MATHEMATICAL ANALYSIS 2

Exam retake, version 1.

1. (2+5p.) Write the definition of the gradient of a function of two variables. Write the definition of the directional derivative. How these two objects are related? Find and classify all the critical points of $f(x, y)=x^{3}+x^{2} y+2 x^{2}+y^{2}$.
2. (3+3p.) Write the definitions of a global extremum, local extremum, and local extremum. Give an example of a local extremum which is not a global one. Find all the vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that the directional derivative of the function $f(x, y, z)=\frac{\ln (2+x)}{\sqrt{y^{3}+z^{2}}}$ at the point $(0,1,-1)$ in the direction \mathbf{v} equals 0 .
3. ($\mathbf{3}+\mathbf{4} \mathbf{p}$.$) Write the definition a normal domain on the plane. Draw an example of y$-normal domain which is not x-normal. Calculate the double integral $\iint_{D} \frac{y}{x} d x d y$, where the domain D is bounded by the curves $y=x^{2}, y=\sqrt[3]{x}$.
4. (2+5p.) Write the change of variables formula in a double integral. Performing a proper change of variables, calculate

$$
\iint_{D}(x-y)^{2} d x d x y, \quad D=\left\{(x, y): x^{2}+y^{2} \leqslant 4, x \leqslant y \leqslant-\sqrt{3} x\right\} .
$$

Draw the domain of integration in (x, y) - and new coordinates.
5. (2+5p.) Write the Taylor formula with the residue term in the Lagrange form. Write the Taylor series for the function $f(x)=(2+x)^{-2}$ at the point $x_{0}=2$. Find the radius of convergence and the interval of convergence of this series.

