$
; (b) $\frac{z^2}{z^3 - 1}$; (c) $\frac{1}{(z^2 + 1)(z - 1)}$.